


LOFAR use cases for 
DAC21
Yan Grange, Vishambhar Nath Pandey



LOFAR in one slide

• 50 PB of data
• ~5 PB/yr



Label:name Steps

UC1: ingest • Copy data to ingest RSE
• Register with Rucio
• Define QoS-based life cycle rules
• Download file(s) using Rucio

UC2a: imaging • Define structure (data sets and containers) 
• Download “processing package”
• Create image
• Put image in the data lake, with some life cycle info

UC2b: imaging (continued) • Query the Virtual Observatory for the souce imaged in 2a
• Put in ESAP shopping basket
• Query data lake for image from 2a and put in shopping basket
• Use DLaaS notebook to make a composite image

Use cases

Of course, you can read all about this in the Notebook J



• Used rclone to copy data from local disk to a non-deterministic end point
• Started with PIC-inject (thanks for making it available to us!), but bandwidth wasn’t 

too great from our SARA node
• Kudos to Paul for setting up one at DESY for us. 

• Registering data to Rucio, and applying rules through python bindings:
• Ran into some issues with OIDC tokens

• Large files -> While the script runs the OIDC token times out

• Wrote a function running in the background that rus oidc-token once in a 
while (minute) and write it to where Rucio expects it.
• Sometime token did not work in rclone for some odd reason. In the end this seemed 

to be a known issue 

UC1 - result

https://git.astron.nl/astron-sdc/escape-wp2/dac21-ingest

https://git.astron.nl/astron-sdc/escape-wp2/dac21-ingest


Package

Set 2Set 1

• Typically a radio image is made by calibrating a calibrator and 
applying the solutions to the target. So the goal here is to split an 
observation in three parts, and make them accessible as one object.

UC2a - result

Set 3



UC2a - result

• We got a LOFAR image!
Just bragging a bit: 
that’s a sub arc-second 
resolution radio image!
• Uploaded FITS version

to the Datalake
• Pretty much everything

went according to plan



• Found Hubble observations of 3C196 in the Virtual Observatory (this 
is a pretty dim source in optical as far as I can judge).
• Sent data to ESAP using the SAMP protocol, and Rucio data sets in same 

shopping basket. 
• Fire up DLaaS notebook
• Install ESAP shopping basket client
• Pull in shopping basket data from VO
• Move data to FUSE mounted folder using rule

• Create combined image

UC2b - result

https://git.astron.nl/astron-sdc/escape-wp2/dac21-imagecomb

https://git.astron.nl/astron-sdc/escape-wp2/dac21-imagecomb


• Top: Hubble image, bottom: combined image
(LOFAR image with Hubble contours_)
• Integration between ESAP and DLaaS may need

some extra discussion on what to expect
where. 
• Code to make available is not too complex:

UC2b – result (2)



Use case conclusions
Label:name Steps Conclusion

UC1: ingest • Copy data to ingest RSE external to Rucio

• Register with Rucio
• Define QoS-based life cycle rules

• Download file(s) using Rucio

• This did not work too well but is 
external to the Data Lake.

• Python bindings work well for this! 
• Rules work well. Issues may arise when 

deleting files in webdav that have rules 
on them (not too surprising of course)

• That worked as expected J

UC2a: imaging • Define structure (data sets and containers) 
• Download “processing package”
• Create image
• Put image in the data lake, with some life cycle info

• All steps were executed as we 
expected!

UC2b: imaging 
(continued)

• Query the Virtual Observatory for the souce imaged 
in 2 and put in ESAP shopping basket

• Query data lake for image from 2a and put in 
shopping basket

• Use DLaaS notebook to make a composite image

• ESAP query was not possible -> used 
VO tools and the SAMP protocol to put 
in shopping basket

• ESAP query worked as expected

• Success, but with some extra code



Package 2Package 1

• After DAC21 we also performed the experiment with a dataset that 
is part of multiple ‘observing packages’. 
• This totally works as expected J

Extra grouping experiment

Set 2Set 1 Set 3



• register-after-upload flag is quite useful (essential?) when uploads 
have a high chance of failing. 
• Deleting the last copy of data can be a challenge if the data is 

actually corrupted
• Normally one adds a rule to protect the data for a second, but if the data does 

not exist, the rull will immediately get stuck.

• Very hard to get a grip on data that exists “behind Rucios back” as in 
UC1.

Lessons learned



• How much to share, how much to manage ourselves
• FTS? Rucio?

• Directory structure in downlads:
• Basically now this is SCOPE/toplevelcontainer/file now, but we may want all 

the containers in between. Is that possible?
• Fully public data
• Without any AAI, VO’s etc.
• How does that intergate in EOSC at all?

• Data crossing the VO boundary?
• Can we show that DLaaS scales to other storage systems, places?

Open questions



• LOFAR LTA as an external RSE
• Public data for users who are a member of any VO and want LOFAR data
• As an example of dding an external ‘legacy’ archive to a data lake

• Batch processing in ESAP: looking at it with lots of interest.
• DLaaS integration in ESAP: access to the shopping basket

• I threatened/promised to start up some discussion about that. Haven’t pushed it 
through but consider it a main activity of the integration with the compute J

• Would really like to see DLaaS deployed to (at least) one other site (from 
the LOFAR perspective I woukd say: maybe dCache?).
• We’ll (finally) set up our own instance to play with (it is planned now!)

Forward (in WP2)



• Embargoed data -> that is a very relevant discussion to us too!
• Integration with the IVOA standards
• Making Rucio data data available from VO tooling and processing through 

ESAP
• Had a chat with Ron on CS3MESH4EOSC on their work. Really 

looking forward to what comes out of that!
• Potentially interesting future topics: 
• Multihop/complex network transfers (e.g. when a processing system is behind 

a firewall or for using optimal network connections). 
• Messaging system, e.g. when QoS transition (tape->disk) is done, warn the 

processing pipeline to initiate the download. Or maybe have multistep rules?

Forward look


