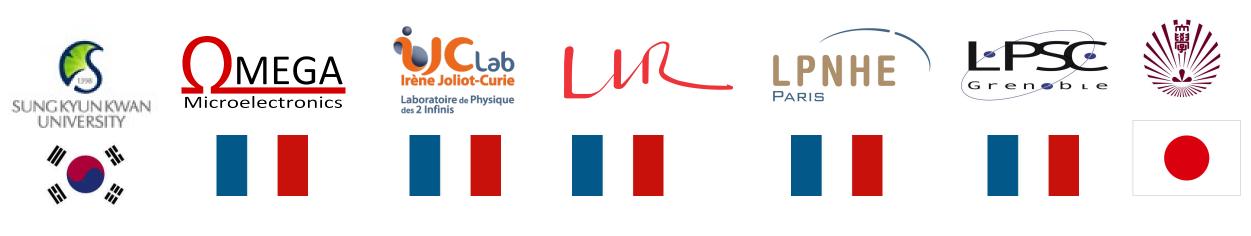


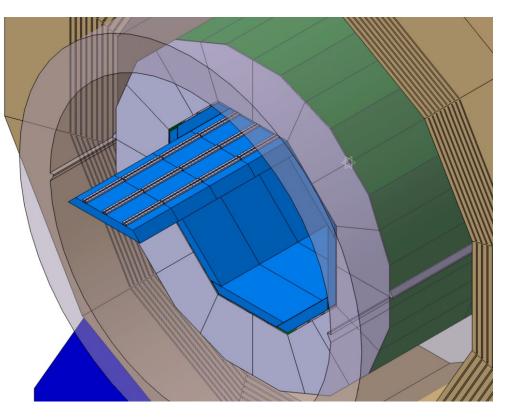
Status of R&D for thin PCBs for the CALICE SiW ECAL (FKPPL project)

Roman Pöschl



On behalf of the SiW ECAL Groups in CALICE:

TYL/FJPPL – FKPPL – May 2022



Silicon Tungsten electromagnetic calorimeter

Optimized for Particle Flow: Jet energy resolution 3-4%, Excellent photon-hadron separation

The SiW ECAL in the ILD Detector

- $O(10^8)$ cells
- "No space"
- => Large integration effort

Basic Requirements:

- Extreme high granularity
- Compact and hermetic
- (inside magnetic coil)

Basic Choices:

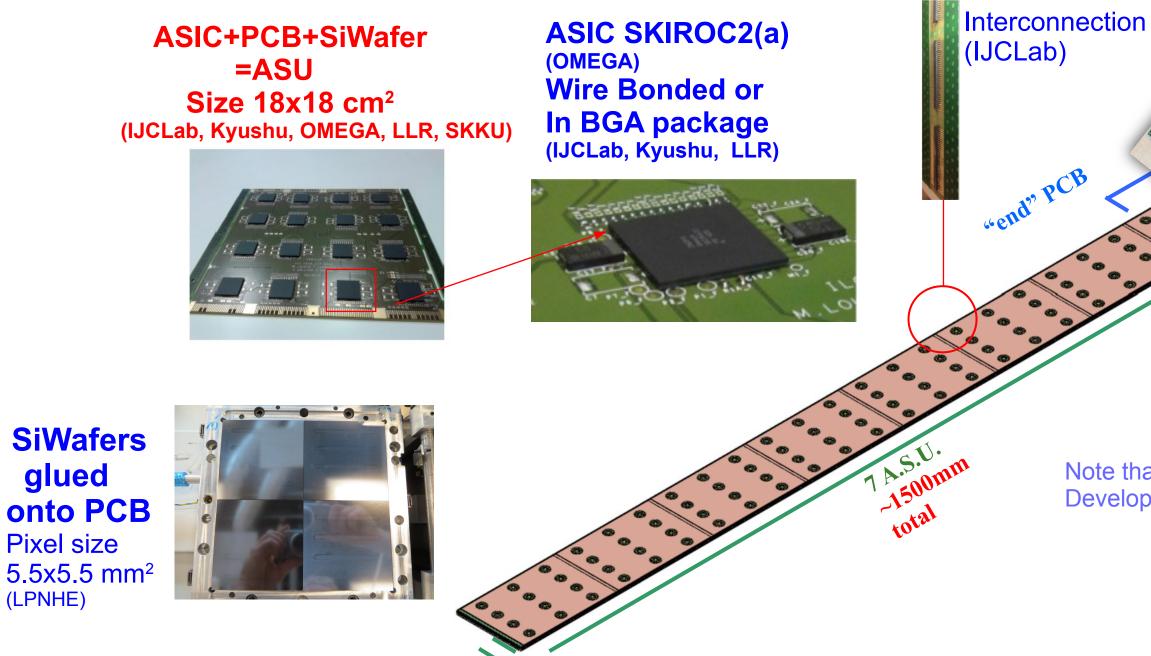
- Tungsten as absorber material
 - $X_0=3.5$ mm, $R_M=9$ mm, $\lambda_1=96$ mm
 - Narrow showers
 - Assures compact design
- Silicon as active material
 - Support compact design

 - value
- All future e+e- collider projects feature at least one detector concept with this technology
 - Decision for CMS HGCAL based on CALICE/ILD prototypes



 Allows for pixelisationRobust technology • Excellent signal/noise ratio: 10 at MIP level as design

Silicon Tungsten electromagnetic calorimeter


Design: Total space for ASICs and PCB 1.8mm (was 1.2mm since ~2007)

TYL/FJPPL - FKPPL Meeting May 2022

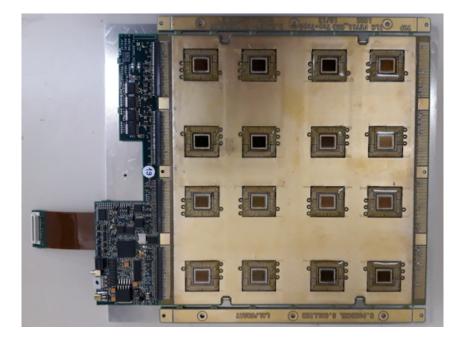
SiW Ecal – Elements of (long) layer

• The beam test set up will consist of a stack of short layers consisting of one ASU and a readout card each

Digital readout SL-Board (IJCLab)

Note that an additional hub for hardware Development is being set up at IFIC/Valencia

Prologue – "The FEV Zoo"


- In recent years the SiW ECAL has developed and used several PCB variants
 - To make sure that you don't get lost, here comes an introduction

FEV10-12

FEV COB

- ASICs in BGA Package
- Incremental modifications From v10 -> v12
- Main "Working horses" since 2014

- ASICs wirebonded in cavities • COB = Chip-On-Board
- Current version FEV11 COB
- Thinner than FEV with BGA
- External connectivity compatible with BGA based FEV10-12

Current prototype (see later) is equipped with all of these PCBs

FEV13

• Also based on BGA packaging • Different routing than FEV10-12 Different external connectivity

Prologue – "The FEV Zoo"

- In recent years the SiW ECAL has developed and used several PCB variants
- To make sure that you don't get lost, here comes an introduction

FEV10-12

- ASICs in BGA Package
- Incremental modifications From v10 -> v12
- Main "Working horses" since 2014

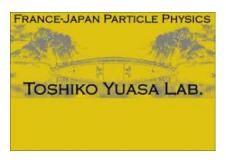
- ASICs wirebonded in cavities • COB = Chip-On-Board
- Current version FEV11_COB
- Thinner than FEV with BGA
- External connectivity compatible with BGA based FEV10-12

Current prototype (see later) is equipped with all of these PCBs

FEV13

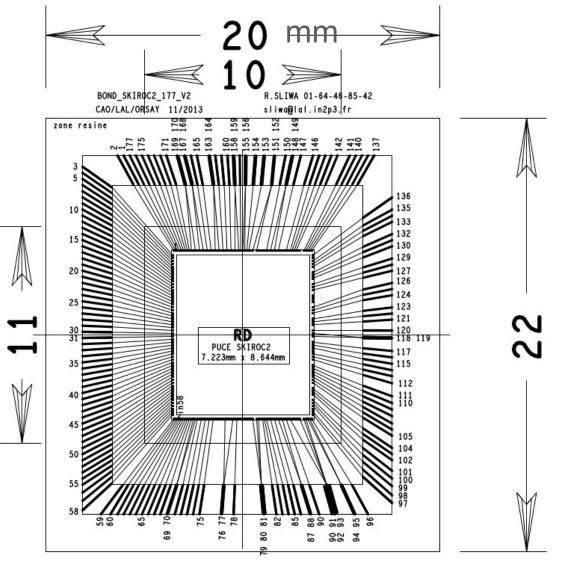
• Also based on BGA packaging • Different routing than FEV10-12 Different external connectivity

Acronym:	Full title: ILC/CALICE			Main French and Korean institute: CNRS/IN2P3 (France), SKKU/ITAEC (Korea)			
Domain: Exper	imental particle phy	sics and application	ns				
	French Group				Korean Group		
	Name	Position	Lab./Instit	tute	Name	Title	Institute
	Leader:	Dr.			Leader:	Prof.	SKKU,
	Roman Pöschl		CNRS/IN	2P3	Mitra		ITAEC
List of			/IJCLab		Ghergherehchi		Center
participants	Stephane Callier	Dr.	CNRS/IN	2P3	Jong-Seo Chai	Prof.	SKKU,
			/OMEGA				ITAEC
							Center
	Dirk Zerwas	Dr.	CNRS/IN	2P3			
			/IJCLab				
	Jimmy Jeglot	Dr.	CNRS/IN	2P3			
			/IJCLab				
	Remi Cornat	Dr.	CNRS/IN	2P3			
			/LPNHE				


+ Yuichi Okugawa (IJCLab and Tohoku U) Allow me to add Adrian Irles (member until 2020, now IFIC) w/o whom many of the results shown today would not have been possible

Roman Pöschl

The CALICE SiW ECAL receives aleo great support via TYL/ FJPPL

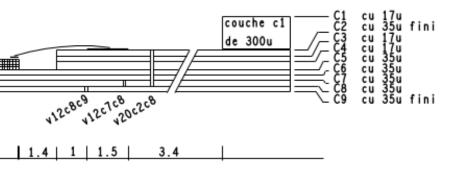


More information in talk by Cristina on Wednesday morning

FEV11 COB – Some Technical Details

Bonding scheme

c 1 preg preg preg preg preg 300u | 1.5 | 1.6 | 1.4 | 2.9 3.6 3.6


Side view

- 9+2 layers board
- Overall height ~1.2mm
- ASICs buried in cavities to ensure overall flatness
 - Need to make sure that bonding wires don't pass board surface

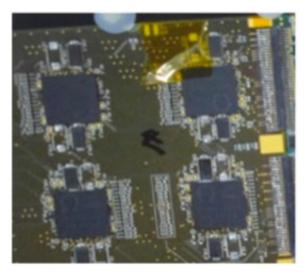
- ~177 Bonding wires
- Bonding by CERN Bondlab
- Regular exchange allowed to iron out early shortcomings

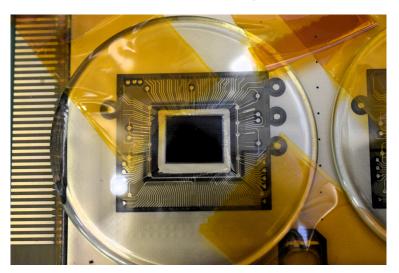
Roman Pöschl

FEV COB – A bit of history

- Produced by EOS Company in South-Korea under supervision by SKKU
 - European producers failed or refused to produce this kind of board
 - Let me point out the excellent communication with the company, they really cared!!!!
- Height 1.2mm
 - Thin multilayer board => Thermal stress during board production => Planarity was an issue
- Series of boards delivered at the beginning of 2018
- Planarity within specs for 80% of the boards
 - Less than 0.5mm bending after production
 - Planarity important for wafers gluing
 - Boards well rectangular
- First beam test in Summer 2019 with two boards (after many years of development)
- Only one wafer per board
- Full equipement for beam tests 2022

TYL/FJPPL - FKPPL Meeting May 2022

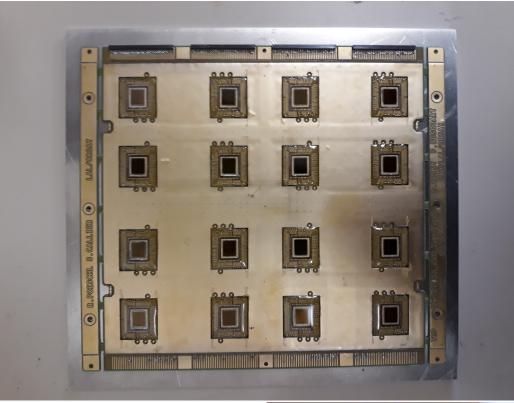

Roman Pöschl

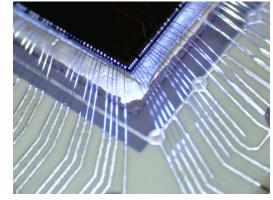

FEV11 COB – Particularities

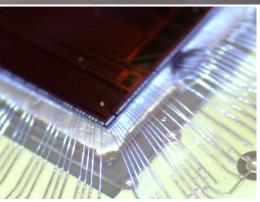
BGA-type PCB feature decoupling capacitances

FEV12/11/13 At least two cap (120 and 150uF) per chip

In first place COB does not feature decoupling capacitances




- The Ecal layers will measure signals down to the MIP level
 - i.e. as small as 4 fC
- An ASU comprises 1024 cells
 - => dense board with many noise sources
- We had to equip the board with a minimal set of decoupling capacitances (not shown)
 - This first version of the board teaches us how many are really needed
 - In future versions capacitances could be added to the ASIC cavities
 - Challenging but possible



Encapsulation of ASICs

Before application of epoxy

After application of epoxy

ASICs on COB have to be protected

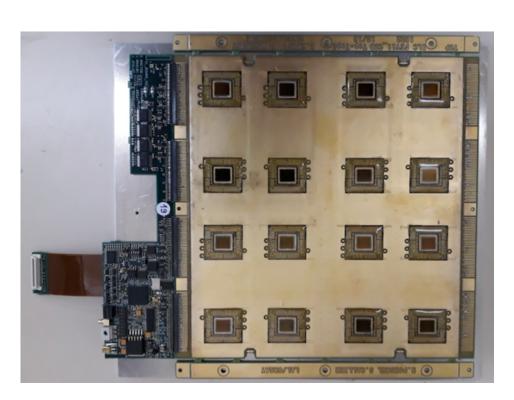
- Catastrophy during encapsulation with GlobTop at private company
 - Curing at 160° over several hours => Deformation of boards, delamination of wafers
- Successful "in house" application of Epoxy (Loctite Hysol) on several boards A masterpiece of work!
- No degradation of performance observed
 - e.g. no ASIC damage, ASICs fully operational after encapsulation
 - Well, 1/48 didn't work properly after encapsulation but not sure whether it's due to encapsulation
- Cooperation with Henkel/Loctite envisaged but interrupted due to pandemic
 - Still, NDA ready on CNRS side (thanks to services at IJCLab and CNRS-DR4)

TYL/FJPPL - FKPPL Meeting May 2022

Roman Pöschl

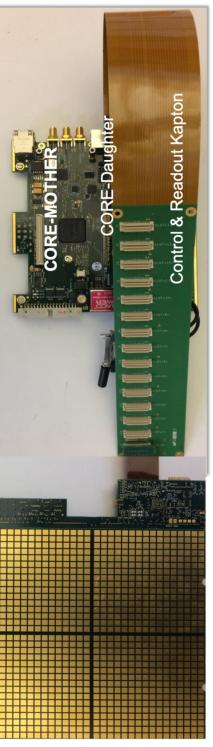
Gluing wafers onto COBs

- Wafer gluing at LPNHE
- Since a decade it was a concern whether wafers could be glued on COBs due to potential deformations of thin, complex board
- Gluing of one wafer already in 2019
- Gluing of four wafers onto two boards during winter 2021/22

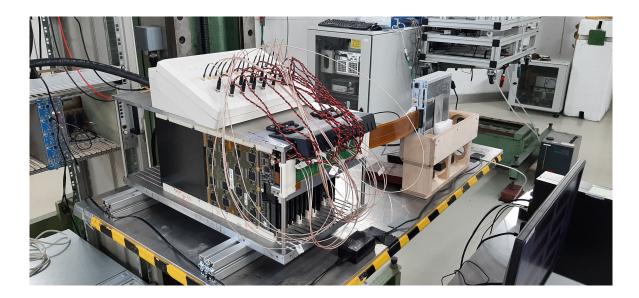


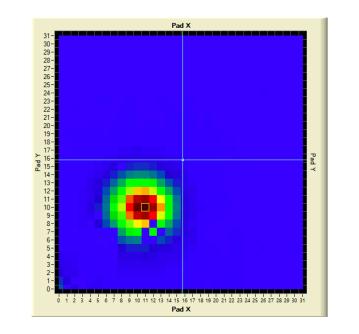
Gluing wafers onto COBs

Current detector interface card (SL Board) connected to COB



- "Dead space free" granular calorimeters put tight demands on compactness
- Current developments in CALICE (IJCLab) meet these requirements
- Can be applied/adapted wherever compactness is mandatory
- Components will/did already go through scrutiny phase in beam tests


Complete readout system


SiW-ECAL in beam test @ DESY

Detector Setup

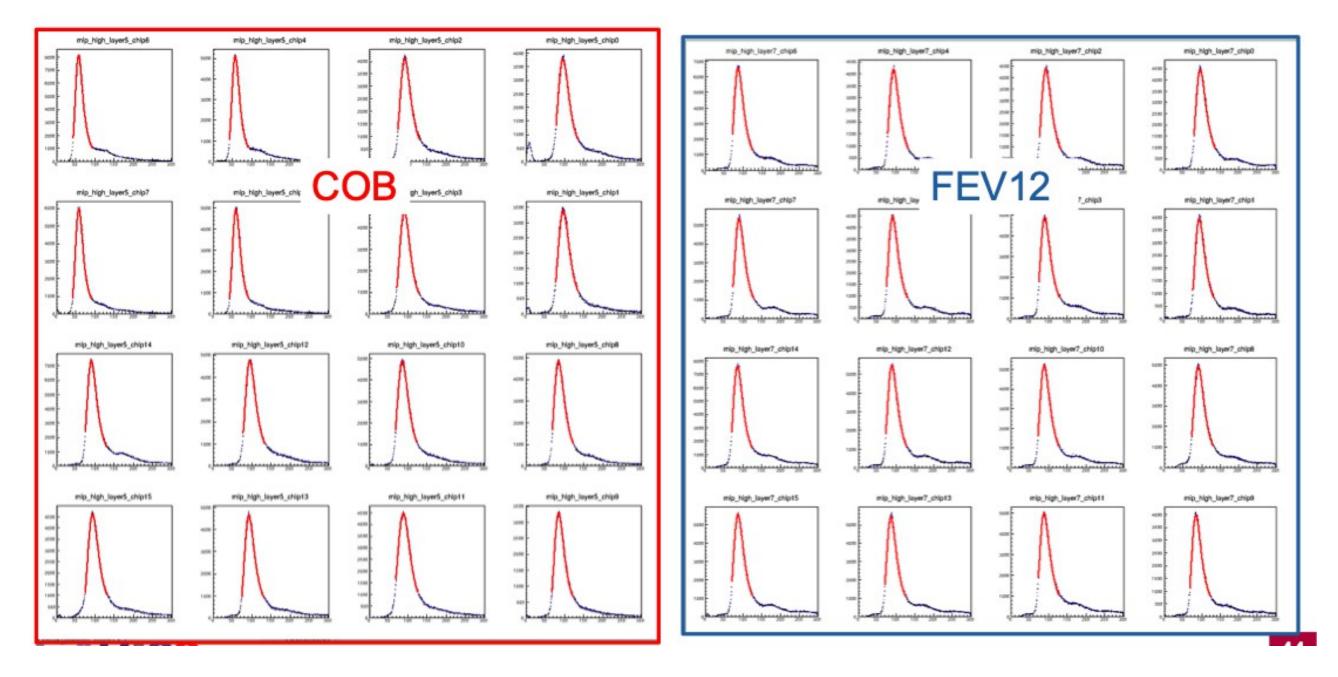
Detector in beam position

- Testbeam with 15 layers equivalent to 15360 cells
- Two COB layers were part of the setup

layers

- Homogeneous response of board(s) to MIPs
- ~10% noisy cells had to be masked
 - Nearly all on digital line, curable with decoupling capacitances

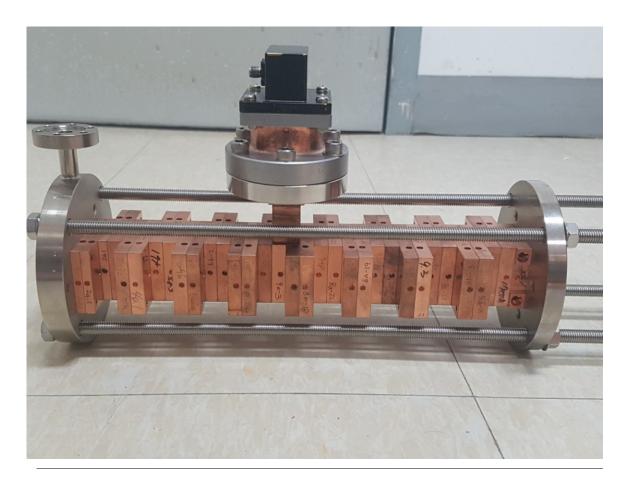
Clear beam spot in COB based


"MIP Map" of one COB

looklikerealMIPs_layer2_xy

Plots by A. Irles, IFIC

MIP Signals - COB vs. BGA



• Quality of MIP signals comparable between COB and BGA variants of PCB

Small S-Band Accelerator for medical purposes constructed ITAEC/SKKU 5-10 MeV Electrons

~20cm

- Well, this idea is pending since 2018
- Have only since 2019 a first working version of the COB
 - With one Si sensor only
 - ... and 2020 came the pandeic

- Would like to study whether the accelerator can be be used for detector development
- Electrons would act as MIPs in detector material (5-10 MeV is close to typical critical energy of detector materials)

Advantages:

- Higher rates than cosmics
- (Might) be better controllable than sources

Issues to be addressed:

- Control of accelerator rate
- Mechanical installation to hold/move detector elements
- For sure a lot of other points including safety aspects

Premises

- Accelerator exists
- FEV11_COB as first "guinea pigs"
- In passing, equipped FEV11_COB can serve "immediately" for the radiation protection system
- -> Detectors, readout system and analysis tools are at hand

- Two fully equipped COB Boards (finally) produced in 2021/22
 - Collaboration IN2P3-SKKU and EOS Company in South-Korea
- First systematic study of Chip-on-Board PCB in beam
 - Flatness good enough for wafers gluing (critical item of R&D)
 - Encouraging results
 - No serious issues discovered
 - Results comparable with those obtained for BGA based PCBs
- The successful beam test in March 2022 concludes the first R&D cycle on the COBs
 - Proof of principle that these PCBs can be built and operated
 - Real R&D success and it was clearly the continuous support by FKPPL that made this success possible!
 - Thank you very much
- Towards new design
 - Integration of decoupling capacitances
 - Adaptation for power pulsing
 - Need to resume discussions with EOS (Korea)
 - Complete interruption due to pandemic
 - New ideas exists but require restart of regular exchange

