# Benchmark Planes for Higgs-to-Higgs Decays in the NMSSM

Ulrich Ellwanger, IJClab Orsay



#### With Cyril Hugonie, Université de Montpellier

Searches for new particles beyond the SM at the LHC are difficult if

- light new particles have small production cross sections, and
- heavy new particles with larger production cross sections undergo dominantly cascade decays.

# Such scenarios are realized in the Higgs sector in large regions of the parameter space of the NMSSM

# The Higgs Sector of the CP-conserving NMSSM:

- 3 CP-even scalars: h, H,  $H_S$  where h  $\simeq$  SM-like, H  $\simeq$  MSSM-like,  $H_S \simeq$  singlet-like
- 2 CP-odd scalars: A,  $A_S$  where A  $\simeq$  MSSM-like,  $A_S \simeq$  singlet-like
- 1 complex charged  $H^{\pm}$

H, A and  $H^{\pm}$  form a nearly degenerate SU(2) doublet with masses  $\geq 400$  GeV due to constraints on  $M_{H^{\pm}}$ from  $b \rightarrow s + \gamma$  and direct searches.

 $H_S$  and  $A_S$  can have (independent) masses from very light to very heavy. They have small production cross sections, but can be produced in cascade decays of H, A.

 $\rightarrow$  The only – but a promising – way to discover them

### Relevant Higgs-to-Higgs Decays:

•  $H \rightarrow h + H_S$ : Recent searches:

- CMS for  $h \rightarrow \tau \tau, H_S \rightarrow b \bar{b}$  in JHEP 11 (2021), 057
- CMS for  $h \rightarrow b\bar{b}, H_S \rightarrow b\bar{b}$  in CMS-PAS-B2G-21-003

If  $H_S \rightarrow h + h$ : Triple Higgs production!

 A → h + A<sub>S</sub>: Same final states, but: A<sub>S</sub> can decouple from all gauge bosons and Fermions → the loop induced decays A<sub>S</sub> → γγ, A<sub>S</sub> → Zγ can be dominant! → large Xsections for ggF → A → h + (A<sub>S</sub> → γγ) are possible! (No published search yet)

•  $H/H_S \rightarrow h + h$ : Resonant Higgs pair production, recent searches:

- ATLAS in ATLAS-CONF-2021-052, combination of  $b\bar{b} + (b\bar{b}, \tau\tau, \gamma\gamma)$
- CMS in arXiv:2112.03161: Lorentz-boosted Higgses in *bb*+leptons

## Relevant Higgs-to-Higgs Decays incl. Z:

- $A \rightarrow Z + h$ : Recent searches:
  - CMS with  $h \rightarrow b\bar{b}$  in Eur. Phys. J. C 79 (2019) no.7 (36 fb<sup>-1</sup>),
  - CMS with  $h \rightarrow \tau \tau$  in JHEP 03 (2020), 065 (36 fb<sup>-1</sup>),
  - ATLAS with  $h \rightarrow b\bar{b}$  in ATLAS-CONF-2020-043 (139 fb<sup>-1</sup>)

•  $A \rightarrow Z + H_S$ :

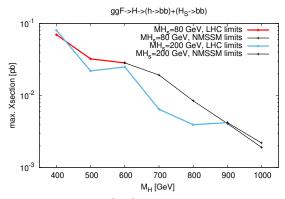
- CMS with  $H_S \rightarrow b\bar{b}$  in JHEP 03 (2020) 055 (re-interpretation of  $H \rightarrow Z + (A \rightarrow b\bar{b})$ )
- ATLAS with  $H_S 
  ightarrow b ar{b}/WW$  in Eur. Phys. J. C 81 (2021) no.5, 396

# How large can these Xsections be in the NMSSM?

Which searches constrain the parameter space of the NMSSM?

Strategy: Use a dedicated Monte Carlo routine based on NMSSMTools, maximize Xsections for specified BSM Higgs masses, satisfying existing constraints:

- Properties of h:  $M_h = 125 \pm 2$  GeV and couplings in the  $\kappa$  framework
- Constraints from LEP, LHC (many!!!), B-physics
- Dark Matter: The LSP in the NMSSM is stable, contributes to the DM relic density

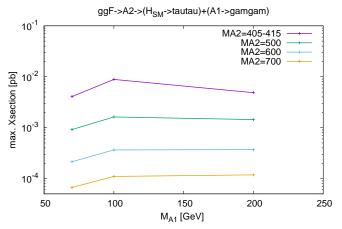

 $\rightarrow$  it must satisfy constraints from direct detection experiments! here: allow for additional contributions to DM from physics (far) above the weak scale (otherwise: not all combinations of BSM Higgs masses are possible).

 $\rightarrow$  Still: need fast enough LSP annihilation, typically via  $A_S$  in the s-channel

 $\rightarrow$  direct detection experiments impose constraints on the same parameters which determine the BSM Higgs masses and couplings!

 $\rightarrow$  Benchmark planes/lines (arXiv:2203.05049) for •  $ggF \rightarrow H \rightarrow (H_S \rightarrow bb) + (h \rightarrow XX), XX = bb, \tau\tau, \gamma\gamma$ •  $ggF \rightarrow H \rightarrow (H_S \rightarrow h + h) + h$ (Not searched yet) •  $ggF \rightarrow H \rightarrow (H_S \rightarrow tt) + h$ (Not searched yet) •  $ggF \rightarrow A \rightarrow (h \rightarrow \tau \tau) + (A_S \rightarrow \gamma \gamma)$ •  $ggF \rightarrow H_2 \rightarrow h + h$  $(H_2 = \text{mixture of } H \text{ and } H_5)$ •  $ggF \rightarrow A \rightarrow Z + (H_S \rightarrow XX), XX = bb, \tau\tau, \gamma\gamma$ •  $ggF \rightarrow A \rightarrow Z + (H_S \rightarrow h + h)$ (Not searched yet) •  $ggF \rightarrow A \rightarrow Z + (H_S \rightarrow tt)$ (Not searched yet) •  $ggF \rightarrow A \rightarrow Z + h$ 

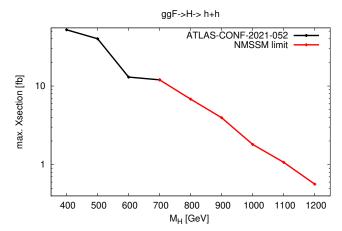
H/A production cross sections for 13 TeV (ggF): From BSM Higgs production cross sections in CERN Report4 2016, multiplied by the reduced couplings squared of H/A. (This captures most of the radiative QCD corrections in the form of K-factors; remaining theoretical uncertainties at most of  $\mathcal{O}(10\%)$ ). Example:  $ggF \rightarrow H \rightarrow (H_S \rightarrow b\bar{b}) + (h \rightarrow b\bar{b})$ :




• Xsection for 
$$M_{H_S} = 80$$
 GeV (red):  
For  $M_H = 400$  GeV: Limited by the search for  $H \rightarrow h + h$  by ATLAS  
For  $M_H = 500 - 600$  GeV: Limited by the search for  
 $H \rightarrow (H_S \rightarrow b\bar{b}) + h \rightarrow \tau\tau)$  by CMS

• Xsection for  $M_{H_S} = 200 \text{ GeV}$  for  $M_H = 400 - 800 \text{ GeV}$  (blue): Limited by the search for  $A \rightarrow Z + (H_S \rightarrow b\bar{b})$  by ATLAS

These searches limit the parameter space of the NMSSM (6 + rad. corrs.)


Example:  $ggF \rightarrow A \rightarrow (h \rightarrow \tau \tau) + (A_S \rightarrow \gamma \gamma)$ :



 $\rightarrow$  Relatively large possible cross sections!

For  $M_{A1} \equiv M_{A_S} = 200$  GeV: The channel  $A_S \rightarrow Z + \gamma$  is open, contributing  $\sim 50\%$ .

#### Resonant SM Higgs Pair Production:



 $\rightarrow$  Only for  $M_H \gtrsim$  700 GeV the max. cross section in the NMSSM are below the limits from ATLAS-CONF-2021-052 (combination of  $b\bar{b} + b\bar{b}, \tau\tau, \gamma\gamma$ )

(Non-resonant SM Higgs Pair Production:  $\sigma^{hh}_{ggF} \sim 31$  fb)

# Conclusions

- Higgs-to-Higgs decays are promising channels for the search of New Physics
- Many (!) possible final states (Left aside here:  $H^{\pm}$  production, final states with  $W^{\pm}$ ,  $h \rightarrow A_S + A_S$ for  $M_{A_S} < 60$  GeV,...)
- ATLAS/CMS searches have just started, more to come
- Already existing searches are sensitive to viable regions of the parameter space of the NMSSM
- Benchmark planes/lines allow to set targets/to compare sensitivities for the various search channels