2022 JOINT WORKSHOP OF FKPPL AND TYL/FJPPL 16-18 May 2022

NANTES FKPPL laureate of the Yong Researcher

ISABELLE RIPP-BAUDOT (IPHC, FRANCE) David Sarramia (LPC Clermont, France)

LOCAL ORGANISATION: GUILLAUME BATIGNE (SUBATECH, FRANCE)

JaeBeom Park (Korea University / CENuM)

H KOREA

Nantes Métropole

CNrs

Self-introduction

@ QM 2019 (Wuhan)

JaeBeom Park

- Ph.D @ Korea University in 2020
- Member of LAMPS (LEPS) Collaboration at RAON (SPring8) before joining CMS
- 2015 Present : Member of CMS Collaboration at LHC
 - 2020 Present : Leader of Dilepton Heavy Ion Physics Group
 - 2020 Present : Liaison of CMS HI in Quarkonium Working Group

Selected analyses for today

- Bottomonium production & azimuthal anisotropy in PbPb and pPb collisions at $\sqrt{s_{NN}}$ = 5.02 TeV and $\sqrt{s_{NN}}$ = 8.16 Te [PLB 790 (2019) 270] [PLB 819 (2021) 136385] [arXiv:2202.11807] [CMS-PAS-HIN-21-001] [CMS-PAS-HIN-21-007]
- Charmonium flow measurements in PbPb collisions $\sqrt{s_{\rm NN}}$ = 5.02 TeV [CMS-PAS-HIN-21-008]

Quark-gluon plasma (QGP) : Strongly interacting <u>matter</u> of deconfined quarks and gluons

Quarkonium suppression : The beginning

Suppression in nuclear collisions

- Static color screening : Debye screening
- Interactions with partons
 - : Gluo-dissociation & Landau-damping

Recombination (Regeneration)

- Uncorrelated (off-diagonal) recombination
- Correlated (diagonal) recombination

Experimental probe : RAA, Flow

Nuclear modification factor $R_{AA} = \frac{dN_{AA} / dp_T dy}{\langle N_{coll} \rangle dN_{pp} / dp_T dy} = \frac{\text{"hot/dense QCD medium"}}{\text{"QCD vacuum"}} \xrightarrow{Pb} + Pb \\ \overrightarrow{Pb} = (Pb) \hline{Pb} = (Pb) \\ \overrightarrow{Pb} = (Pb) \hline{Pb} = (Pb) \hline{Pb} = (Pb) \hline{Pb} = (Pb) \hline{Pb} = (Pb) \overrightarrow{Pb} = (Pb) \overrightarrow{$

• **Centrality** (Degree of nuclear overlap) : fraction of total nucleus-nucleus cross-section

Experimental probe : RAA, Flow

• R_{AA} RHIC > R_{AA} LHC at <u>high-p</u>_T : Higher QGP temperature created in LHC

- R_{AA} RHIC > R_{AA} LHC at <u>high-p</u>_T : Higher QGP temperature created in LHC
- Enhancement at low- p_T in LHC energies : Sign of recombination (abundant charm cross section)

KOREA

- R_{AA} RHIC > R_{AA} LHC at <u>high-p</u>_T : Higher QGP temperature created in LHC
- Enhancement at low- p_T in LHC energies : Sign of recombination (abundant charm cross section)
- Large v_2 at low- p_{T} also interpreted as signature of recombination

Bottomonia in QGP : History

- Sequential suppression! $R_{AA}(\Upsilon(1S)) > R_{AA}(\Upsilon(2S)) > \approx R_{AA}(\Upsilon(3S))$
- Large suppression of $\Upsilon(3S)$ in all intervals
- Consistent among LHC measurements

Bottomonia in QGP : History

- Sequential suppression! $R_{AA}(\Upsilon(1S)) > R_{AA}(\Upsilon(2S)) > \approx R_{AA}(\Upsilon(3S))$
- Large suppression of $\Upsilon(3S)$ in all intervals
- Consistent among LHC measurements <--> Similar suppression at RHIC?

Flow of bottomonia

- No elliptic flow signal for Y(1S)
- Much smaller v_2 than $J/\psi \rightarrow$ No large collectivity as charm
- Compatible with most models constraints on Blast-wave model

Observation of Y(3S) in HIC

- First observation of Y(3S) in PbPb collisions : Significance > 5 σ
- Larger dataset & machine-learning based analysis technique (BDT)

Observation of Y(3S) in HIC

- PbPb 1.6 nb⁻¹, pp 300 pb⁻¹ (5.02 TeV) 1.2 CMS lyl < 2.4 Cent. 0-90 % Preliminary – Y(1S) (2015 PbPb/pp) 0.8 - Y(2S) ₫[₩]0.6 - Y(3S) **Υ(1S)** 0.4 **Υ(2S)** 0.2 **3**S) 0^L 0 25 15 5 10 20 30 p_T (GeV/c)
- Reveal of sequential suppression! $R_{AA}(\Upsilon(1S)) > R_{AA}(\Upsilon(2S)) > R_{AA}(\Upsilon(3S))$
- Larger suppression in all p_{T} region

- Double ratio of Y(3S)/Y(2S) -> Imply relative modification of the two excited states
- Most models fail to describe the measurements

Binding energy picture

- Importance of feed down!
 - ~33% for Y(1S)
 - ~20-40% for Y(2S), Y(3S)
 - Less impact for charmonia
- In-medium effects not directly scale with B.E.?

Charmonium flow

[CMS-PAS-HIN-21-008]

Charmonium flow

$J/\psi vs \psi(2S)$

- Larger v₂ observed for ψ (2S)
 - : different amount of regeneration? path-length E. loss at high-p_?
- Reminder : Stronger suppression for $\psi ({\rm 2S})$ than J/ ψ

Bottomonia in pPb

- Smaller suppression in pPb compared to PbPb
- BUT sequential suppression also present in pPb collisions...!

[CMS-PAS-HIN-21-001]

<u>First Y v2 measurement in pPb!</u>

Summary

- Quarkonia : Golden probes to study QGP thermal properties
- Huge amount of efforts done in recent years by RHIC & LHC
- Important contributions from CMS results to understand different in-medium effects
- Still many things in a question mark

 dissociation/recombination, feed-downs, small systems, etc.
- Future analyses needed to further improve our understanding of quarkonium dynamics

Back-up

J/ψ jet fragmentation

[CMS-PAS-HIN-21-008, QM-link]

J/ψ jet fragmentation

[CMS-PAS-HIN-21-008, QM-link]

z

J/ψ creation time at high-pt

[CMS-PAS-HIN-21-008, QM-link]

- Traditionally : q-qbar creation time \sim 1/2m_q

Bottomonia flow

- In agreement with dissociation only picture
 - Thanks to SHINCHON Collaboration!

pPb : Y(1S) v2 \approx 0 \iff J/ ψ v₂ > 0 PbPb : Y(1S) v2 \approx 0 \iff J/ ψ v₂ > 0

Rare probes : B_c

- Novel probe to recombination/dissociation in-medium effects!
- Similar enhancement as B_s at low- p_{T}

Rare probes : X(3872)

- Different behavior for ψ (2S) : System size dependence?
- $\psi({\rm 2S})$ also suppressed in pPb —> No firm conclusion possible

l o r e a

- If only Y-h correlation exists : Affect only forward region
- Decreasing trend for all regions : Itself implying connection to UE
 - Note : pT > 7 GeV/c

KOREA

No dependence of N_{tracks} within cone $\Delta R < 0.5$

 Different from comover model expectation (n.b. p_T>7 GeV/c / need to compare multiplicity ranges) Decrease disappears in low-sphericity

Connection with UE for jetty events?

- Less isolated J/ ψ production than predicted by PYTHIA8
- Higher J/ ψ -in-jets production than PYTHIA8 for p_T > 5 GeV/c

- Prompt & nonprompt ${\tt J}/\psi$
 - Clear difference at low-pT and central collisions

- Larger suppression for the excited state
 - Present also at low-pT down to zero

- Tension exist both on pT & centrality dependence
- Description for excited states : Strong constraint to models
 - Amount of 'dissociation' and 'recombination' still not clear

KOREA

• Difference on Ntrk for each state b/w PYTHIA

• Connection to sequential suppression?

- No v2 observed so far in pp collisions
 - nonzero v2 observed for D meson and HF charm muon