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420 B Particle Physics

The two parts of the Lagrangian one needs to compute the scalar annihilation of
Dark Matter (( ! ⌘ ! 5̄ 5 are (see B.235)9
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�� being the width of the Higgs boson (including its own decay into ((, see next
section). When ones implement this value of |M|

2 into Eq.(B.111) one obtains after
simplification
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B.4.4.11 Annihilation in the case of vectorial Dark Matter to pairs of fermions
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One can compute this annihilation cross section by the normal procedure or noticing
that a neutral vectorial dark matter of spin 1 corresponds to 3 degrees of freedom.
After averaging on the spin one can then write hfEi

+ = 3
3⇥3 hfEi

( = 1
3 hfEi

( . The
academical computation for +` (?1)+` (?2) ! 5 5 gives

9 Notice the factor 2 between L�(( and C�(( coming from the fact that ( is real: ( = (
⇤ (it

corresponds to the 2 possible contractions)
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Fig. 5.9 Interaction of a high energy particle of charge /4 with an electron at rest.
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Fig. 5.10 Moving particle in an interstellar medium of density #4.

distance at which the influence of the traveling particle on the electron is negligible.
It corresponds roughly to the time when the orbital period is lower than the typical
interaction time. In other words, if the electron takes more time to move around the
nucleus than to interact with the moving particle, the electromagnetic influence of
the later becomes weak. If one write g the interacting time and a0 the frequency of
the rotating electron in the atom (a0 = l0/2c), it corresponds to

g '
21
E

<

1
a0

) 1 <

E

2a0
= 1<0G (5.37)

The lower limit 1<8= can be obtained if we suppose, by a quantum treatment and
the application of the uncertainty principle, that the maximum energy transfer is
�?<0G = 2<4E (because as we discussed earlier, the maximum velocity transferred
to the electron is 2E) from �?�G & \ (Heisenberg principle) we have �G & \/2<4E.
We can then write
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Supposing 0 ' constant, we can neglect �. This equation is one form of the Mathieu
equation, which is the equation for an oscillator with a time dependant frequency
l
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we enter in a regime where the solution grows exponentially with time23. We can
understand it easily, from the shape of the Mathieu equation, where, periodically,
the coe�cient cos(<�C) becomes negative and drives the evolution of ( toward an
exponential solution, periodically. The evolution of ( is shown in Fig.(2.8). A more
refined treatment necessitate to compute the Bogoliubov coe�cient to extract the
occupation number [10], but we give in the following section a more intuitive view
of the phenomena, solving the equation for the density of the q decay products. For
the analytical solution of the Mathieu equation (2.170) the reader is directed to [9]
which is without doubt the best textbook treating it, and [10] which is (paradoxically)
the seminal research paper on the subject and one of the clearer and more detailed
in the literature.
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Fig. 2.8 Ilustration of the parametric (also called narrow) resonance in the context of preheating.
We can see clearly the exponential envelop of the periodic solution.

23 This situation corresponds to a narrow resonance if one considers ` ⌧ �0. The regime ` & �0
is a broad resonance regime but exhibits similar features [10].
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e↵ects of forbidden channels on the relic density. Methods for achieving kinetic equilibrium
between the dark and visible sectors via Higgs mixing and/or gauge mixing are addressed
in Section 4. We conclude in Section 5.

2 The model

We consider as a toy model for non-abelian SIMP dark matter a SU(2)X ⇥ U(1)Z0 gauge
theory in the dark sector, broken completely due to the VEVs of a dark Higgs doublet �
and a dark Higgs singlet S. The massive gauge bosons of SU(2)X , X i

µ
(i = 1, 2, 3), then have

degenerate masses due to a dark isospin symmetry but in the absence of a dark Weinberg
angle. These non-abelian gauge bosons can then be stable dark matter candidates [16].
The U(1)Z0 massive gauge boson Z

0 can play the role of a messenger between vector dark
matter and the SM, in the presence of a non-abelian Chern-Simon (CS) term and gauge
kinetic mixing with the SM hypercharge. The dark Higgs fields interact with the vector
dark matter via dark gauge couplings, and with the SM Higgs doublet H via the Higgs-
portal coupling, leading to an additional messenger channel between the dark and visible
sectors.

The Lagrangian for the dark sector is given by
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After expanding the dark Higgs fields around the VEV as � = 1p
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(0, vX + �)T and
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(vZ0 + s) in unitary gauge, one obtains gauge boson masses of mX = 1

2gXvX and
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dark Higgs are given by
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We will assume that the dark Higgs s associated with Z
0 is heavy and thus do not consider

its interactions with the other fields in what follows.
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e↵ects of forbidden channels on the relic density. Methods for achieving kinetic equilibrium
between the dark and visible sectors via Higgs mixing and/or gauge mixing are addressed
in Section 4. We conclude in Section 5.

2 The model
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angle. These non-abelian gauge bosons can then be stable dark matter candidates [16].
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2017  2019 : Vectorial Strongly Interacting Massive Particle (VSIMP)→

S. M. Choi, H. M. Lee, Y. Mambrini and M. Pierre, ``Vector SIMP dark matter with approximate custodial symmetry,’' 
JHEP 07 (2019), 049 ; [arXiv:1904.04109 [hep-ph]];

nX

nγ
≃ 10−9



To check self-interaction constraints

S.M. Choi, Y. Hochberg, E. Kufflik, H.M. Lee, Y.M., H. Murayama, Mathias Pierre, « Vector SIMP dark matter » 1705.xxxxx
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Figure 1: The parameter space of vector SIMP dark matter in the mX vs. ↵X ⌘ g
2
X
/(4⇡)

(top) or mh1 (bottom), when considering 3 ! 2 annihilation channels only. The Planck
3� measurement [1] of the relic density is show in red in both plots. Contours of the
self-scattering cross section of �self/mX = 0.1, 1, 10 cm2

/g are shown in the dotted, dashed
and dot-dashed curves, respectively. We have chosen mh1 = 4mX on top and ↵X = 1, 2 on
bottom. The shaded regions in the lower panel are where the 2 ! 2 channel dominates.
[YANN: we wrote �self in the text an caption, but on the figure it is �scatt]
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Conclusion:  

The simplest VSIMP extension could be compatible with the 
observation of a (future) self-scattering cross section while still 

being a dark matter candidate compatible with PLANCK.



Exemple of papers directly done thanks to our discussions in the Workshop
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2019  2022 : Gravitational (and thus unavoidable) production of (dark) 
matter in the early Universe
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Adding the possibility for non-minimal gravitational coupling
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Adding the possibility for Leptognesis 
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Conclusion 

Minimal Extensions of the Standard Model still need to be studied 
to check every phenomenological corner for detection hints. 



Bonus 

Preheating 

(Subject of J.H. Yoon)



χ χ

V(ϕ) =
1
2

m2
ϕϕ2 +yϕf̄f +σϕ2 χ2

f f
f ff ff f

f f

f f

··χ(t, x) + 3H ·χ −
∇
a2

χ(t, x) +2σϕ2 χ = 0

meff
χ = 2σϕ

χ χχ χχ χχ χ

χ χ

1 102 104 106 108 1010

a/aend

10°45

10°40

10°35

10°30

10°25

10°20

10°15
Ω R

[M
4 P
]

Ω¡

√ [ R

y = æ = 10°7 total
¡¡ ! bb (meÆ = 0)

¡¡ ! bb
¡ ! f̄f

χχ
χχ

M. A. G. Garcia, K. Kaneta, Y. Mambrini and K. A. Olive, JCAP 04 (2021), 012[arXiv:2012.10756 [hep-ph]]. 

ρf ∝ a −3/2

ρ
χ ∝ a −4

ρϕ ∝ a −3



··χ(t, x) + 3H ·χ(t, x) −
∇
a2

χ(t, x) +2σϕ2 χ(t, x) = 0

meff
χ = 2σΦ

χ
χχ

χ

χ
χ χ

χ

χ
χ

χ
χ

Resonant  
production

1 102 104 106 108 1010

a/aend

10°45

10°40

10°35

10°30

10°25

10°20

10°15

Ω R
[M

4 P
]

Ω¡

√ [ R

y = æ = 10°7 total
¡¡ ! bb (meÆ = 0)

¡¡ ! bb
¡ ! f̄f

χχ
χχ

a−3

a−3/2

a−4

σ ≠ 0, σ × ϕ2
end ≳ m2

ϕ [meff
χ ≳ mϕ]
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χ = 2σΦ
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(2π)3/2 [e−ipxχp(t)ap + eipxχ*p (t)a†
p]

Mathieu  
equation

The Mathieu equation is present in any system with a periodical source of energy. 
From electric circuit to mechanical balance, spring excitations…  
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σ ∼ 2 × 10−8 σ ∼ 2 × 10−7

σ ∼ 2 × 10−6 σ ∼ 2 × 10−5



σ ∼ 2 × 10−6
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