

Direct search for the SM Higgs boson decaying to a charm quark-antiquark pair with CMS

Luca Mastrolorenzo¹ on behalf of the CMS Collaboration

IRN Terascale 2022 Bohn 28th March 2022

¹Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen

Understanding the Higgs boson

- Discovery of the Higgs boson in 2012: A new chapter of particle physics
 - Tremendous progress in our understanding of the Higgs boson in the past ten years

Probing Higgs coupling to 2nd generation quarks

- BSM effects enhanced given small value of SM $k_{\rm c}$

Probing the Higgs-charm coupling

Several methods explored by CMS to probe the Higgs-charm Yukawa coupling (y_c)

Corresponding ATLAS analyses: <u>ATLAS-CONF-2022-002</u>; <u>Phys. Lett. B 786 (2018) 134</u>. 3

Direct search for $H \rightarrow cc$

□ Search for $H \rightarrow cc$ decays: directly sensitive to y_c , but very challenging

- Quite small branching ratio (x20 smaller than $H \rightarrow bb$)
- QCD (reducible) and V+jets (irreducible) background
- Relatively poor invariant mass resolution
- charm quark identification + improvement of mass resolution play key roles

 $H \rightarrow bb, H \rightarrow cc$

Main backgrounds

- V + jets, single and pair production of top quarks, dibosons, $VH(H \rightarrow bb)$
- Exploit associated VH production (V = W, Z)
 - Leptonic decays of V → handle to trigger events
 - Boost of V → Reduce backgrounds
 - Three channels: $Z \rightarrow vv$ (0L), $W \rightarrow \ell v$ (1L), $Z \rightarrow \ell \ell$ (2L) [$\ell = e, \mu$]
- Previous result (36 fb⁻¹): [JHEP 03 (2020) 131]
- Today: result with the full Run 2 data set (138 fb⁻¹)

Corresponding ATLAS analysis: <u>arXiv:2201.11428</u>. See also recent <u>LHC seminar</u> by A. Chisholm.

JHEP 03 (2020) 131

Analysis overview

□ $\Delta R(c, \overline{c}) \sim 2m(H)/p_T(H)$ → Two complementary approaches for Higgs boson candidate reconstruction

 \rightarrow The two topologies are made orthogonal via presence of AK15 jet with $p_T > 300 \text{ GeV}$

Merged-jet topology

Overview of the merged-jet topology

CMS Experiment at the LHC, CERN Data recorded: 2017-Aug-05 13:32:22.028928 GMT Run / Event / LS: 300515 / 205888132 / 117

❑ Higgs candidate reconstruction

- Select one AK15-jets with the highest p_T as $H \rightarrow cc$ jet
- Identification of H → cc using ParticleNet tagger (dedicated calibration+mass sculpting mitigation)
- Dedicated cc-jet mass regression for improved cc-jet mass scale and resolution

□ Analysis strategy (three channels: 0L, 1L, 2L)

- Control regions for background normalizations
- Kinematic-BDT + cc-tagger score used for categorization
- Fit to soft-drop mass

$H \rightarrow cc$ identification

- □ Merged-jet topology: Higgs boson candidate reconstructed via a single large-R jet (p_T > 300 GeV)
- **ParticleNet** tagger used to identify $H \rightarrow cc decay \rightarrow Large improvement vs previous techniques$
- □ Multi-class DNN boosted jet classifier → Trained targeting hadronic decays of a spin-0 particle X (X \rightarrow bb, cc)

ParticleNet architecture

- □ New jet representation: "particle cloud"
 - treating a jet as an unordered set of particles, distributed in the $\eta \phi$ space
- □ ParticleNet [Phys.Rev.D 101 (2020) 5, 056019]
 - graph neural network architecture adapted from DGCNN [arXiv:1801.07829]
 - permutation-invariant architecture leads to significant performance improvement

Performance on top quark tagging benchmark [SciPost Phys. 7, 014 (2019)]

	$1/\varepsilon_b$ at $\varepsilon_s = 30\%$
ResNeXt-50	1147 ± 58
P-CNN	759 ± 24
PFN	888 ± 17
ParticleNet-Lite	1262 ± 49
ParticleNet	1615 ± 93

Calibration of the cc-tagger

- Need to measure ParticleNet cc-tagging efficiency in data
 - No pure sample of $H \rightarrow cc$ jets (or even $Z \rightarrow cc$) in data
 - Using $g \rightarrow cc$ in QCD multi-jet events as a proxy
- \Box Difficulty: select a phase-space in g \rightarrow cc that resembles H \rightarrow cc
 - Solution: BDT developed to distinguish hard 2-prong splittings from soft cc
 - Adjust the similarity between proxy and signal jets via BDT cuts
- □ Fit to the secondary vertex mass in the "passing" and "failing" regions simultaneously to extract the scale factors (typically 0.9—1.3)
 - three templates: cc (+ single c), bb (+ single b), light flavor jets
 - corresponding uncertainties are 20—30%

10

Large-R jet mass regression

Jet mass: one of the most powerful observable to distinguish signal and backgrounds

CMS DP-2021/017

□ New ParticleNet-based regression algorithm to improve the large-R jet mass reconstruction

20 – 25% improvement in the final sensitivity

Analysis strategy – merged-jet topology

Factorized approach for analysis design

- event-level kinematic BDT developed in each channel to better suppress main backgrounds (V+jets, tt)
 - using only event kinematics, no intrinsic properties (e.g., mass/flavor) of the large-R jet
- ParticleNet cc-tagger then used to define 3 cc-flavor enriched regions and reject light/bb-flavor jets
- finally: fit to the ParticleNet-regressed large-R jet mass shape for signal extraction
- □ Kinematic BDT, ParticleNet cc-tagger and regressed jet mass largely independent of each other
 - Sand robust strategy for background estimation and signal extraction

Background estimation

Normalizations of main backgrounds estimated via dedicated data control regions (CRs)

- V+jets CR: use the low kinematic BDT region
- tt CR (0L & 1L): invert the cut on the number of additional small-R jets (i.e., $N_{aj} \ge 2$)
- free-floating parameters scale the normalizations in CRs and signal regions (SRs) simultaneously

conservative uncertainty (2x/0.5x) for the misidentification of $H(Z) \rightarrow bb$ as $H(Z) \rightarrow cc$

- \Box Minor backgrounds (single top, dibosons, VH(H \rightarrow bb)) estimated from simulation
 - dibosons: applying differential NNLO QCD + NLO EW corrections as a function of p_T(V) [JHEP 2002 (2020) 087]

Resolved-jet topology

Overview of the resolved-jet topology

□ Higgs candidate reconstruction

- Select two AK4-jets with the highest c-tagger discriminant score as Higgs jets
- Dedicated c-jet energy regression for improved cjet energy scale and resolution (eg. recovery of neutrino, unclustered hadrons, etc.) + Recover FSR-jets
- Kinematic-fit (2L channels)
- Analysis strategy (three channels: 0L, 1L, 2L)
 - Control regions for background normalizations
 - BDT for final signal extraction

Charm-tagging in the resolved-jet topology

DeepJet algorithm as charm tagger

- C-jets have "intermediate" properties to b- and light-jets
 - Separate c-jets simultaneously from light-jets and bottom jets
- □ From DeepJet output score it is possible to build two c-jet taggers
 - CvsL: it is optimized to differentiate charm-jets form light- or gluon-jets
 - CvsB: it is optimized to differentiate charm-jets from bottom-jets

- □ Calibration in data with a novel technique!
- <u>2022 JINST 17 P03014</u> (published by JINST)
- I Improvement vs DeepCSV (used in <u>2016 analysis</u>)
 - Increase leading-jet c-tagging efficiency by ~30% for fixed b-jet and light-jet mis-tagging rate

Improvement of the di-jet invariant mass reconstruction

□ Dedicated c-jet energy regression + FSR-jet recovery

Up to ~15% improvement in Higgs mass resolution

□ Up to ~30% improvement in Higgs mass resolution

Analysis categories and background estimation

□ Accurate modeling of jet flavor in V+Jet background is vital for proper signal extraction

Separate rate parameters for V+c, V+b, and V+light processes (no W+b) + tt +jets

Freely floating in each channel/year 20 CMS VZ(Z->cc) • Data V+CC B1.0 CMS Simulation VV(other) Single top 2 Preliminary Resolved-ie Z+c 0 2L (ee), Low V-p Z+b Z+udsg Z+CC Control Veto m(H) VH/H-+03 VH(H→bb) 2017 (13 TeV) 3 MC uncertainty 10^{-3} region Deeplet: c jets 10^{-4} + 10-5 2 0.6 Exp sqo o 5 10-6 0 0.4 02 04 0.8 CvsB_ V+HF 10-7 0.2 59.7 fb⁻¹ (13 TeV) S CMS + Data VZ(Z→cc) Ě Preliminary VV(other) Single top 10 10-8 Resolved-ie tŤ Z+c 0.8.0 2L (ee), Low V-p 0.2 0.4 0.6 0.8 1.0 Z+b Z+udsg **Z+HE Control** VH/Harres VH(H-+bb) DeepJet CvsL MC uncertai tĪ 0 Invert Z mass (2L) Require add iet (1L)* Require add ℓ and jets (0L) / sq0 0.5 0.2 0.4 0.6 0.8 *1L: also require MET<170 GeV to CvsB_{min} keep orthogonal to 0L $t\bar{t}$ CR

Selections optimized for the different decay of the vector boson considered

- Definition of 4 analysis categories
 - □ 0L: p_T(Z)>170 GeV
 - □ 1L: p_T(W)>100 GeV
 - □ 2L Low-p_T: 60 GeV <p_T(Z) <150 GeV
 - □ **2L High-p**_T: p_T(Z)>150 GeV

□ All the categories have TT, LF, HF and CC CRs (1L has not HF) + 1 SR

□ Simultaneous fit to BDT in SR and tagger shapes in CRs

59.7 fb⁻¹ (13 TeV)

Results

Uncertainties

□ All correlated between topologies, except:

- Background normalization SFs for V+jets and tt̄
- c-tagging efficiencies

□ Main uncertainties

- Limited statistics of data
- Statistical uncertainties of V+jets samples
- Charm tagging efficiencies

Uncertainty source	$\Delta \mu / (\Delta \mu)_{tot}$
Statistical	85%
Background normalizations	37%
Experimental	48%
Sizes of the simulated samples	37%
Charm identification efficiencies	23%
Jet energy scale and resolution	15%
Simulation modeling	11%
Luminosity	6%
Lepton identification efficiencies	4%
Theory	22%
Backgrounds	17%
Signal	15%

$VZ(Z\rightarrow cc)$ results

 \Box Analysis validated by looking for VZ(Z \rightarrow cc) process

- Same analysis procedure, but extracting $VZ(Z \rightarrow cc)$ signal
- Resolved-jet: retrained BDTs with $VZ(Z \rightarrow cc)$ as signal
- VH(H→cc) fixed to SM expectation

□ Observed (expected) signal strength for VZ(Z→cc): $\mu_{VZ(Z\to cc)} = 1.01^{+0.23}_{-0.21}(1.00^{+0.22}_{-0.20})$

with a significance of 5.7σ (5.9σ)

■ First observation of Z→cc at hadron collider!

$VH(H\rightarrow cc)$ results

Merged-jet topology: distribution of the Higgs boson candidate mass

□ Resolved-jet topology and the combination: ordering the events by log₁₀(S/B)

$VH(H\rightarrow cc)$ results

Observed (expected) upper limit on VH(H \rightarrow cc) signal strength at 95% CL: $\mu_{VH(H \to cc)} < 14 \ (7.6^{+3.4}_{-2.3})$

- Strongest limits on VH(H \rightarrow cc) process to date!
- ATLAS Full Run 2 result: $\mu_{VH(H\rightarrow cc)}$ < 26 (31) [arXiv:2201.11428]
- □ Best fit signal strength: $\mu_{VH(H\to cc)} = 7.7^{+3.8}_{-3.5}$
 - Consistent with the SM prediction within 2σ
- Obs. (Exp.) upper limits from each topology:
 - **Resolved-jet** topology: **14(19)** × SM
 - Merged-jet topology: 17(8.8) × SM

0L

11

2L

VH(H→cc) results

Results used to place new constraints on κ_c

□ Only considering effects on $\mathcal{B}(H \rightarrow cc)$ and fixing all other couplings to their SM values

 $\mu_{VH(H\to cc)} = \frac{\kappa_c^2}{1 + \mathcal{B}_{SM}(H\to cc) \times (\kappa_c^2 - 1)}$

- The 95% CL intervals obtained with likelihood scans
 - observed: 1.1 < |κ_c| < 5.5</p>
 - expected: $|\kappa_c| < 3.4$

Strongest constraints on $|\kappa_c|$ to date

- Competitive with indirect measurements of $|\kappa_c|$: <u>PRD 92 (2015) 033016</u> and <u>arXiv:2202.00487</u>
- Comparable to the previous projection for HL-LHC [ATL-PHYS-PUB-2021-039]

Conclusions

 \Box New results of the CMS search for the VH(H \rightarrow cc) process are presented

- Benefit from the full Run 2 dataset
- Substantial improvements in charm tagging performance
- Major upgrades of analysis techniques, such as jet energy/mass regression, kinematic fits, etc.
- □ Analysis validated by measuring VZ(Z→cc) signal strength: $\mu_{VZ(Z \rightarrow cc)} = 1.01^{+0.23}_{-0.21}$
 - Significance of 5.7 σ (5.9 σ) \rightarrow First observation of Z \rightarrow cc at a Hadron Collider!

□ Upper limits on VH(H→cc): $\mu_{VH(H \rightarrow cc)} < 14$ (7.6 exp.)

- ~5x increase in exp. sensitivity vs JHEP 03 (2020) 131
- Constraints on Higgs-charm coupling:

 $1.1 < |\kappa_c| < 5.5$ ($|\kappa_c| < 3.4$ exp.) — Most stringent to date!

□ Projection for HL-LHC: $\mu_{VH(H \rightarrow cc)} < 1.6 \text{ exp.}$

Backups

Particle-flow reconstruction

□ Particle-flow (PF): powerful approach for jet reconstruction and flavor tagging

- excellent energy and angular resolutions
- each particle (PF candidate) contains a rich set of information from multiple sub-detectors inputs to deep-learning

Phase-1 pixel detector upgrade

□ New pixel detector installed during year-end stop 2016/2017

Improved tracking and flavour tagging performance in the 2017 — 2018 data set!

$H \rightarrow cc$ searches at the LHC

□ ATLAS:

- [Phys. Rev. Lett. 120 (2018) 211802] (36 fb⁻¹)
- [arXiv:2201.11428] (139 fb⁻¹)
- [ATL-PHYS-PUB-2021-039] (HL-LHC projection, 3000 fb⁻¹)

CMS:

- [<u>JHEP 03 (2020) 131</u>] (36 fb⁻¹)
- [CMS-PAS-HIG-21-008] (138 fb⁻¹; HL-LHC projection, 3000 fb⁻¹)

LHCb:

- [LHCb-CONF-2016-006] (1.98 fb⁻¹)
- [LHCb-PUB-2018-009] (HL-LHC projection, 300 fb⁻¹)

Baseline event selections

Merged-jet topology

Variable	0L	1L	2L
p_{T}^ℓ	—	(>25,>30)	>20
Lepton isolation	_	(<0.06, —)	(<0.25,)
$N_{\mathrm{a}\ell}$	=0	=0	
$M(\ell\ell)$	—	—	75–105
$N_{ m small-R}^{ m aj}$	<2	<2	<3
$p_{\mathrm{T}}^{\mathrm{miss}}$	>200	>60	
$p_{\rm T}({\rm V})$	>200	>150	>150
$p_{\rm T}({\rm H_{cand}})$	>300	>300	>300
$m\left(\mathrm{H}_{\mathrm{cand}}\right)$	50-200	50-200	50-200
$\Delta \phi(V, H_{cand})$	>2.5	>2.5	>2.5
$\Delta \phi(\vec{p}_{\mathrm{T}}^{\mathrm{miss}}, \mathbf{j})$	>0.5	—	
$\Delta \phi(\vec{p}_{\mathrm{T}}^{\mathrm{miss}},\ell)$	_	<1.5	
Kinematic BDT	>0.55	0.55–0.7, >0.7	>0.55
$c\overline{c}$ discriminant			
High purity	>0.99	>0.99	>0.99
Medium purity	0.96-0.99	0.96-0.99	0.96-0.99
Low purity	0.90-0.96	0.90-0.96	0.90-0.96

Resolved-jet topology

Variable	0L	1L	$2L \log - p_T(V)$	$2L$ high- $p_T(V)$
p_{T}^ℓ		(>25,>30)	>20	>20
Lepton isolation	—	(<0.06,)	(<0.25,)	(<0.25,)
$N_{\mathrm{a}\ell}$	=0	=0	—	—
$M(\ell\ell)$		—	75–105	75–105
$p_{\mathrm{T}}(\mathbf{j}_1)$	>60	>25	>20	>20
$p_{\mathrm{T}}(\mathbf{j}_2)$	>35	>25	>20	>20
$CvsL(j_1)$	>0.225	>0.225	>0.225	>0.225
$CvsB(j_2)$	> 0.4	> 0.4	> 0.4	> 0.4
$N_{\mathrm{small}\text{-}R}^{\mathrm{aj}}$		<2	—	—
$p_{\mathrm{T}}^{\mathrm{miss}}$	> 170		—	—
$p_{\rm T}^{\rm miss}$ significance		>4	—	—
$p_{\mathrm{T}}(\mathrm{V})$	>170	>100	60-150	>150
$p_{\rm T}({\rm H_{cand}})$	>120	>100	—	—
$m\left(\mathrm{H}_{\mathrm{cand}}\right)$	<250	<250	<250	<250
$\Delta \phi(V, H_{cand})$	>2.0	>2.5	>2.5	>2.5
$\Delta \phi(\vec{p}_{\mathrm{T}}^{\mathrm{miss}}, \mathbf{j})$	> 0.5	—	—	—
$\Delta \phi(ec{p}_{\mathrm{T}}^{\mathrm{miss}},\ell)$		<2.0		

Uncertainties

□ Breakdown of the uncertainties in each topology

Merged-jet topology

Table 3: The relative contributions to the total uncertainty on $\mu_{VH(H\to c\overline{c})}$ in the merged-jet analysis, with a best fit value $\mu_{VH(H\to c\overline{c})} = 8.7^{+4.6}_{-4.0}$.

Uncertainty source	$\Delta \mu / (\Delta \mu)_{tot}$
Statistical	88%
Background normalizations	39%
Experimental	40%
Sizes of the simulated samples	24%
Charm identification efficiencies	26%
Jet energy scale and resolution	15%
Simulation modeling	1%
Luminosity	5%
Lepton identification efficiencies	2%
Theory	25%
Backgrounds	21%
Signal	14%

Resolved-jet topology

Table 4:	The relative	e contributions t	o the total	uncertainty	on $\mu_{VH(H\to c)}$	\overline{c} in the	e resolved-jet
analysis	, with a best	fit value $\mu_{ m VH(H-}$	$rac{1}{racc} = -9.5$	$5 \pm 9.6.$			

Uncertainty source	$\Delta \mu / (\Delta \mu)_{\rm tot}$
Statistical	66%
Background normalizations	28%
Experimental	72%
Sizes of the simulated samples	59%
Charm identification efficiencies	27%
Jet energy scale and resolution	17%
Simulation modeling	20%
Luminosity	13%
Lepton identification efficiencies	10%
Theory	22%
Backgrounds	21%
Signal	7%

Merged-jet topology: signal regions

Merged-jet topology: control regions

Mass decorrelation

CMS-DP-2020-002

"Mass sculpting": background jet mass shape becomes similar to signal after tagger selection

- New approach to prevent mass sculpting
 - using a special signal sample for training
 - hadronic decays of a spin-0 particle X
 - $X \rightarrow bb, X \rightarrow cc, X \rightarrow qq$
 - not a fixed mass, but a flat mass spectrum
 - m(X) ∈ [15, 250] GeV
 - allows to easily reweight both signal and background to a ~flat 2D distribution in (p_T, mass) for the training

□ Signal and background have the same (~flat) mass spectrum, thus no sculpting will develop in the training

Mass decorrelation (II)

CMS-DP-2020-002

"Mass sculpting": background jet mass shape becomes similar to signal after tagger selection

New approach to prevent mass sculpting

- using a special signal sample for training
 - hadronic decays of a spin-0 particle X
 - $X \rightarrow bb, X \rightarrow cc, X \rightarrow qq$
 - not a fixed mass, but a flat mass spectrum
 - m(X) ∈ [15, 250] GeV
- allows to easily reweight both signal and background to a ~flat 2D distribution in (p_T, mass) for the training

Performance loss due to mass decorrelation greatly reduced compared to the previous approach (DeepAK8-MD, based on "adversarial training")

Comparison of mass decorrelation methods

Large-R jet mass regression

Loss function: LogCosh

Signal jet mass resolution

Background jet mass response

C-tagger ROC curves

CMS c-tagging WP: ~40% (c), ~16% (b), ~4% (light)

ATLAS c-tagging WP [arXiv:2201.11428]: 27% (c), 8% (b), 1.6% (light)

38

C-jet energy regression and kinematic fit

□ 2-lepton Low- $p_T(V)$ category – 60 GeV < $p_T(V)$ < 150 GeV

C-jet energy regression and kinematic fit

□ 2-lepton High- $p_T(V)$ category – $p_T(V)$ > 150 GeV

Charm-tagging in the "resolved-jet" topology

DeepJet algorithm – the cornerstone of the VH(cc) resolved-jet topology analysis

Multiclassifier Deep Neural Network

- Optimized for AK4-jets
- Returns the probability for a given jet to be originated by a b-, c- or light-quark

DNN architecture:

- Separate 1D CNNs to process three low-level feature classes
 - For each class, concatenate multiple CNNs with decreasing dimensions
 - Compress the features to lower dimensional space
- RNNs (LSTM type) applied after CNNs
 - Better handles the variable length sequence (PF candidates/SV)
- Fully connected layer to connect all channels

□ Input variables:

Output:

- Properties of PF-candidates
- 6 raw scores

- Global jet features
- Secondary vertices

(from 2008,10519)

- DeepCSV: predecessor of DeepJet
- Used in the CMS VH(cc) analysis with 2016 data [JHEP 2020,131]

Charm-tagging in the "resolved-jet" topology

DeepJet algorithm as charm tagger

- Definition of leading-jet working point
 - Dedicated studies of the simulated jets distribution in the CvsB/CvsL 2D plane
 - It's possible to define regions to isolate c-jets vs b- and light-jets
 - CvsL>0.225, CvsB>0.4 define the region with c-jet identification efficiency of ~43% with a b-jet and light-jet mis-tagging rate respectively of ~15% and ~4% (depending on the year)

□ Improvement versus DeepCSV (used in the 2016 VH(cc) analysis)

wuv dvyd

vu

σ

σ

σ

∽ vu ^v

d d

dwud

Ч

m

DeepJet algorithm calibration

Methodology

- Iterative approach exploiting three distinct control regions that are enriched with either b-jets, c-jets, or light-flavour and gluon jets
- First time that a calibration method to correct the 2D distribution of c-tagging discriminator shapes is presented → <u>arXiv:2111.03027</u> (accepted by JINST)

Search for an abundant and pure source of charm-jets

- Target W production in association with charm quarks
 - The relevant events involve a leptonically decaying W boson and a c-jet
 - These c-jets are identified using the semileptonic decay of the charmed hadrons, which produces a soft muon within the jet
- Major background has 50% chance to have SS or OS final states
 performing an OS-SS subtraction reduces considerably the W+gluon
 process
- To enrich in b-jets and light-jets, the semi-(di-)leptonic $t\bar{t}$ +jets and DY(Z $\rightarrow \mu\mu/ee$)+jets processes are considered

43

Extraction of reshaping data-to-simulation scale factors

- SFs as a function of CvsL in bins of CvsB
 - Fixed bin width along CvsB and an adaptive binning scheme along CvsL (stat. depending)
 - Total uncertainties (red envelopes) relatively small in the region of interest of the analysis
 - Total uncertainties breakdown

Validate robustness of the SFs derivation

- Check possible bias due to the soft- μ -in-jet selection
 - SFs are derived without soft-μ selection
- □ Check possible bias between semileptonic or dileptonic tt final states
 - SFs are derived also for the two separate processes independently
- Check possible bias due in the fit:
 - Inject artificial SFs to calculate the pulls between the fit result and the injected one

All the checks shown no bias in the SFs derivation

Only di-lep. tt

DeepJet CvsB

(from arXiv:2111.03027)

A dedicated charm-jet energy regression

Goal: improve *c*-jet energy scale and resolution

- □ Inspired by b-jet energy regression [arXiv:1912.06046]
 - Jet energy measurements not always accurate:
 - Ioss of neutrinos, hadrons outside jet radius. Effect enhanced in c-jets and b-jets
 - Dedicated algorithm to determine c-jet energy scale and resolution
 - Algorithm pioneered for the observation of the $H \rightarrow$ bb decay mode

Regression performed using DNN architecture:

- Feed-forward fully connected Deep NN (neurons with Leaky ReLu activation)
 - 6 hidden layers + batch normalization + dropout
- Trained using c-jets collected from $W \rightarrow cq$ decays in $t\bar{t}$ MC events
- Target is represented by p_T(gen)/p_T(reco)

Input features

- Total of 43 input variables in input to the network
- Jets: kinematics, energy fraction, leading+soft-lepton tracks, pile-up, secondary vertexes
- Jet energy shapes (e.g. energy fraction, etc), jet constituents, p_T(jet)/p_T(lepton)

FSR-jets recovery and H→cc reconstruction

Higgs boson reconstructed using the two AK4 jets with highest CvsL scores

- Energy regression is applied to the two Higgs jets
- □ FSR recovery used to further improve m(H) resolution
 - Jets with $p_T < 20$ GeV, $|\eta| < 3$, and within $\Delta R < 0.8$ of Higgs jets are included in Higgs 4-momentum

Variable	$Z(\nu\nu)H$	$W(\ell \nu)H$	$Z(\ell\ell)H \text{ low-}p_T(V)$	$Z(\ell\ell)H$ high- $p_T(V)$
$p_{\rm T}({\rm V})$	> 170	> 100	[50 - 150]	> 150
mee	<u></u>	-	[75 - 105]	[75 - 105]
p_{T}^{ℓ}	-	$(> 25(\mu), > 30(e))$	> 20	> 20
$p_{\mathrm{T}}(\mathbf{j}_1)$	> 60	> 25	> 20	> 20
$p_{\rm T}(jtwo)$	> 35	> 25	> 20	> 20
$p_{\rm T}(jj)$	> 120	> 100	- \\	_
m(jj)	< 250	< 250	< 250	< 250
CvsLjone	> 0.225	> 0.225	> 0.225	> 0.225
CvsB _{jtwo}	> 0.40	> 0.40	> 0.40	> 0.40
Naj		< 2	\ < -	-
Nal	= 0	= 0		-
E ^{miss}	> 170	$ - > \langle$	\`\ -	-
METsig	-	> 4.0	 	-
Anti-QCD	Yes		-	<u> </u>
$\Delta \phi(V, H)$ (rad)	> 2.0	> 2.5	2.5	2.5
$\Delta \phi$ (pfMET,trkMET)(rad)	< 0.5	///-	-	
$\Delta \phi$ (pfMET,lep)(rad)	/-/	< 2.0	-	-
	1 1 1			

Baseline selections shared with merged analysis

- Resolved further split 2L:
 - High-p_T channel (p_T(V)>150 GeV)
 - Low-p_T channel (60<p_T (V)<150 GeV)</p>

Additional event selections placed based on tagger scores of leading Higgs Jet

CvsL > 0.225 and CvsB > 0.4

Signal extraction – BDT training in SRs

Variable	Description OL 1L 2L	BDT trained to separate signal from background
m(H)	H mass v v v	Higgs and
$p_{\rm T}$ (H)	H transverse momentum - 🗸 🗸	samples
$p_{\rm T}({\rm V})$	vector boson transverse momentum — 🗸 🗸	Vector boson
$m_{\rm T}({\rm V})$	vector boson transverse mass — - - -	properties
$p_{\rm T}^{\rm miss}$	missing transverse momentum	ose combination of kinematic observables and
$p_{\rm T}({\rm V})/p_{\rm T}({\rm H})$	ratio between vector boson and H transverse momenta 🛛 🗸 🗸 🗸	particle flavor variables (tagger informations)
CusLmax	CvsL value of the leading CvsL jet √ √ √	
CusBmax	CvsB value of the leading CvsL jet ✓ ✓ ✓	a tagging D Sonarate BDTs trained for each channel and
CosLmin	CvsL value of the subleading CvsL jet ✓ ✓ ✓	c-tagging Geparate BDTs trained for each channel and
CusBmin	CvsB value of the subleading CvsL jet ✓ ✓ ✓	score data taking year
P _{Tmax}	$p_{\rm T}$ of the leading <i>CvsL</i> jet $\checkmark \checkmark \checkmark$	
PTmin	$p_{\rm T}$ of the subleading CvsL jet $\checkmark \checkmark \checkmark$	Concepts DDTs trained for high and low n (A) 21
$\Delta \phi(V, H)$	azimuthal angle between vector boson and H 🗸 🗸 🗸	 Separate BDTs trained for high- and low-p_T(v) 2L
$\Delta R(\mathbf{j}_1, \mathbf{j}_2)$	△ R between leading and subleading CrsL jets — ✓ ✓	
$\Delta \phi(\mathbf{j}_1, \mathbf{j}_2)$	azimuthal angle between leading and subleading CvsL jets 🗸 🗸 —	Variables used dependent on channel
$\Delta \eta(\mathbf{j}_1, \mathbf{j}_2)$	difference in pseudorapidity between leading and subleading CvsL jets ✓ ✓ ✓	
$\Delta \phi(\ell_1, \ell_2)$	azimuthal angle between leading and subleading $p_{\rm T}$ leptons $ $	Postanod BDT distribution used in SP during
$\Delta \eta(\ell_1, \ell_2)$	difference in pseudorapidity between leading and subleading p_T leptons $ $	
$\Delta \phi(\ell_1, j_1)$	azimuthal angle between leading $p_{\rm T}$ lepton and leading $CvsL$ jet $-\sqrt{-1}$	final fit
$\Delta \phi(\ell_2, \mathbf{i})$	azimuthal angle between subleading p_T lepton and leading CvsL jet $ \sqrt{2}$	
$\Delta \phi(\ell_2, \mathbf{i}_2)$	azimuthal angle between subleading p_{T} lepton and subleading CvsL jet $ \sqrt{2}$	event
$\Delta \phi(\ell_1, p_T^{\text{miss}})$	azimuthal angle between leading $p_{\rm T}$ lepton and missing transverse momentum $-\sqrt{-1}$	
$\Delta n(\ell_1, t)$	difference in pseudorapidity between leading p_{τ} lepton and b-tagged jet from top guark decay $-\sqrt{-1}$	KINEMATICS
$\Delta \phi(\ell_1, t)$	azimuthal angle between leading p_T lepton and b-tagged jet from top quark decay $-\sqrt{-1}$	Pa al conocita d
$\Delta R(\ell_1, t)$	ΔR between leading p_{T} lepton and b-tagged jet from top guark decay $-\sqrt{-}$	Buckground
CusL.	CvsL value of the b-tagged jet from top guark decay	two had duly Signal
CusB.	CrsB value of the b-tageed jet from top guark decay	(Included VIII-
P(b+bh)	Deeplet prob(b+bb) value of the b-tagged jet from ton quark decay	zbb) and $VZ(Z-(VH(H-zcc))$
m(t)	Reconstructed for quark mass	
N ^{aj}	Number of small-R additional jets after the FSR subtraction $-\sqrt{-1}$	
OcReo (ja)	leading $p_{\rm T}$ jet resolution from c-jet energy regression $\sqrt{\sqrt{\sqrt{3}}}$	
TeReg (ja)	subleading $p_{\rm T}$ jet resolution from c-jet energy regression $\sqrt{\sqrt{\sqrt{3}}}$	
$\Delta \eta (V, H)$	difference in pseudorapidity between vector boson and H, after kinematic-fit $ \checkmark$	
$\Delta \phi(V, H)$	azimuthal angle between vector boson and H. after kinematic-fit	
m(H)	H mass after kinematic-fit	
pr(H)	H transverse momentum after kinematic-fit	Kinfit
PTerry	p_{τ} of the leading CvsL iet after kinematic-fit $ \sqrt{2}$	Variables
PTmin Lings	p_{τ} of the subleading CvsL jet after kinematic-fit $ \sqrt{2}$	valiables
$p_{T}(V)/p_{T}(H)$	ratio between vector boson and H transverse momenta after kinematic-fit	(2L only)
$\sigma(H) \ _{L_{1} \to 0}$	H invariant mass resolution from kinematic fit	
/ukinht		
		DUE SCORE 48

Charm-tagging in the resolved-jet topology

Definition of leading-jet working point

- Studies of CvsB/CvsL jet score distributions in 2D plane
- CvsL>0.225, CvsB>0.4 → c-jet identification efficiency of ~43% with a b-jet and light-jet mis-tagging rate respectively of ~15% and ~4% (depending on the year)

(from arXiv:2111.03027)

49

Methodology

- Iterative approach exploiting 3 distinct control regions, each enriched in b-jets, c-jets, or light-flavour jets
- Selecting an abundant and pure source of charm-jets
 - Target W production in association with charm quarks (W+c)
 - Major background has 50% chance to have SS or OS final states
 - performing an OS-SS subtraction reduces considerably the W+gluon process
 - To enrich in b-jets and light-jets: semi-(di-)leptonic $t\bar{t}$ +jets and DY(Z $\rightarrow \mu\mu/ee$)+jets --

□ First time that a calibration method to correct the 2D distribution of c-tagging discriminator shapes is presented

→ arXiv:2111.03027 (accepted by JINST)

Application of the reshaping scale-factors

jets

Very good data/MC agreement after the calibration

Application through an event-by-event re-weighting: $w_i = \prod_{i=1} sf_i(CvsL, CvsB)$

A dedicated charm-jet energy regression

Goal: improve c-jet energy scale and resolution

- □ Inspired by b-jet energy regression [arXiv:1912.06046]
 - Jet energy measurements not always accurate:
 - neutrinos, hadrons outside jet radius, etc. Effect enhanced in c-jets and b-jets
 - Dedicated algorithm to determine c-jet energy scale and resolution
 - A DNN algorithm pioneered for the <u>observation of the $H \rightarrow bb$ decay</u>
- Regression performed using DNN architecture:
 - Trained using c-jets collected from W \rightarrow cq decays in $t\bar{t}$ +jets MC events
 - Target is represented by p_T(gen)/p_T(reco)
- Input features
 - Total of 43 input variables as input to the network
 - Jets: kinematics, energy fraction, leading+soft-lepton tracks, pile-up, secondary vertices
 - Jet energy shapes (e.g. energy fraction, etc), jet constituents, p_T(jet)/p_T(lepton)

A dedicated charm-jet energy regression

□ ~15% improvement in mass resolution

- 2018 (13 TeV) Depending on the jet p_{T} a.u. CMS no cReg, no Kin-Fit Simulation Preliminary Validated in VH(H \rightarrow cc) control regions 0.08 $-\mu = 123.5, \sigma = 15.2$ **Resolved-jet** c-jet reg, no Kin-Fit 2L, High p_(V)
 MS
 Image: Data
 W-uding

 Preliminary
 Z+c
 Single top

 V+LF CR
 Z-uding
 V(cluer)

 V+LF CR
 W-c
 OCD

 W-c
 OCD
 OCD
 CMS CMS $\mu = 123.2, \sigma = 13.5$ Signal Region Preliminar Preliminar 0.06 VV(other) VZ(Z→cc) QCD MC unc. (s TT CR 0.04 0.4 0 2.0 2.0 2.0 2.0 MC MC 0.02 M(ii) [GeV FSR candidate 100 120 60 80 140 160 180 200 □ FSR recovery di-jet invariant mass [GeV] Further improve di-jet invariant mass resolution
 - Jets with $p_T < 20$ GeV, $|\eta| < 3$, and within $\Delta R < 0.8$ of Higgs jets are included in Higgs 4-momentum

Background estimation – Resolved-jet

Accurate modeling of jet flavor in V+Jet background is vital for proper signal extraction

Postfit plots – Signal regions

Postfit distribution of the BDT discriminant obtained with the 2017 data (more in the back-up)

• 7 Signal regions in each year: $2L(ee/\mu\mu)$ Low- $p_T(V)$ and High- $p_T(V)$, $1L(e/\mu)$, and 0L

Postfit plots – Signal regions - 2016

Postfit distribution of the BDT discriminant obtained with the 2016 data

• 7 Signal regions in each year: $2L(ee/\mu)$ Low- $p_T(V)$ and $-High-p_T(V)$, $1L(e/\mu)$ and 0L

Postfit plots – Signal regions - 2017

Postfit distribution of the BDT discriminant obtained with the 2017 data

• 7 Signal regions in each year: $2L(ee/\mu)$ Low- $p_T(V)$ and $-High-p_T(V)$, $1L(e/\mu)$ and 0L

Postfit plots – Signal regions - 2018

Postfit distribution of the BDT discriminant obtained with the 2018 data

• 7 Signal regions in each year: $2L(ee/\mu)$ Low- $p_T(V)$ and $-High-p_T(V)$, $1L(e/\mu)$ and 0L

$VZ(Z\rightarrow cc)$ results

□ Observing the excess: distribution of events ordered by log₁₀(S/B)

Resolved-jet topology - results

□ Resolved-jet – all categories: ordering the events by log₁₀(S/B)

60

Background normalization scale-factors

Simultaneous fit to BDT in SR and tagger shapes in CRs A

- CvsL of CvsL-subleading jet in V+LF CR
- CvsB of CvsL-subleading jet in V+HF, V+CC, and TT CRs

Allow V+c, V+b, V+udsg, and $t\bar{t}$ SFs to float freely in each channel

Z+x rate parameters independent of channel

 1L and 0L channels share W+c and W+udsg rate parameters

	Year	Z+c	Z+b	Z+light	W+c	W+light	tī
	2016	0.90 ± 0.07	0.99 ± 0.06	1.04 ± 0.05	_	—	0.95 ± 0.05
2L-High	2017	1.12 ± 0.08	1.21 ± 0.08	0.94 ± 0.05	—	—	0.96 ± 0.05
	2018	1.19 ± 0.09	1.22 ± 0.09	0.94 ± 0.06		_	0.99 ± 0.05
	2016	0.81 ± 0.06	0.83 ± 0.05	1.05 ± 0.05		—	0.89 ± 0.04
2L-Low	2017	0.96 ± 0.07	0.94 ± 0.06	0.98 ± 0.05	—	—	0.90 ± 0.04
2018	2018	1.18 ± 0.14	1.04 ± 0.08	0.95 ± 0.05	—		0.92 ± 0.05
	2016		—	—	0.97 ± 0.06	1.04 ± 0.04	0.93 ± 0.04
1L	2017			_	1.04 ± 0.07	1.04 ± 0.05	1.08 ± 0.05
	2018		_		1.20 ± 0.07	0.93 ± 0.05	1.05 ± 0.05
	2016	0.96 ± 0.12	1.16 ± 0.20	1.28 ± 0.09	0.97 ± 0.06	1.04 ± 0.04	0.83 ± 0.05
OL	2017	1.31 ± 0.17	1.28 ± 0.22	1.03 ± 0.09	1.04 ± 0.07	1.04 ± 0.05	1.13 ± 0.07
	2018	1.14 ± 0.12	0.90 ± 0.20	0.89 ± 0.07	1.20 ± 0.07	0.93 ± 0.05	1.00 ± 0.07

Combination – VZ(cc) results

□ Analysis validated by first looking for $VZ(Z \rightarrow cc)$ process

- Same analysis procedure but extracting VZ(cc) signal during final fit
- Resolved: Use separate BDTs retrained with VZ(cc) as signal
- VH(cc) fixed to SM expectation

	resolved-jet merged-jet				combi	nation	ation	
	$(p_T(H) < 300 \text{ GeV})$	$(p_{T}(H) \ge 300 \text{ GeV})$	0L	1L	21	all	µVZ(Z→cē)	
2016 (expected)	1.7σ	2.4σ	2.5σ	1.0σ	1.9σ	3.0σ	$1.00^{+0.42}_{-0.36}$	
2016 (observed)	1.8σ	2.0σ	3.6σ	1.0σ	0.4σ	2.9σ	$1.02^{+0.41}_{-0.37}$	
2017 (expected)	2.2σ	2.9 <i>o</i>	2.9σ	1.3σ	2.6σ	3.7σ	$1.00^{+0.35}_{-0.30}$	
2017 (observed)	1.7σ	2.6σ	1.3σ	0.0σ	4.0σ	3.2σ	$0.84^{+0.32}_{-0.28}$	
2018 (expected)	1.7σ	3.0 <i>o</i>	3.1σ	1.4σ	2.0σ	3.60	$1.00^{+0.39}_{-0.32}$	
2018 (observed)	1.9σ	3.1σ	4.0σ	1.4σ	1.2σ	3.8σ	$1.23^{+0.45}_{-0.37}$	
Full Run2 (expected)	3.3σ	4.7σ	4.8σ	2.1σ	3.7σ	5.9σ	$1.00^{+0.22}_{-0.20}$	
Full Run2 (observed)	3.1σ	4.4σ	4.9σ	1.3σ	3.3σ	5.7σ	$1.01\substack{+0.23\\-0.21}$	

Measure observed (expected) signal strength of:

 $\mu_{VZ(cc)} = 1.01^{+0.23}_{-0.21} (1.00^{+0.22}_{-0.20})$ with significance of 5.7 σ (5.9 σ)

□ First observation of Z→cc at hadron collider!

Combination – VH(cc) results

Observed (expected) upper limit on $VH(H \rightarrow cc)$ signal strength at 95% CL: $\mu_{VH(cc)} < 14 \ (7.6^{+3.4}_{-2.3})$

Strongest limits on the VH(cc) process to date!

- ATLAS Full Run 2 result: $\mu_{VH(cc)} < 26 (31)$ [arXiv:2201.11428]
- Best fit signal strength $\mu_{VH(cc)} = 7.7^{+3.8}_{-3.5}(^{+8.1}_{-6.6})$ (2 σ)
 - Consistent with the Standard Model prediction within 2σ

	resolved-jet	merged-jet	combination					
	$(p_{\rm T}({\rm H})<300{\rm GeV})$	$(p_{\rm T}({\rm H}) \ge 300{\rm GeV})$	0L	1L	21	all	µvh(H→cē	
2016 (expected)	34	19	26	25	30	16	$1.0^{+7.6}_{-7.1}$	
2016 (observed)	28	20	21	43	21	18	$3.2^{+7.4}_{-7.3}$	
2017 (expected)	32	17	24	25	26	15	$1.0^{+6.9}_{-6.1}$	
2017 (observed)	24	24	29	26	31	18	$4.3^{+6.9}_{-6.2}$	
2018 (expected)	33	14	20	18	24	12	$1.0^{+5.6}_{-4.9}$	
2018 (observed)	26	26	34	18	42	21	$9.9^{+6.1}_{-5.1}$	
Full Run2 (expected)	19	8.8	13	12	14	7.6	$1.0^{+3.7}_{-3.4}$	
Full Run2 (observed)	14	17	18	19	20	14	$7.7^{+3.8}_{-3.5}$	

Resolved: 14(19) xSM | Merged: 17(8.8) xSM |

Projection at HL-LHC: Setup

- Extrapolation of the merged-jet analysis to HL-LHC with 3000 fb⁻¹ data
- □ Modifications to the Run 2 analysis to allow for a simultaneous constraint on $H \rightarrow bb$ and $H \rightarrow cc$
 - addition of 3 categories enriched in H → bb decays, selected with the ParticleNet bb-tagging discriminant
 - very small (1-2%) overlap of bb and cc categories events assigned to a unique category
 - Iarge-R jet p_T threshold lowered from 300 GeV to 200 GeV increasing signal acceptance
- Systematic uncertainties adjusted according to the Yellow Report [CERN-2019-007]
 - theoretical uncertainties: reduced by half
 - most experimental uncertainties: scaled down with $\sqrt{\mathcal{L}}$
 - bb and cc tagging efficiencies: constrained by $VZ(Z \rightarrow bb)$ and $VZ(Z \rightarrow cc)$ events to ~3% and ~5%
 - misidentification of H \rightarrow bb as H \rightarrow cc: a prominent uncertainty on H \rightarrow cc measurement at HL-LHC
 - assumed to be reduced from ~100% (Run 2) to 20% in the projection

Projection at HL-LHC

 \Box Simultaneous extraction of the H \rightarrow bb and H \rightarrow cc signal strengths

- $\mu_{VH(H \rightarrow bb)} = 1.00 \pm 0.03 \text{ (stat.)} \pm 0.04 \text{ (syst.)} = 1.00 \pm 0.05 \text{ (total)}$
- $\mu_{VH(H \rightarrow cc)} = 1.0 \pm 0.6 \text{ (stat.)} \pm 0.5 \text{ (syst.)} = 1.0 \pm 0.8 \text{ (total)}$

Expected sensitivity approaches the SM value for the Higgs-charm coupling.

A charming journey

From O(1000) to O(100) to O(10) in ~5 years. A combined effort and creativity from instrumentation, physics objects and analysis techniques!

A charming journey ahead!

Signal extraction – BDT training in SRs

BDT trained to separate signal from background samples

 Use combination of event kinematic observables, Higgs and vector boson properties, particle flavor variables (tagger information), and kinematic-fit variables (only in 2L channels)

Separate BDTs trained for each channel and data taking year

- Separate BDTs trained for high- and low-p_T(V) 2L
- Variables used dependent on channel

Reshaped BDT distributions used in SR for the final fit