Measurement of $H \rightarrow \tau \tau$ Cross Sections at ATLAS

UNIVERSITÄT BONN

arXiv:2201.08269 (submitted to JHEP)

IRN Terascale Workshop 2022, Bonn

28.03.2022

Christian Grefe, **Universität Bonn**

Higgs boson production at the LHC

• Measure $\sigma \times BR_{H \to \tau\tau}$ for all relevant production modes: ggH, VBF, $V(\rightarrow qq)H$ and ttH

- Leptonic τ -lepton decays are reconstructed as electrons and muons (with relaxed d_0 cuts)
- Reconstruction of hadronic τ -lepton decays starts from anti- $k_{\rm T}$ jets with R = 0.4 as seeds
- Classify tracks within cone into tau, isolation, pile-up and conversion tracks using multiple BDTs - require exactly 1 or 3 tau-tracks
- Use RNN to identify hadronic tau decays and reject quark and gluonjets
- Use all relevant combinations of tau decay modes: $\tau_h \tau_h, \, \tau_\ell \tau_h, \, \tau_e \tau_\mu \, (\ell = e, \mu)$
- No same flavour light leptons to avoid Z peak

Di-tau mass reconstruction

• Use visible tau decay products and missing energy in missing mass calculator (MMC)

• Sample PDFs ad use Markov chain to find most likely solution to underconstrained problem

Preselection

Trigger signature	Data-taking period	$p_{\rm T}$ threshold [GeV] used in event selection	- Criteria	$ au_e au_\mu$	$ au_{ m lep}$	$\sigma au_{ m had}$	$ au_{ m had} au_{ m had}$
Single electron	2015	$p_{\rm T}(e) > 25$	_		$ au_e au_{ m had}$	$ au_{\mu} au_{ m had}$	
Single muon	$\begin{array}{r} 2016 - 2018 \\ \hline 2015 \\ 2016 - 2018 \end{array}$	$\begin{array}{c} p_{\rm T}(e) > 27 \\ \\ p_{\rm T}(\mu) > 21 \\ p_{\rm T}(\mu) > 27.3 \end{array}$	$- \frac{N(e)}{N(\mu)}$	1 1	1 0	0 1	0 0
One electron, one muon	n 2015–2018	$p_{\rm T}(e) > 18, p_{\rm T}(\mu) > 14.7$	$N(\tau_{\text{had-vis}})$	$0 (0 = 07 \mathbf{WD})$	$\frac{1}{\sqrt{2}}$	$\frac{1}{(0 - 0)}$	$\frac{2}{(7007 \text{ WD})}$
Two $\tau_{\rm had-vis}$	2015–2018	$p_{\rm T}({\rm leading}\ \tau_{\rm had\text{-}vis}) > 40$ $p_{\rm T}({\rm sub\text{-}leading}\ \tau_{\rm had\text{-}vis}) > 30$	- $N(b-\text{jets})$ - $p_{\mathrm{T}}(e) [\text{GeV}]$ $p_{\mathrm{T}}(\mu) [\text{GeV}]$	0 (85% WP) > 15 to 27 > 10 to 27.3	0 (85% WP) >27	0 (85% WP)	$(\geq 1 \text{ or } 2 \text{ in ttH cat})$
• Use	single m	nuon, single	$p_{\rm T}(\boldsymbol{\tau}_{\rm had\text{-}vis})[{\rm GeV}]$		>	30	>40, 30
elec	tron, mu	on+electron	Identification	e/μ : Medium	$e/\mu/ au_{ m had-w}$	_{vis} : Medium	$\tau_{\rm had-vis}$: Mediu
and	$\tau_h \tau_h(+jet)$	t) triggers	Isolation	e : Loose, μ : Tight	e: Loose	μ : Tight	
 Defin 	ne exclus	sive	$\begin{array}{c} \text{Charge} \\ E_{\mathrm{T}}^{\mathrm{miss}} \ [\mathrm{GeV}] \end{array}$		Opposi >	te charge > 20	
categories of medium			Kinematics	$\label{eq:main_scale} \begin{split} m_{\tau\tau}^{\rm coll} > m_Z - 25{\rm GeV} \\ 30{\rm GeV} < m_{e\mu} < 100{\rm GeV} \end{split}$	$m_{\rm T} <$	$70{ m GeV}$	
and	hadronic	c tau decays	Leading jet	$p_{\mathrm{T}} >$	• 40 GeV		$p_{\mathrm{T}} > 70 \mathrm{GeV}, \eta $
to de	efine ana	alysis	Angular	$\begin{array}{l} \Delta R_{e\mu} < 2.0 \\ \Delta \eta_{e\mu} < 1.5 \end{array}$	$\Delta R_{\ell au_{ m had}} \ \Delta \eta_{\ell au_{ m had}} $	$ < 2.5 \\ < 1.5 $	$\begin{array}{c} 0.6 < \Delta R_{\tau_{\mathrm{had-vis}}\tau_{\mathrm{had-vis}}} \\ \Delta \eta_{\tau_{\mathrm{had-vis}}\tau_{\mathrm{had-vis}}} \end{array}$
categories			Coll. app. x_1/x_2	$\begin{array}{l} 0.1 < x_1 < 1.0 \\ 0.1 < x_2 < 1.0 \end{array}$	$0.1 < x \\ 0.1 < x$	$x_1 < 1.4 \\ x_2 < 1.2$	$\begin{array}{l} 0.1 < x_1 < 1.4 \\ 0.1 < x_2 < 1.4 \end{array}$

< 3.2 $^{-vis} < 2.5$

- Boosted (ggH): $p_T(H) > 100 \, {\rm GeV}$
- VBF: $m_{jj} > 350 \,\mathrm{GeV}$, $p_T^{j2} > 30 \,\mathrm{GeV}$, $|\Delta \eta_{jj}| > 3$, jets in opposite hemispheres
- $VH: 60 < m_{jj} < 120 \,{\rm GeV},$ $p_T^{j2} > 30 \,{\rm GeV}$
- *ttH*: 6 jets and at least 1 b-tag or 5 jets and at least 2 b-tags
- Additional BDT classifiers to purify VBF, VH and ttH categories

Event categories

	Variable	VBF	V(had)H	tt H v s $t\overline{t}$	ttH vs Z
Jet properties	Invariant mass of the two leading jets $p_{T}(jj)$ Product of η of the two leading jets Sub-leading jet p_{T} Leading jet η Sub-leading jet η Scalar sum of all jets p_{T} Scalar sum of all <i>b</i> -tagged jets p_{T} Best <i>W</i> -candidate dijet invariant mass Best <i>t</i> -quark-candidate three-jet invariant mass	• • •		•	• • • •
Angular distances	$\begin{array}{l} \Delta\phi \text{ between the two leading jets} \\ \Delta\eta \text{ between the two leading jets} \\ \Delta R \text{ between the two leading jets} \\ \Delta R(\tau\tau, jj) \\ \Delta R(\tau, \tau) \\ \text{Smallest } \Delta R \text{ (any two jets)} \\ \Delta\eta(\tau, \tau) \end{array}$	•	• • •	• • •	•
τ prop.	$p_{\rm T}(au au)$ Sub-leading $ au$ $p_{\rm T}$ Sub-leading $ au$ η			•	•
H cand.	$p_{\mathrm{T}}(Hjj)$ $p_{\mathrm{T}}(H)/p_{\mathrm{T}}(jj)$	•	•		
$\vec{E}_{\mathrm{T}}^{\mathrm{miss}}$	Missing transverse momentum $E_{\rm T}^{\rm miss}$ Smallest $\Delta \phi \ (\tau, \vec{E}_{\rm T}^{\rm miss})$		•	•	•

Simplified Template Cross Section Bins UNIVERSITY BONN

Production

Background Composition

- Relative Contribution [%]
- Largest backgrounds from $Z \rightarrow \tau \tau$, misidentified τ -leptons and top quark processes

tH $b \overline{b} H$ Backgrou V + jets ($t\overline{t}$ Single top Diboson

UNIVERSITÄT

Relative Contribution [%]

Relative Contribution [%]

Process	Generator		PDF s	set	Tune	Normalisation
	ME	\mathbf{PS}	ME	\mathbf{PS}		
Higgs boson						
ggF	Powheg Box $v2$	Pythia 8	PDF4LHC15nnlo	CTEQ6L1	AZNLO	$N^{3}LO QCD + NLO$
VBF	Powheg Box $v2$	Pythia 8	PDF4LHC15nlo	CTEQ6L1	AZNLO	NNLO $QCD + NLC$
VH	Powheg Box $v2$	$\mathbf{Pythia}8$	PDF4LHC15nlo	CTEQ6L1	AZNLO	NNLO $QCD + NLC$
$t\overline{t}H$	Powheg Box $v2$	Pythia 8	NNPDF3.0nnlo	NNPDF2.3lo	A14	NLO QCD + NLO I
tH	MadGraph5_ aMC@NLO	Pythia 8	CT10	NNPDF2.3L0	A14	NLO
$b\overline{b}H$	Powheg Box $v2$	Pythia 8	NNPDF3.0nnlo	NNPDF2.3lo	A14	NLO
Background						
V + jets (QCD/EW)	Sherpa 2.	2.1	NNPDF3.0nnlo		Sherpa	NNLO for QCD, LO
$t\overline{t}$	Powheg Box $v2$	$\operatorname{Pythia} 8$	NNPDF3.0nnlo	NNPDF2.3lo	A14	NNLO + NNLL
Single top	Powheg Box $v2$	$\mathbf{Pythia}8$	NNPDF3.0nnlo	NNPDF2.3lo	A14	NLO
Diboson	$\operatorname{Sherpa} 2.$	2.1	NNPDF3.0nnlo		Sherpa	NLO

ATLAS Simulation $\sqrt{s} = 13 \text{ TeV}$. 139 fb ⁻¹ . H $\rightarrow \tau \tau$												
ttH 1	0.0	0.0	0.3	2.7	3.0	0.7	0.4	1.0	91.9		100	[%
	1.3	0.1	4.7	7.4	3.8	4.0	2.5	2.4	73.6		90	
VBF_1	0.1	0.2	0.0	2.2	1.0	2.9	0.0	93.5	0.0		80	urit
VBF_0	3.2	1.9	1.3	7.8	2.6	20.1	0.5	62.5	0.1		70	<u>т</u>
VH_1	3.4	0.9	13.0	10.8	4.8	0.1	65.8	0.4	0.8		60	gna
VH_0	20.7	3.2	29.9	16.6	4.1	0.5	24.1	0.7	0.3		50	N
boost_3	0.0	0.0	0.0	9.9	76.3	0.0	1.1	12.0	0.7		50	tec
boost_2	0.0	5.3	5.3	72.1	5.2	1.6	0.9	9.2	0.5		40	Sec
boost_1_ge2J	9.1	7.1	55.5	8.4	0.0	10.6	1.2	7.6	0.6		30	Щ×Ц
boost_1_1J	12.0	70.4	5.4	6.3	0.0	1.4	0.6	4.0	0.0	_	20	
boost_0_ge2J	58.3	3.5	22.6	0.1	0.0	8.4	1.1	5.5	0.5		10	
boost_0_1J	67.0	25.1	3.0	0.0	0.0	1.3	0.6	3.0	0.0		0	
N(jets): ≥ 1 p _⊤ (H) [GeV]: [60, 120] m _{jj} [GeV]: [0, 350] [♠]		1 [120,	≥ 2 200] [0, 350]	≥ 0 [200, 300]	≥ 0 [300, ∞[≥ 2 [0, 200] [350, ∞[≥2 [60, 120]	≥2 [350, ∞[U	
gluon fusion + gg \rightarrow Z(\rightarrow qq)H						VBF + V	$(\rightarrow qq)H$	ttH				

Reconstructed Category

STXS Binning

Signal purity in STXS bins

- re-evaluated

efficiencies and scale visible p_T to correspond to hadronic τ -lepton decays - all event quantities are

• All detector uncertainties are propagated + non-closure uncertainties from comparison to $Z \rightarrow \tau \tau MC$

- $\tau_e \tau_\mu$ uses a matrix method to estimate light lepton fakes

• $\tau_h \tau_h$ and $\tau_{\ell} \tau_h$ use a fake factor approach to estimate hadronic tau fakes, light lepton fakes are negligible in $\tau_{\ell} \tau_h$

• Check modelling in validation regions. Uncertainties are estimated from non-closure effects and statistics

- Binned maximum likelihood fits in **32** signal regions (10 boosted, VBF, VH bins x 3 decay modes + 2 ttH bins) + 6 top CRs ($\tau_{\ell} \tau_h$, $\tau_e \tau_{\mu}$) and 30 $Z \rightarrow \ell \ell$ regions to derive simplified embedding and $Z \rightarrow \tau \tau$ normalisation
- Measure correlated signal combined over all regions (1 POI), per Higgs production mode (4 POIs), per STXS bin (9 POIs: VBF, VH, ttH + 6 boosted bins)

 $H \rightarrow \tau \tau$ in ATLAS, C. Grefe, IRN Terascale, Bonn, 28

STXS fit results

UNIVERSITÄT

Source of uncertainty

Theoretical uncertainty in signal Jet and $\vec{E}_{\rm T}^{\rm miss}$ Background sample size Hadronic τ decays Misidentified τ Luminosity Theoretical uncertainty in Z + jets proc Theoretical uncertainty in top processes Flavour tagging Electrons and muons

Total systematic uncertainty Data sample size Total

Systematic uncertainties

	Impact on Observed	$\Delta \sigma / \sigma (pp \to H \to \tau \tau) $ [%] Expected
	8.7	8.5
	4.5	4.2
	4.0	3.7
	2.1	2.1
	2.0	2.0
	1.8	1.8
esses	1.7	1.2
3	1.1	1.1
	0.4	0.5
	0.4	0.4
	12.0	11.4
	7.2	6.7
	13.9	13.2
esses	$\begin{array}{r} 4.5 \\ 4.0 \\ 2.1 \\ 2.0 \\ 1.8 \\ 1.7 \\ 1.1 \\ 0.4 \\ 0.4 \\ 12.0 \\ 7.2 \\ 13.9 \end{array}$	$\begin{array}{r} 4.2\\ 3.7\\ 2.1\\ 2.0\\ 1.8\\ 1.2\\ 1.1\\ 0.5\\ 0.4\\ \hline 11.4\\ 6.7\\ 13.2\\ \end{array}$

Summary and Outlook

- Measurement of $\sigma \times BR_{H \to \tau \tau}$ in 9 STXS bins using full Run 2 data
- First look at *ttH* with $H \rightarrow \tau_h \tau_h$, complementary to *ttH* multi-lepton analysis (Phys. Rev. D 97 (2018) 072003)
- Significant improvement over previous result (<u>Phys. Rev.</u> <u>D 99 (2019) 072001</u>): more data, improved tau ID and improved signal categorisation (especially VBF BDT)
- Still room for improvement: improved event reconstruction, better understanding of systematics, more STXS bins
- Looking forward to doubled statistics from Run 3 starting later this year!

