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Motivation

• Simulations for the LHC are very expensive. The amount of compute needed for the HL-LHC will exceed its budget

• In need of faster event generation! -> Replace parts of the simulation chain with ML methods!

Hard Process Shower Detector

expensive for the case of high 

number of jets 

In this talk
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Learning Amplitudes

• Idea: Replace amplitudes by learnt amplitudes

1. Start event generation tool and generate small initial data set

2. Train (Bayesian) neural network on this dataset

3. Use trained network to compute amplitudes quickly and generate more data

Simon Badger, Joseph Bullock, arXiv:2002.07516v2 [hep-ph]

Joseph Aylett-Bullock, Simon Badger, Ryan Moodie, arXiv:2106.09474 [hep-ph] 

K. Danziger, T. Janßen, S. Schumann, F. Siegert, arXiv:2109.11964 [hep-ph]

Fady Bishara, Marc Montull, arXiv:1912.11055 [hep-ph]

Daniel Maître, Henry Truong, arXiv:2107.06625 [hep-ph]

(Not complete list!)
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to learn more, for instance: 

Y. Gal, Uncertainty in Deep Learning, ph.D. Thesis

Sven Bollweg, Manuel Haussmann, Gregor Kasieczka, Michel Luchmann, Tilman Plehn et al, arXiv:1904.10004 [hep-ph]

G. Kasieczka, M. L., F. Otterpohl and T. Plehn, arXiv:2003.11099 [hep-ph]

Marco Bellagente, Manuel Haußmann, Michel Luchmann, Tilman Plehn, arXiv:2104.04543 [hep-ph]

Anja Butter, Theo Heimel, Sander Hummerich, Tobias Krebs, Tilman Plehn, Armand Rousselot, Sophia Vent, arXiv:2110.13632 [hep-ph]

Bayesian neural networks
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IRN Terascale @ LPC-Clermont: “Uncertainty 

Estimation for LHC Event Generation”

model model

σtot
2 = σmodel

2 + σstoch
2



Uncertainties

σpred
2 = ∑(y − ഥy)2

σmodel
2 = ∑𝜎2

• 2 different uncertainties

• For infinitely large training 
size

• σpred → 0

• σmodel → const.

More uncertainty analysis: arXiv:2003.11099 [hep-ph]
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Setup and Process

• Processes:

•

• 1 gluon jet process → analytic solutions knows

• 2 gluon jet process → only numeric solution

• Setup:

• fully connected dense network with 4 inner layers and ~30 units per layer

• optimiser: Adam

• training data: ~30k, test data: ~300k

• preprocessing: 

• phase space sampling: RAMBO

𝑔𝑔 → 𝛾𝛾 + 𝑗𝑒𝑡𝑠

𝐴 → log(𝐴/𝜎𝐴 + 1)
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Preprocessing

• Preprocessing reduces amount of outliers & 

normalizes data

• Linear:   𝐴 →
𝐴− ҧ𝐴

𝜎𝐴

• Log: 𝐴 → log(𝐴/𝜎𝐴 + 1)
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Results
Performance and Uncertainties

Δ =
𝐴𝑗,NN

𝐴𝑗
− 1

• Large amplitudes are not learnt well → events correspond to areas of IR divergencies

• Performance is good with typical deviation of ~0.3%
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Results
“Pulls”/relative deviation & kinematic distributions

• Not gaussian distributed in tails

• Conservative estimate by total uncertainty

• Large amplitudes are present in regions of low statistics!

Dominated by large 

amplitudes 

(IR divergencies)
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Boosting / feedback training

• Let’s use the BNN uncertainties to improve the performance 

• Similar idea as AdaGraph algorithm for BDT changing weight of events based on performance

• Criteria: can be chosen depending on required improvement

Freund, Yoav; Schapire, Robert E: Journal of Computer and System Sciences. 55: 119–139. 

CiteSeerX 10.1.1.32.8918. doi:10.1006/jcss.1997.1504

10



Loss loss / feedback training
Using the BNN uncertainties to improve the “Pulls”

• Let’s use the BNN uncertainties to improve the performance of the relative deviation

• Criteria: Select problematic training data in the tails of the “pull” distributions

• No visible change to performance
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Loss boosting 
Using the uncertainty estimates to improve the performance

• Significant improvement of the uncertainties of test and training data
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Process boosting / feedback training
Using the BNN uncertainties to improve the performance

Predictions of large amplitudes improved significantly

• Let’s use the BNN uncertainties to also improve the performance 

• Criteria: Select training examples with large uncertainties and emphasise them in a follow-up training



Process boosting / feedback training
Using the BNN uncertainties to improve the performance

• Improvement is visible in kinematic distributions for training and test data

• Not really scared of overtraining because amplitudes are noise-free (interpolation vs. fit)

• For test data: To get even better we would have to generate more training data
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Conclusion and outlook

• BNNs provide uncertainty estimates needed to integrate ML tools in simulation chain

• We can use uncertainties to improve performance and uncertainties further

• Next step: optimize set-up on events with higher multiplicity

• Improve feedback training further: Generate new training data in regions with large 
uncertainties?
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Backup: Uncertainties
Uncertainties detailed
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Backup: Process boosting 
Using the BNN uncertainties to improve the performance
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Backup: Bayesian neural networks
Uncertainties for regression

• BNN: Can split total BNN uncertainty into two uncertainties.

𝜎tot
2 = 𝜎 Τstoch model

2 + 𝜎pred
2 ∼ MSE

Goes to zero for

large training-size

stochasticity of data,

limited expressivity of 

model

G. Kasieczka, M. L., F. Otterpohl and T. arXiv:2003.11099 [hep-ph]
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Backup: Process boosting 
Using the uncertainty estimates to improve the performance
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• Preprocessing reduces amount of outliers & 
normalizes data

• Different preprocessing:

• Split training of divergent and non-
divergent data

• Split data using FKS-Subtraction method

• Performance better on all data

FKS:  Frixione, Kunszt, Signer (1969) 

More: Rikkert Frederix et al JHEP10(2009)003

Backup: Preprocessing
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Backup: Loss of specific terms

• Most amplitudes trained quickly

• Weight distributions (σpred) still changes
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Backup: FKS
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