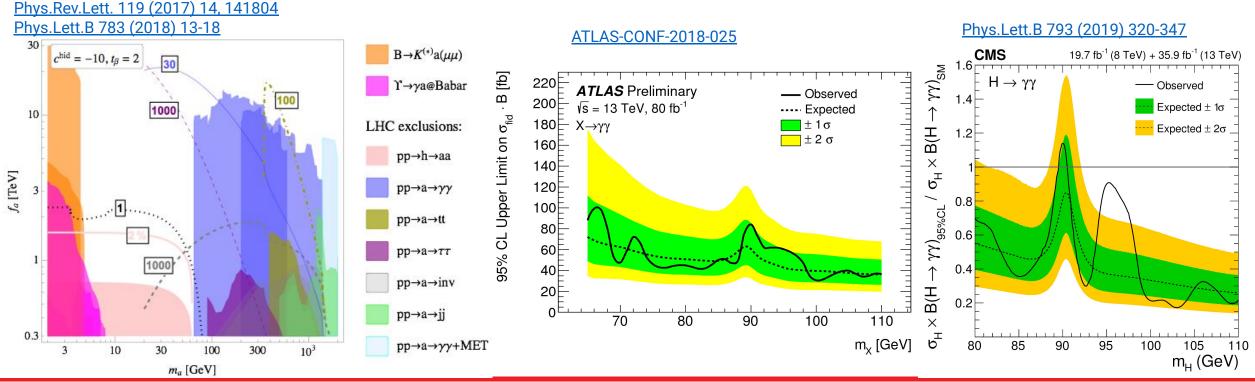


IRN

TeraScale

Search for boosted diphoton resonances in the 10 to 70 GeV range using 138 fb⁻¹ of 13 TeV pp collisions with the ATLAS detector

ATLAS-CONF-2022-018 preliminary results, first presented at Moriond QCD 2022


> José Ocariz, LPNHE-Paris and Université Paris Cité on behalf of the ATLAS collaboration

State of the art

Terascale

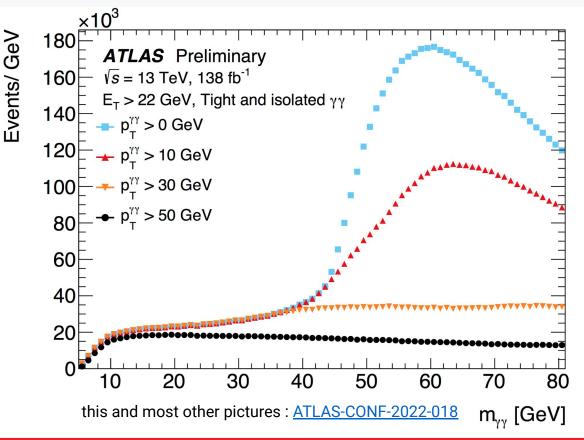
- Several proposals for resonant Axion-Like Particles within the LHC mass reach
 - pNGBs associated to a spontaneously broken approximate symmetry above the TeV scale
- main interest as a possible DM mediator due to its weakly interacting nature
- ALPs below the Higgs mass would couple predominantly to gluons and photons
- both ATLAS and CMS have published diphoton resonance searches in mass ranges below the Higgs mass
 - no significant deviations with respect to SM predictions
- existing search gap in $\gamma\gamma$ channel resonance searches
- goal: push the current 65 GeV limit towards lower masses, close the gap as much as possible !

Tersacale@Bonn March. 28, 2022

boosted low-mass diphoton searches with ATLAS José Ocar

José Ocariz LPNHE-Paris and Université Paris Cité

Analysis strategy

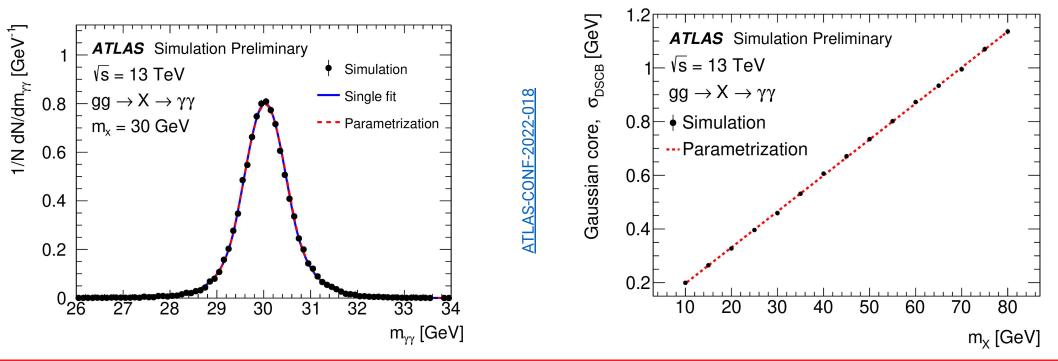

- Main limiting factors to reach diphoton masses below 65 GeV :
 - diphoton trigger E_{τ} thresholds at 20 GeV
 - reduces signal acceptance
 - Imits background modelling with analytical functions due to steep trigger turn-on
- decrease in photon identification and isolation efficiencies for low-ET photons

This analysis follows standard ATLAS diphoton selections

- data recorded with unprescaled diphoton triggers
- trigger thresholds and criteria evolved during Run-2
 - 20 GeV E_{τ} thresholds for most data (except for 21.6 fb^{-1} in 2016 with a 22 GeV threshold)
 - additional trigger-level isolation criteria in 2017+2018
- two reconstructed photon candidates with E_{τ} >22 GeV
 - within the $|\eta|$ acceptance
 - passing tight identification criteria
 - passing *tight isolation* criteria (calorimetric+track)
- isolation computed in a $\Delta R < 0.2$ cone around the candidate

Events at low mass have large transverse momentum $p_{\tau}^{\gamma\gamma}$

- add a boosted diphoton selection : $p_{\tau}^{\gamma\gamma} > 50 \text{ GeV}$
- results in a smooth background spectrum down to 10 GeV

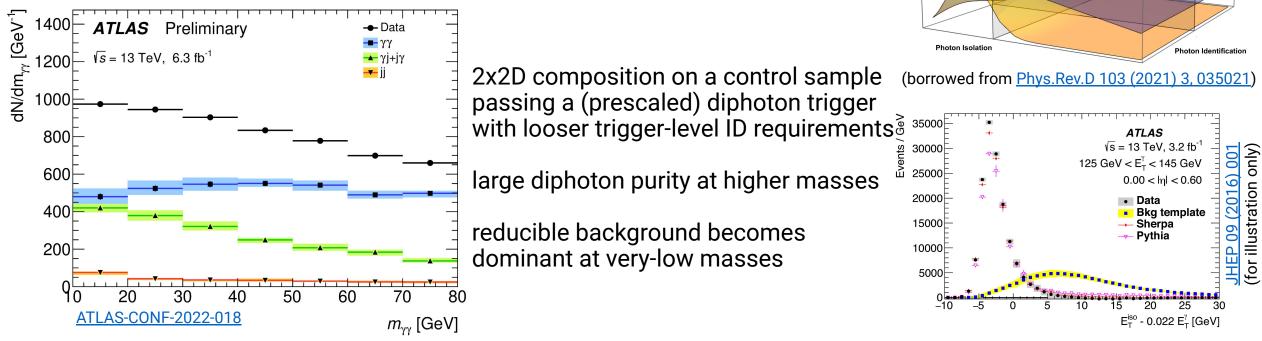


Signal control samples and Signal modelling

- Signal MC control samples :
 - EFT framework: scalar "Higgs-like" resonance
 - gluon-fusion production only
 - generated with MadGraph at LO+0,1,2 jets

• Invariant diphoton mass resolution described with a Double Sided Crystal Ball (DSCB) function

- narrow-width approximation (fixed $\Gamma = 4.07 \text{ MeV}$)
- DCSB parameters are linear functions of the mass point being tested
- biases on fitted signal yields below the ±1% level on the full mass range



Background composition

Non-resonant backgrounds:

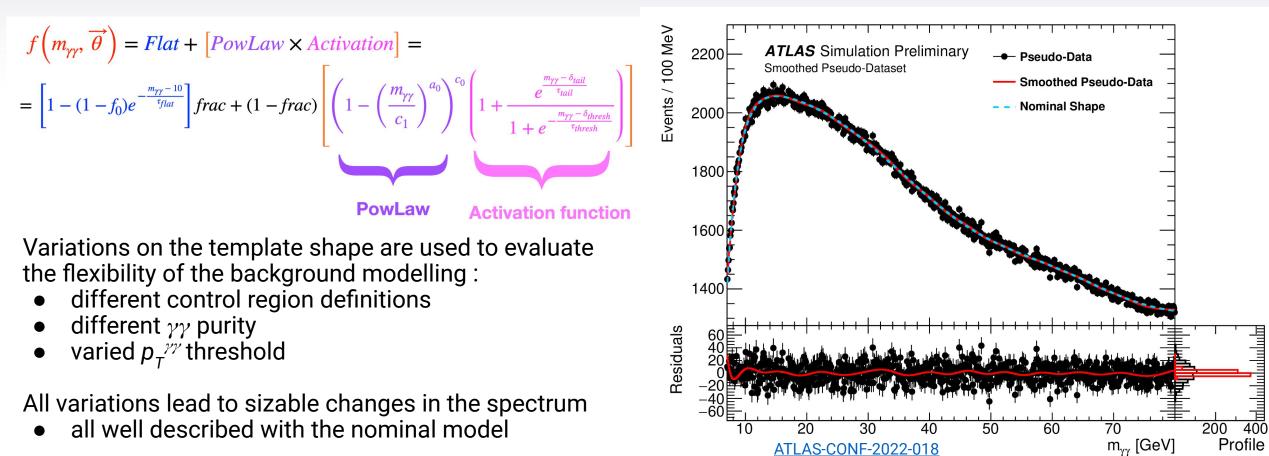
- irreducible ($\gamma\gamma$) from QCD diphoton production
- reducible $(\gamma j + j\gamma + jj)$ from QCD with 1 or 2 jets misidentified as photon
- other backgrounds (i.e. from electrons) found to be negligible
- Extract composition from double-ABCD method (aka 2x2D)
 - using Isolation and Identification on each photon
 - irreducible shapes extracted from Sherpa QCD diphoton
 - reducible shapes extracted from control regions in data
 - photon candidates failing a subset of identification criteria

Irreducible $\gamma\gamma$

Reducible γ -jet

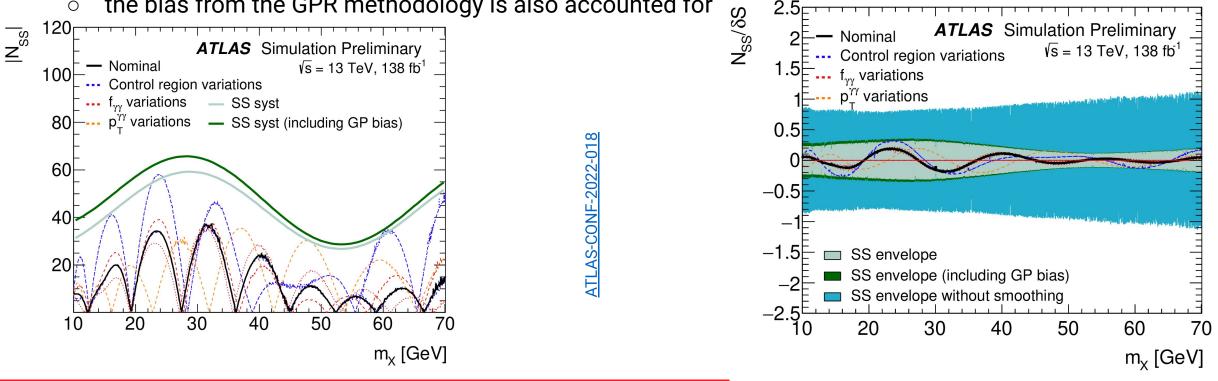
Identified as a photon

Signa


Background

Terascale

Background shape qualitatively divided into two regions:


- fast turn-on region for masses below ~20 GeV
 - described with an exponentially-saturating function ("Flat")
- slowly decreasing region above, with a mild change in curvature between the mid- and higher- mass regions
 - described with the product of a power-law ("PowLaw") times an "Activation" function

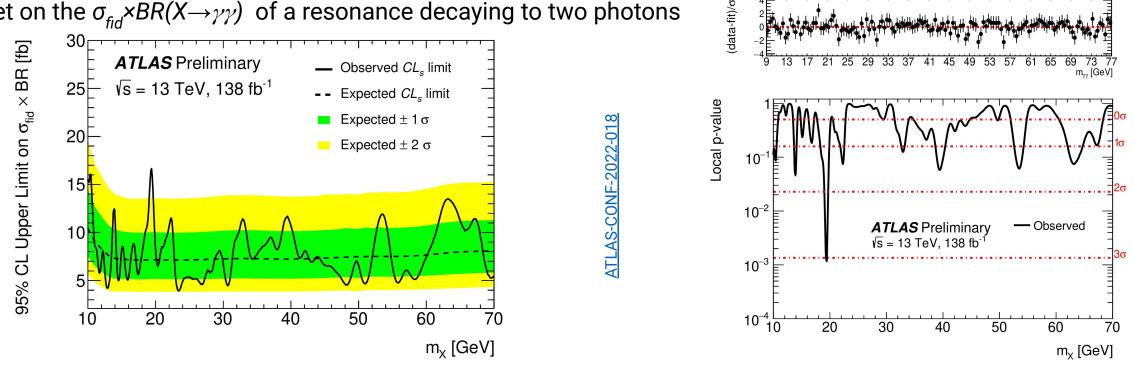
Spurious signal and GPR

- Estimation of bias arising from the choice of the background model :
- signal-plus-background fits to background-only templates
- any fitted signal yield is denoted "spurious signal" (SS) and is a systematic uncertainty
- Background templates are affected from low statistics :
- the Gaussian Process Regression (GPR) method
 - mitigates statistical fluctuations on the background shape Ο
 - GPR decreases the SS systematics uncertainty Ο
 - the bias from the GPR methodology is also accounted for Ο

boosted low-mass diphoton searches with ATLAS José Ocariz LPNHE-Paris and Université Paris Cité Tersacale@Bonn March. 28, 2022

Source	Uncertainty
	On $\sigma_{\rm fid} \cdot \mathcal{B}(X \to \gamma \gamma)$ [%]
Pile-up modeling	\pm 3.5 (at 10 GeV) – \pm 2 (beyond 15 GeV), mass dependent
Photon energy resolution	\pm 2.5 – \pm 2.7, mass dependent
Scale and PDFs uncertainties	$\pm 2.5 - \pm 0.5$, mass dependent
Trigger on close-by photons	± 2 (at 10 GeV) – < 0.1 (beyond 35 GeV), mass dependent
Photon identification	± 2.0
Isolation efficiency	± 2.0
Luminosity (2015–2018)	± 1.7
Trigger	± 1.0
Signal shape modeling	< 1
Photon energy scale	negligible
Background modeling	
Spurious signal (relative to δS)	30-65 events (10-30 %), mass dependent

Most systematic uncertainties are percent-level or smaller


- the dominant systematics arises from the background modelling uncertainties
 - spurious signal (SS) and GPR bias combined

Results

- Search performed in the [10,70] GeV mass range
- binned likelihood fit in the [9,77] range
 - (at least 5σ lever-arm from edges)
- parameter of interest: $\sigma_{fid} \times BR(X \rightarrow \gamma \gamma)$ good description of the data with the background model
 - no significant deviation wrt the SM
 - largest deviation at 19.4 GeV, with 3.1 σ local significance
 - $(1.48\pm0.02)\sigma$ global significance, evaluated with pseudo-data \cap

Limits set on the $\sigma_{fid} \times BR(X \rightarrow \gamma \gamma)$ of a resonance decaying to two photons

Prelimina

Background-only fit

√s = 13 TeV, 138 fb⁻¹

Ö11000

Entries 10000

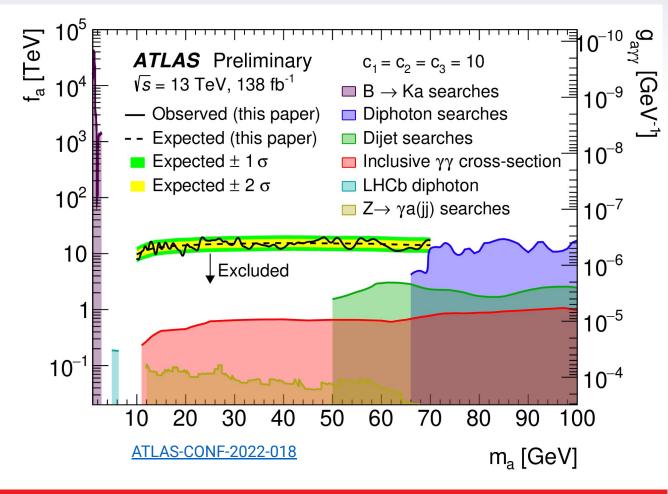
9000

8000

7000

Limits recast into the ALP parameter space

strongest limits on a hypothetical resonance produced in gluon fusion that decays to two photons


Other searches probing the same mass range:

- light-by-light scattering in heavy ion collisions significantly limited by the production mechanism
- dijet searches disfavoured by mass resolution

Other diphoton searches in proton proton collisions:

- CMS 13 dominates down to 70 GeV (35.9 fb^{-1})
- ATLAS extends the limit down to 65 GeV (80 fb⁻¹)

A large piece of the $\gamma\gamma$ gap is now covered !

ATLAS searched for boosted resonances in the diphoton channel, with masses in the 10 to 70 GeV range

Analysis strategy:

- strongly relies on the excellent performance of the EM calorimeter
- novel selection of boosted diphoton pairs to reach masses below the trigger turn-on
- observed data in agreement with the SM-only (no excess) hypothesis
- largest deviation found at 19.4 GeV
 - corresponding to a 3.1 σ (1.5 σ) local (global) significance
- limits on $\sigma_{fid} \times BR(X \rightarrow \gamma \gamma)$ from 4 fb to 17 fb the total uncertainty is dominated by statistics
- \bullet
 - impact of background modelling mitigated by GPR

This analysis provides the strongest upper limits up to date using pp collisions:

- on the cross-section times branching ratio of a resonance that decays to two photons
- in the mass range below 65 GeV, and down to 10 GeV
- and in the ALP parameter space in that same mass range

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2022-018/

New Physics scenario being considered:

- all heavy states are beyond the reach of the LHC
 - no deviations from the SM behavior are expected in the TeV range
- a scalar *a*, singlet of the SM gauge group, naturally lighter than the EW scale exists
 - *a* is abundantly produced in proton-proton collisions
 - *a* decays promptly into a pair of SM particles with a narrow width
- a "KSVZ-ALP" model is considered, inspired by the simplest QCD axion model of the scalar *a* :

$$\mathcal{L}_{\text{int}} = \frac{a}{4\pi f_a} \left[\alpha_3 c_3 G^a \tilde{G}^a + \alpha_2 c_2 W^i \tilde{W}^i + \alpha_1 c_1 B \tilde{B} \right]$$

- barring a huge hierarchy among the anomaly coefficients:
 - for $m_a \leq m_z$, the relevant two-body decays of *a* are to photons and to jets
 - the width into gluons dominates over the one into photons
 - the total width is dominated by its coupling to gluons and is always small compared to its mass