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Introduction

▶ LHC measurements largely compatible with SM
→ hints for New Physics might be hidden in large SM backgrounds

▶ Traditional analyses: compare distribution of selected observables to data
→ only fraction of information is used!

▶ Need analysis techniques which
→ are based on first principles
→ estimate uncertainties reliably
→ use most of the available information

▶ Promising candidate: Matrix Element Method (MEM)
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Matrix Element Method

▶ MEM: multivariate maximum likelihood method with likelihood calculated
from first principles (QFT) [Kondo, 1988, 1991]

▶ Optimal use of information content
→ works for very small number of observations

▶ Likelihood for parameter Ω from observations {x i} given by

L(Ω|{x i}) =
∏
i

1

σ(Ω)

dσ(Ω)

dx i1 . . . dx
i
r

▶ Cross section only known analytically at parton level
→ need to invert effects of parton shower, hadronization and detector
→ transfer function T (y , x) from detector level y to parton level x

L(Ω|{y i}) =
∏
i

1

σ(Ω)

∫
d rx

dσ(Ω)

dx i1 . . . dx
i
r

T (y i , x)
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Matrix Element Method

▶ Decompose transfer function as

T (y , x) = p(x |y)ϵ(y)

→ Idea: Use neural network to learn p(x |y)
▶ Write likelihood as

L(Ω|{y i}) =
∏
i

1

σ(Ω)

∫
d rx

dσ(Ω)

dx i1 . . . dx
i
r

T (y i , x)

=
∏
i

ϵ(y i )

σ(Ω)

∫
d rx

dσ(Ω)

dx i1 . . . dx
i
r

p(x |y i )

=
∏
i

ϵ(y i )

σ(Ω)

〈
dσ(Ω)

dx i1 . . . dx
i
r

〉
x∼p(x |y i )

→ Generative ML model as phase space sampler



INN for MEM

Theo Heimel

Introduction

Matrix Element
Method

INN unfolding

Controlling
uncertainties

MEM + INN
combined

Summary

Invertible Neural Networks (INNs)
▶ INNs (normalizing flows): chain of learnable, invertible transformations

▶ Transform latent distribution (e.g. Gaussian) into distribution of interest
p(z1) p(z2|c) p(z3|c) p(z4|c)

Condition c

f1 f2 f3

▶ Training: Evaluate in backward direction to get z1 (latent space)
→ maximize log-likelihood (from change of variables formula)

L = log p(zn) = log p(z1) + log

∣∣∣∣det ∂f −1

∂zn

∣∣∣∣
▶ Sampling: Sample from p(z1), evaluate forward to get zn
▶ INN for detector and parton shower unfolding [Bellagente et al., 2006.06685]
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Physics Model

▶ Single Higgs production with anomalous non-CP-conserving Higgs coupling

Ltt̄H = − yt√
2

[
a cosα t̄t + ib sinα t̄γ5t

]
H

a = 1, b = 2
3 , mixing angle α

[Artoisenet et al, 1306.6464] [de Aquino, Mawatari, 1307.5607]

[Demartin, Maltoni, Mawatari, Zaro, 1504.00611]

▶ Only 20 detector events at 3000 fb−1

→ very well suited for MEM
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Network Setup

phase
space

mapping

sigmoid
and

normalize
cINN

detector
y

parton
z

gaussian
latent
space
r

training

unfolding

Φ3 [0, 1]7 R7 R7

▶ Phase space mapping to unit hypercube inspired by RAMBO [Plätzer, 1308.2922]

▶ Another mapping to get normalized distributions in as network inputs

▶ cINN with rational quadratic spline coupling blocks [Durkan et al., 1906.04032]

▶ Generate training and test data set with Madgraph, Pythia and Delphes
→ accept events with two photons, 1 b-tagged jet, at least 3 more jets
→ only ∼ 6% of the events left after cuts

▶ Train network with O(1M) events for O(100) epochs
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Results (trained on SM)
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Unfolded kinematic distributions

▶ Test performance
→ send detector-level

events through network
→ check if parton-level

distribution is recovered

▶ Train network on SM,
evaluate with different
angles

▶ Good performance only for
α close to 0

▶ Need to condition
network on α
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Results (conditioned on mixing angle)

10−6

10−4

10−2

n
or

m
al

iz
ed

Truth

cINN

0 200 400 600 800
pT,t [GeV]

0.8

1.0

1.2

M
o
d

el
T

ru
th

0
45

90
13

5
18

0
α

0.05

0.10

0.15

0.20

n
or

m
al

iz
ed

Truth

cINN

−2 0 2
ηt

0.8

1.0

1.2

M
o
d

el
T

ru
th

0
45

90
13

5
18

0
α

0.1

0.2

n
or

m
al

iz
ed

Truth

cINN

−2 0 2
ηh

0.8

1.0

1.2

M
o
d

el
T

ru
th

0
45

90
13

5
18

0
α

0.1

0.2

0.3
n

or
m

al
iz

ed

Truth

cINN

−2 0 2
ηj

0.8

1.0

1.2

M
o
d

el
T

ru
th

0
45

90
13

5
18

0
α
Unfolded kinematic distributions

▶ Condition network on
detector data y and mixing
angle α

▶ Train network with α
sampled uniformly from
[−180, 180]

▶ Much better agreement
for all mixing angles
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Calibration
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Calibration curves for kinematic distributions

▶ Kinematic distributions only
show performance over
whole data set

▶ Need to test performance
for single events

▶ Take 2048 detector-level
events, unfold each 60 times

▶ For observable: Calculate
fraction of unfolded events
with value smaller than true
value

▶ Plot percentiles for fractions

▶ Good calibration for
network conditioned on α
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Bayesian networks

▶ What are the uncertainties from network training and training data?

▶ Obvious method: Train ensemble of networks
→ Problem: Uses a lot of computational resources

▶ Solution: Bayesian neural networks [MacCay, 1995] [Neal, 2012]

→ Network weights not fixed but drawn from Gaussian distribution

θi fixed → θi ∼ N (µi , σi )

→ additional loss term to learn µi and σi
▶ Previous physics applications

→ Top tagging [Bollweg et al., 1904.10004]

→ Regression [Kasieczka et al., 2003.11099]

→ Event generation [Bellagente et al., 2104.04543] [Butter et al., 2110.13632]
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Results with Bayesian networks
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Unfolded kinematic distributions

▶ Make histograms for
multiple sampled networks

▶ Show means and standard
deviations for each bin
→ histogram with error bars

▶ Performance comparable
to deterministic network

▶ Limitation: If network not
able to learn a feature, this
will not be included in the
error bar!
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Calibration of Bayesian networks
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Calibration curves for kinematic distributions, α = 0◦

▶ Sample multiple networks
and make a calibration
curve for each

▶ Good performance for most
networks, slight bias for
some

▶ For MEM: look at multiple
sampled networks to
control systematic bias
from training
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MEM results (preliminary)
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▶ Combine INN unfolding with MEM

▶ Look at 100 SM events

▶ Unfold 100k times each for points in
steps of 5◦

→ calculate diff. cross sections
→ take trimmed mean

▶ Sample 50 Bayesian networks
→ one likelihood curve for each

▶ Statistical uncertainty from width of
likelihood

▶ Systematic training uncertainty from
Bayesian networks
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Summary

▶ MEM: Maximum likelihood method using first principles, optimal use of event
information

▶ Use INN as transfer function
→ Successfully inverts parton shower, hadronization, detector effects

▶ Estimate systematic training uncertainty with Bayesian networks

▶ Successful in getting likelihood curves using this setup

▶ Still some problems to be solved
→ Stability for more anomalous events
→ Susceptible to bias for events from some phase space regions

▶ Combination of MEM with INNs is promising alternative to traditional
analysis techniques
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