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Top-tagging with machine-learning

Neural network maps kinematical data to a predicted label (supervised)

• simulations provide training data {~xi} and truth-labels {y′i}
• neural network is optimised to minimise a loss function: Li = y′i log(yi) + (1− y′i ) log(1− yi)
• loss function is minimised when QCD and top jets are well-separated in y
• predicted label is a new observable used to tag top-jets
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Top-tagging with machine-learning

Neural networks don’t explicitly learn the invariances associated with jets

? we can’t know exactly what features the network learns (..simulation artefacts?..)

What do we want the network to learn?
• rotational invariance

• translational invariance

• permutation invariance

• IR safety

• collinear safety
f (R~x) = f(~x) = y

→ How can we control what a neural network learns?
Can we force it to learn invariances from the raw data?
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Optimising observables / representations

Key idea

Reframe the definition of our observables as an optimisation problem to be solved with machine-
learning

What do we fundamentally want from observables?

1. invariance to certain transformations / augmentations of the jets

2. discriminative within the space of jets

? Self-supervision
neural networks are optimised using pseudo-labels, not truth labels
→ independent of signal-types + can run directly on expt. data

? Contrastive-learning (SimCLR, Google Brain, Hinton et al)

map raw jet data to a new representation / observables

Barry M. Dillon Self-supervision in particle physics



Optimising observables / representations

Key idea

Reframe the definition of our observables as an optimisation problem to be solved with machine-
learning

What do we fundamentally want from observables?

1. invariance to certain transformations / augmentations of the jets

2. discriminative within the space of jets

? Self-supervision
neural networks are optimised using pseudo-labels, not truth labels
→ independent of signal-types + can run directly on expt. data

? Contrastive-learning (SimCLR, Google Brain, Hinton et al)

map raw jet data to a new representation / observables

Barry M. Dillon Self-supervision in particle physics



Optimising observables / representations

Key idea

Reframe the definition of our observables as an optimisation problem to be solved with machine-
learning

What do we fundamentally want from observables?

1. invariance to certain transformations / augmentations of the jets

2. discriminative within the space of jets

? Self-supervision
neural networks are optimised using pseudo-labels, not truth labels
→ independent of signal-types + can run directly on expt. data

? Contrastive-learning (SimCLR, Google Brain, Hinton et al)

map raw jet data to a new representation / observables

Barry M. Dillon Self-supervision in particle physics



1. ML and jet physics

2. Self-supervision

3. Results

4. Outlook



Contrastive learning of jet representations

arxiv:2107.soon, ‘Contrastive learning of jet observables’
BMD, G. Kasieczka, H. Olischlager, T. Plehn, P. Sorrenson, and L. Vogel

Dataset: mixture of top-jets and QCD-jets

From the dataset of jets {xi} define:

• positive-pairs: {(xi, x′i )} where x′i is an augmented version of xi
related by augmentation

• negative-pairs: {(xi, xj)} ∪ {(xi, x′j )} for i 6= j
not related by augmentation

Augmentation: any transformation (e.g. rotation) of the original jet

positive and negative pairs = pseudo-labels
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Contrastive learning of jet representations

Train a network to map raw data to a new representation space, f : J → R, minimising the contrastive loss:

Li = − log
exp(s(zi, z′i )/τ)∑

x∈batch Ii 6=j
[
exp(s(zi, zj)/τ) + exp(s(zi, z′j )/τ)

]

Similarity measure inR:
s(zi, zj) =

zi·zj
|zi||zj|

⇒ defined on unit-hypersphere

This optimises for:

1. alignment: positive-pairs close together inR⇒ invariance

2. uniformity: negative-pairs far apart inR⇒ discriminative
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Contrastive learning of jet representations

The training procedure:
1. sample batch of jets, xi
2. create an augmented batch of jets, x′i
3. forward-pass both through the network
4. compute the loss & update weights

Barry M. Dillon Self-supervision in particle physics



Contrastive learning of jet representations

The training procedure:
1. sample batch of jets, xi
2. create an augmented batch of jets, x′i
3. forward-pass both through the network
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rotations

Angles sampled from [0, 2π]

translations

Translation distance sampled randomly
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Contrastive learning of jet representations

The training procedure:
1. sample batch of jets, xi
2. create an augmented batch of jets, x′i
3. forward-pass both through the network
4. compute the loss & update weights

collinear splittings

some constituents randomly split,

pT,a + pT,b = pT , ηa = ηb = η

φa = φb = φ

low pT smearing

(η, φ) co-ordinates are re-sampled:

η′ ∼ N
(
η,

Λsoft
pT

r
)

φ′ ∼ N
(
φ,

Λsoft
pT

r
)
.
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Contrastive learning of jet representations

The training procedure:
1. sample batch of jets, xi
2. create an augmented batch of jets, x′i
3. forward-pass both through the network
4. compute the loss & update weights

permutation invariance

Transformer-encoder network
? based on ‘self-attention’ mechanism

? output invariant to constituent ordering

more info. in additional slides
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Quality measure of observables

Many representations used in practice:

• raw constituent data
• jet images
• Energy Flow Polynomials

(Thaler et al: arXiv:1712.07124)

Compare these using a Linear Classifier Test (LCT)

? use top-tagging as a test
? linear cut in the observable space
? supervised - uses simulations
? measures:
εs - true positive rate
εb - false positive rate
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Linear classifier test results
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Linear classifier test results

Where does the performance come from?

Augmentation ε−1
b (εs=0.5) AUC

none 15 0.905
translations 19 0.916
rotations 21 0.930
soft+collinear 89 0.970
all combined (default) 181 0.980

? soft + collinear has the biggest e�ect
translations + rotations also significant in final combination

? also not very sensitive to S/B
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Invariances in representation space

without rotational invariance

0π

−1.0
−0.5
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s(
z,
z
′ )

R

with rotational invariance

? s(z, z′)= z·z′
|z||z′| , z = f(~x), z′= f

(
R(θ)~x

)
⇒ The network f(~x) is approx rotationally invariant
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Outlook

Self-supervision allows for:

1. data-driven definition of observables
2. invariance to pre-defined symmetries/augmentations
3. high discriminative power

An example: JetCLR (contrastive learning of jet observables)

On-going work:

• Robust jet representations

• anomaly-detection
better representations
⇒ better results!
(coming soon...)

Barry M. Dillon Self-supervision in particle physics



Outlook

Self-supervision allows for:

1. data-driven definition of observables
2. invariance to pre-defined symmetries/augmentations
3. high discriminative power

An example: JetCLR (contrastive learning of jet observables)

On-going work:

• Robust jet representations

• anomaly-detection
better representations
⇒ better results!
(coming soon...)

Barry M. Dillon Self-supervision in particle physics



The network

We use a transformer-encoder network→ permutation invariance

Equivariance → invariance is similar to Deep-Sets/Energy-Flow-Networks: arXiv:1810.05165, P. T. Komiske, E. M. Metodiev, J. Thaler

The attention mechanism captures

correlations between constituents by

allowing each constituent to assign

attention weights to every other

constituent.
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Linear classifier test results

Performance as a function of training time / epochs

0 100 200 300 400 500

epoch

10−1

100

co
nt

ra
st

iv
e

lo
ss

50

100

200

L
C

T
ε−

1
b

(ε
s
=

0.
5)

0 100 200 300 400 500

epoch

10−1

100

co
nt

ra
st

iv
e

lo
ss

0.96

0.97

0.98

L
C

T
A

U
C

Barry M. Dillon Self-supervision in particle physics



Self-supervised anomaly-detection (PRELIMINARY)

Self-supervised representations + autoencoders (w. Friedrich Feiden)

• CMS anomaly-detection challenge
• Events:

MET, 10 jets, 4 electrons, 4 muons
• Signal A→ 4l
• Self-supervision increases background rejection

by O(5)

Other anomaly metrics taken directly from the self-supervised latent space also show promise

→ work in progress...
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