

Summary of TYL Hadronic projects HAD_02, HAD_04, HAD_06 TYL-FKPPL joint workshop May 16-18 2022

Outline

- HAD_02: ALICE forward upgrade for high precision high statistics single- and di-muon measurements at the LHC
- HAD_06: Probing extremely hot partonic matter properties via high precision muon measurements at the ALICE experiment
- HAD_04: QGP tomography with jets

Introduction: ALICE overview

Introduction: LHC schedule

ALICE

LHCb

- Heavy-ion program will continue during Run 3-4 (at least)
 - Typically I month/year Pb-Pb or pPb running

Pb-Pb running		minosity targets	
	Experiment	Run 3	Run 3+Run 4
	ALICE, ATLAS, CMS	6/nb	13/nb
	LHCb	1/nb	2/nb
Proton-Pb running			
	Experiment	Run 3	Run 3+Run 4
	ATLAS, CMS	0.5/pb	1/pb

0.25/pb

0.1/pb

0.5/pb

0.2/pb

MFT: France-Japan Team

Institutes involved:

Hiroshima University, Nara Women University, Nagasaki IAS Subatech, IP2I, Irfu-Saclay, LPC-Clermont

TYL/FJPPL Project Leaders:

HAD_02: K. Shigaki & G. Batigne HAD_06: Y. Yamaguchi & M. Guilbaud

MFT: Muon Physics in ALICE

Heavy Quarks (c & b):

Created at the early stage of the collision: 0.1 fm/c compared to 10 fm/c of QGP lifetime ⇒ Experience of the full history of collision Quarkonia (J/ψ and Y families) sensitive to energy density/temperature

- \Rightarrow Quarkonia « melted » in the QGP \Rightarrow decrease of production rate (...?...)
 - ⇒ At LHC energies, regeneration of charmonia?

(see JaeBeom's talk on Tue)

Energy loss of Heavy Quarks depends on medium density

Measurement of Open Heavy Flavors (D & B)

Low masses:

Vector mesons ($m_{\mu\mu} < I \text{ GeV/c}^2$):

Study of chiral symmetry restoration through spectral function modification Thermal dimuon ($IGeV/c^2 < m_{\mu\mu} < 3GeV/c^2$):

Medium temperature

MFT: In a Nutshell

MFT: Layout

936 silicon pixel sensors (0.4 m^2) in 280 ladders of 2 to 5 sensors each.

MFT: Major Milestones

Installation into ALICE in December 2020 (first detector to be installed)

LHC Pilot beam on November 2021 2 colliding bunches at 0.9 TeV

TED Shots in February 2022

Collisions at @ 80 m from ALICE (injection point) First track reconstruction with MUON spectrometer

9

HAD_02: Main Achievements

Detector Control System:

Control Power Supply, Cooling and Configurations Management of state transitions Automatic safety procedures and interlocks

MFT DCS Architecture

Hardware oriented.

Will finish with MFT fully operational (first collisions this summer).

But collaboration will continue

Example of Control Panel

HAD_06: Track Matching

MUON+MFT track matching:

Improvement of S/B ratio and mass resolution

Prompt/non-prompt separation (beauty/charm)

HAD_06: Machine Learning

MUON+MFT muon track matching:

Limited matching purity (true/reconstructed) with traditional χ^2 method

Machine learning techniques:

Developments based on TensorFlow

Under integration in ALICE software Under improvement for optimisation of ressources.

HAD_02 & HAD_06: Training and support to students

PhD Students:

Kosei Yamakawa (04/17-03/22): Control system structure design, Test bench setup, Chip test setup.

Rita Sadek (11/19-10/22): Software developments for Power Control, Machine Learning technics for track matching and preparation of first data analysis.

Motomi Oya (04/21-03/24): Control system implementation, Finite state machine, Graphical User Interface, preparation of first data analysis.

Long stay periods at CERN:

Kosei Yamakawa (01/06-03/16, 06/17-12/17, 06/18-12/18) Motomi Oya (10/19-12/19, 02/20-03/20, 08/21-12/21, 06/22-09/22) Ryoka Tokumoto (05/22-07/22), Kento Kimura (06/22-08/22) Ren Ejima (06/22-08/22), Tomo Ito (07/22-09/22), Koki Soeda (08/22-09/22), Hiraku Soeta (08/22-09/22)

HAD_04: Low-x Physics in ALICE

• Reduce the background of decay photons in the measured signal

H. Pillot (Master) internship, summer 2021, Tsukuba-Grenoble

HAD_04: FOCAL-E Layout

HAD_04: FOCAL-E R&D

PhD UT-UGA)

HAD_04: FOCAL @ KEK

KEK PF-AR new test beam line

- Successfully extracted beams of GeV electrons (< 6 GeV) at few kHz in March 2022
- Commissioning from May 16, 2022, user in fall 2022?
- 100 days/year (1 mon. x 3): before summer, Nov, Feb
- KEK PF-AR workshop, and visiting event (Jan. 13, 2022): https://kds.kek.jp/event/40468/
 - FoCal project has been presented
- Could be used for single PAD test in 2022 summer, and FoCal calibration for the long term for real FoCal modules

KEK silicon platform

+ OpenIT

Automatic wire bonding machine

Automatic dispenser

FOCAL Beam Tests at CERN SPS (H6) Sep. 2021

FOCAL Beam Tests at CERN SPS (H6) Sep 2021

- Single particle response:
 - Determination of the pedestals and sigmas:
 - Pedestal ~15 ADC of 10-bit (1024)
 - Sigma ~2 ADC
 - MIP signal response:
 - MIP response ~13.5 and ~12.0 ADC
 - MIP peak width ~2.15, ~1.5 ADC

Fully instrumented tower prototype beam tests at CERN PS/SPS in Jun/Sep 2022!

- Very active HAD projects despite Covid-19
- Promising prospects for LHC Run 3 and 4!

Thank you for your attention!

