Invertible Networks for the Matrix Element Method

Theo Heimel

March 2022

Work in progress with Anja Butter, Till Martini, Sascha Peitzsch and Tilman Plehn

INN for MEM

Theo Heimel

ntroduction

Matrix Element Method

INN unfolding

Controlling uncertainties

MEM + INN combined

Introduction

- LHC measurements largely compatible with SM
 - \rightarrow hints for New Physics might be hidden in large SM backgrounds
- ► Traditional analyses: compare distribution of selected observables to data → only fraction of information is used!
- Need analysis techniques which
 - \rightarrow are based on first principles
 - \rightarrow estimate uncertainties reliably
 - \rightarrow use most of the available information
- Promising candidate: Matrix Element Method (MEM)

INN for MEM

Theo Heimel

Introduction

Matrix Element Method

INN unfolding

Controlling uncertainties

MEM + INN combined

Matrix Element Method

- MEM: multivariate maximum likelihood method with likelihood calculated from first principles (QFT) [Kondo, 1988, 1991]
- Optimal use of information content
 - \rightarrow works for very small number of observations
- Likelihood for parameter Ω from observations $\{x^i\}$ given by

$$\mathcal{L}(\Omega|\{x^i\}) = \prod_i \frac{1}{\sigma(\Omega)} \frac{d\sigma(\Omega)}{dx_1^i \dots dx_r^i}$$

INN for MEM

Theo Heimel

ntroduction

Matrix Element Method

INN unfolding

Controlling uncertainties

MEM + INN combined

- Cross section only known analytically at parton level
 - \rightarrow need to invert effects of parton shower, hadronization and detector
 - ightarrow transfer function $\mathcal{T}(y,x)$ from detector level y to parton level x

$$\mathcal{L}(\Omega|\{y^i\}) = \prod_i \frac{1}{\sigma(\Omega)} \int d^r x \frac{d\sigma(\Omega)}{dx_1^i \dots dx_r^i} \mathcal{T}(y^i, x)$$

Matrix Element Method

Decompose transfer function as

 $\mathcal{T}(y,x) = p(x|y)\epsilon(y)$

ightarrow Idea: Use neural network to learn p(x|y)

Write likelihood as

$$\mathcal{L}(\Omega|\{y^i\}) = \prod_i \frac{1}{\sigma(\Omega)} \int d^r x \frac{d\sigma(\Omega)}{dx_1^i \dots dx_r^i} \mathcal{T}(y^i, x)$$
$$= \prod_i \frac{\epsilon(y^i)}{\sigma(\Omega)} \int d^r x \frac{d\sigma(\Omega)}{dx_1^i \dots dx_r^i} p(x|y^i)$$
$$= \prod_i \frac{\epsilon(y^i)}{\sigma(\Omega)} \left\langle \frac{d\sigma(\Omega)}{dx_1^i \dots dx_r^i} \right\rangle_{x \sim p(x|y^i)}$$

 \rightarrow Generative ML model as phase space sampler

INN for MEM

Theo Heimel

ntroduction

Matrix Element Method

INN unfolding

Controlling uncertainties

MEM + INN combined

Invertible Neural Networks (INNs)

- ► INNs (normalizing flows): chain of learnable, invertible transformations
- > Transform latent distribution (e.g. Gaussian) into distribution of interest

► Training: Evaluate in backward direction to get z₁ (latent space) → maximize log-likelihood (from change of variables formula)

$$\mathcal{L} = \log p(z_n) = \log p(z_1) + \log \left| \det \frac{\partial f^{-1}}{\partial z_n} \right|$$

Sampling: Sample from $p(z_1)$, evaluate forward to get z_n

INN for detector and parton shower unfolding [Bellagente et al., 2006.06685]

INN for MEM

Theo Heimel

Introduction

Matrix Element Method

INN unfolding

Controlling uncertainties

MEM + INN combined

Physics Model

Single Higgs production with anomalous non-CP-conserving Higgs coupling

$$\mathcal{L}_{t\bar{t}H} = -\frac{y_t}{\sqrt{2}} \Big[a \cos \alpha \ \bar{t}t + ib \sin \alpha \ \bar{t}\gamma_5 t \Big] H$$

a = 1, $b = \frac{2}{3}$, mixing angle α

[Artoisenet et al, 1306.6464] [de Aquino, Mawatari, 1307.5607] [Demartin, Maltoni, Mawatari, Zaro, 1504.00611]

Only 20 detector events at 3000 fb⁻¹ → very well suited for MEM

INN for MEM

Theo Heimel

Introduction

Matrix Element Method

INN unfolding

Controlling uncertainties

MEM + INN combined

Network Setup

Phase space mapping to unit hypercube inspired by RAMBO [Plätzer, 1308.2922]

- Another mapping to get normalized distributions in as network inputs
- cINN with rational quadratic spline coupling blocks [Durkan et al., 1906.04032]
- ► Generate training and test data set with Madgraph, Pythia and Delphes → accept events with two photons, 1 b-tagged jet, at least 3 more jets → only ~ 6% of the events left after cuts
- Train network with $\mathcal{O}(1M)$ events for $\mathcal{O}(100)$ epochs

INN for MEM

Theo Heimel

Introduction

Matrix Element Method

INN unfolding

Controlling uncertainties

MEM + INN combined

Results (trained on SM)

Unfolded kinematic distributions

- Test performance
 - ightarrow send detector-level
 - events through network
 - \rightarrow check if parton-level distribution is recovered

INN for MEM

Theo Heimel

Introduction

Matrix Element Method

INN unfolding

Controlling uncertainties

MEM + INN combined

- Train network on SM, evaluate with different angles
- Good performance only for *α* close to 0
- Need to condition network on α

Results (conditioned on mixing angle)

Unfolded kinematic distributions

INN for MEM

Theo Heimel

Introduction

Matrix Element Method

INN unfolding

Controlling uncertainties

 $\frac{\mathsf{MEM} + \mathsf{INN}}{\mathsf{combined}}$

 Train network with α sampled uniformly from [-180, 180]

Condition network on

angle α

detector data y and mixing

 Much better agreement for all mixing angles

Calibration

Calibration curves for kinematic distributions

- Kinematic distributions only show performance over whole data set
- Need to test performance for single events
- Take 2048 detector-level events, unfold each 60 times
- For observable: Calculate fraction of unfolded events with value smaller than true value
- Plot percentiles for fractions
- ► Good calibration for network conditioned on *α*

INN for MEM

Theo Heimel

Introduction

Matrix Element Method

INN unfolding

Controlling uncertainties

MEM + INN combined

Bayesian networks

- What are the uncertainties from network training and training data?
- Solution: Bayesian neural networks [MacCay, 1995] [Neal, 2012]
 - \rightarrow Network weights not fixed but drawn from Gaussian distribution

$$heta_i ext{ fixed } o heta_i \sim \mathcal{N}(\mu_i, \sigma_i)$$

- ightarrow additional loss term to learn μ_i and σ_i
- Previous physics applications
 - \rightarrow Top tagging [Bollweg et al., 1904.10004]
 - \rightarrow Regression [Kasieczka et al., 2003.11099]
 - \rightarrow Event generation [Bellagente et al., 2104.04543] [Butter et al., 2110.13632]

INN for MEM

Theo Heimel

Introduction

Vatrix Element Vethod

INN unfolding

Controlling uncertainties

MEM + INN combined

Results with Bayesian networks

Unfolded kinematic distributions

- Make histograms for multiple sampled networks
- Show means and standard deviations for each bin → histogram with error bars

INN for MEM

Theo Heimel

Introduction

Matrix Element Method

INN unfolding

Controlling uncertainties

MEM + INN combined

- Performance comparable to deterministic network
 - Limitation: If network not able to learn a feature, this will not be included in the error bar!

Calibration of Bayesian networks

Calibration curves for kinematic distributions, $\alpha=\mathrm{0^\circ}$

- Sample multiple networks and make a calibration curve for each
- Good performance for most networks, slight bias for some
- For MEM: look at multiple sampled networks to control systematic bias from training

INN for MEM

Theo Heimel

Introduction

Matrix Element Method

INN unfolding

Controlling uncertainties

MEM + INN combined

MEM results (preliminary)

- Combine INN unfolding with MEM
- Look at 100 SM events
- Unfold 100k times each for points in steps of 5°
 - \rightarrow calculate diff. cross sections
 - \rightarrow take trimmed mean
- ► Sample 50 Bayesian networks → one likelihood curve for each
- Statistical uncertainty from width of likelihood
- Systematic training uncertainty from Bayesian networks

INN for MEM

Theo Heimel

Introduction

Matrix Element Method

INN unfolding

Controlling uncertainties

MEM + INN combined

Summary

- MEM: Maximum likelihood method using first principles, optimal use of event information
- ► Use INN as transfer function
 - \rightarrow Successfully inverts parton shower, hadronization, detector effects
- Estimate systematic training uncertainty with Bayesian networks
- Successful in getting likelihood curves using this setup
- Still some problems to be solved
 - \rightarrow Stability for more anomalous events
 - \rightarrow Susceptible to bias for events from some phase space regions
- Combination of MEM with INNs is promising alternative to traditional analysis techniques

INN for MEM

Theo Heimel

Introduction

Matrix Element Method

INN unfolding

Controlling uncertainties

MEM + INN combined