
Julien Donini – Université Clermont Auvergne / LPC

Differentiable programming 
and detector design optimization

Seminaire LPNHE - 14/02/2022



Julien Donini – Differentiable programming and detector design optimization 2

Outline

Differentiable programming for HEP applications

● (a bit formal) introduction to automatic differentiation

● Optimization use-cases: analysis optimization, detector design

● MODE collaboration

● Ongoing projects
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Disclaimer

“You know nothing, Jon Snow”
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Warm up: ML basics
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Machine Learning Basics

y(x,w) = t

Data

Output weights

Target
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Training Neural Networks

Data

(features x)

Objective

(target t)

y = f(x, W)

f : non-linear functions

W : parameters (weights)

Cost function
“how close is the network output 

to the objective ?”
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Training Neural Networks

Update of weights W

Data

(features x)

Objective

(target t)
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Backpropagation in NN

Example: MLP network with 2 layers (1 hidden, 1 output)
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Automatic differentiation



Julien Donini – Differentiable programming and detector design optimization 12

How to code derivatives ?

Baydin et al.

[1502.05767]

(Note: numerical differentiation is 
also an option but it gives 
approximate results)

https://arxiv.org/abs/1502.05767
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How to code derivatives ?

Baydin et al.

[1502.05767]

https://arxiv.org/abs/1502.05767
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How to code derivatives ?

Baydin et al.

[1502.05767]

https://arxiv.org/abs/1502.05767
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Automatic differentiation

Automatic (algorithmic) differentiation (AD)

● Numerical derivative evaluations rather than derivative expressions

● Composition of operations for which derivatives are known

● No need to rearrange the code in a closed-form expression

● Accurate at machine precision 

For each function a computational graph is constructed

→ evaluation of the function (forward pass)

→ calculation of gradient (backward pass)
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Computational graph (example)

(see: https://pytorch.org/blog/overview-of-pytorch-autograd-engine/)

Forward pass

Backward pass

https://pytorch.org/blog/overview-of-pytorch-autograd-engine/
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Automatic differentiation

Two main modes, both based on chain rule 

Associate each intermediate 
variable     with a derivative

Propagates derivatives 
backwards from output

Forward mode Reverse mode (backpropagation)

Apply chain rule to each elementary 
operations in Forward propagation

Best suited for 

Two phases 
1. Calculate intermediate variables

2. Calculate derivatives: output → input

Best suited for 

[figure G. Baydin]

https://indico.cern.ch/event/1022938/contributions/4487279/attachments/2303715/3918954/differentiable-programming-and-design-optimization%20%281%29.pdf
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Forward mode

Example

Forward mode example, evaluated at (x
1
, x

2
) = (2, 5) and setting            to compute 

[1502.05767]

2

5

Each intermediate 
variable is associated to

ln

sin

+

-

https://arxiv.org/abs/1502.05767
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Digression: Dual numbers

Forward mode can be viewed as evaluating a function using dual numbers

Numbers defined as             where           and  

Properties (using Taylor expansion):

Composite function 
derivative !

In practice, implement specific code to handle the dual operations so that function f 
and its derivative are simultaneously computed (operator overloading)

(For a concrete example with code see R. Lange post)

https://towardsdatascience.com/forward-mode-automatic-differentiation-dual-numbers-8f47351064bf
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Reverse mode (backpropagation)

Example

Reverse mode example, evaluated at (x
1
, x

2
) = (2, 5). Both        and          are computed 

on the same reverse pass starting from the output 

[1502.05767]

Propagates derivatives 
backwards from output

2

5

ln

sin

+

-

https://arxiv.org/abs/1502.05767
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Current state of differentiable programming

[slide G. Baydin]Auto-diff tools: http://www.autodiff.org/ 

https://indico.cern.ch/event/1022938/contributions/4487279/attachments/2303715/3918954/differentiable-programming-and-design-optimization%20%281%29.pdf
http://www.autodiff.org/
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Pytorch example (simple)

PyTorch enables automatic differentiation of computational graphs

Example: differentiation of 

Pure python

→ f(2) = 16, f’(2) = 32, f’’(2) = 48

Note: exact numerical value of derivative is computed (no analytical form)
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Pytorch example (differential geometry)

Calculate partial derivatives of metric tensor w.r.t to coordinates

grad = functional.jacobian(metric_tensor,coord)

print(grad.T)

def fgrad(inputs):

    return torch.autograd.functional.jacobian(metric_tensor,inputs, create_graph=True)

hessian = torch.autograd.functional.jacobian(fgrad,coord, create_graph=True)

print(hessian)

(16 matrices)

Jacobian matrix:

2nd order derivatives:

(4 matrices)
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Differentiable programming

 Gradient-based optimization methods:
➔Code composed of differentiable and parameterized building blocks
➔Software optimized via automatic differentiation

(2018)
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Differentiable programming in HEP

Differentiable programming in High Energy Physics, SnowMass 2021

Incorporating automatic differentiation in HEP software

In Analysis Code
● Optimize free parameters with respect to the desired physics objective
● End-to-end differentiable analysis workflow

In Simulation Code
● Compute gradient for with respect to parameters of simulation
● EFT, Cosmology, MadGraph (evaluation of matrix element), …

https://www.snowmass21.org/docs/files/summaries/CompF/SNOWMASS21-CompF5_CompF3_Gordon_Watts-046.pdf
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Differentiable analysis: NEOS

End-to-end optimized analysis pipelines that use the analysis sensitivity 
including systematic uncertainties as the objective function

github.com/gradhep/neos

[figure N. Simpson]
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Differentiable analysis: NEOS

[Slide Nathan Simpson]

End-to-end optimized analysis pipelines that use the analysis sensitivity 
including systematic uncertainties as the objective function

github.com/gradhep/neos

https://indico.cern.ch/event/1022938/contributions/4487419/attachments/2305587/3922485/MODE_Sept21_Nathan_simpson_e2e.pdf
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INFERNO

Inference Aware Neural Optimization
● Include nuisance parameters in the loss function and directly minimize 

precision of parameters of interest (e.g. signal strenght measurement)

Profiled likelihood around the expectation value for the parameter of interest 
for inference-aware models and cross-entropy loss based models. 

[1806.04743, de Castro, Dorigo]

https://arxiv.org/abs/1806.04743
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INFERNO algorithm

NN output → 
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INFERNO algorithm

NN loss function: uncertainty on parameter of interest (U)

Obtained by computing full hessian of the Likelihood with 
respect to all nuisance parameters
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INFERNO algorithm

For a detailed explanation of the algorithm see G. Strong blog post

https://gilesstrong.github.io/website/statistics/hep/inferno/2020/12/04/inferno-1.html
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Optimization of detector design

Can automatic differentiation be applied to detector optimization ?
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Optimization of detector design

Design of detectors traditionally relies on individual optimization of subdetector
● Track first, destroy later 

● First detect ionization tracks in tracker, then measure energy deposits from 
destructive interaction with thick calorimeters

● Per-subdetector optimization
● subdetector-specific figures of merit (e.g. momentum resolution)

● Impact on physics goals typically considered in a second step

Optimization of a joint problem ≠ different from individual optimization
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Proof of concept: MUonE experiment
Example of geometry optimization: MUonE experiment
● MUonE: high precision muon-electron differential cross section 

→  hadronic contributions to g-2 muon anomaly

Optimizing geometry of the detector
● Likelihood minimization (not autodiff.)
● Factor 2 improvement
● No increase of detector cost

 

[T. Dorigo, https://doi.org/10.1016/j.physo.2020.100022]

Relative resolution in q2

https://cds.cern.ch/record/2677471?ln=en
https://doi.org/10.1016/j.physo.2020.100022
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Generic optimization pipeline



Julien Donini – Differentiable programming and detector design optimization 36

Generic optimization pipeline

Data 
(particles)

...  Parameters of interest

Differentiable simulated 
detector modules

Data NN output 

Minimization of objective function through automatic differentiation
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Generic optimization pipeline

Data 
(particles)

...  Parameters of interest

Differentiable simulated 
detector modules

What if simulator is not differentiable ? Try generative surrogate

Black-Box Optimization with Local Generative Surrogates, S. Shirobokov, V. Belavin, 
M. Kagan, A. Ustyuzhanin, A. G. Baydin, https://arxiv.org/abs/2002.04632 

https://arxiv.org/abs/2002.04632
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Muon shielding in SHIP
Minimize muon background fluxes in the SHIP steel magnet by varying its geometry

 

Local generative surrogate solution is shorter and has lower mass than other 
proposal, hence improving efficacity of the experiment and reducing its cost

Geometry of the magnet  
42 parameters to optimize

Evolution of 6 parameters 
during optimization

[2002.04632]

https://ship.web.cern.ch/
https://arxiv.org/abs/2002.04632


Machine-Learning Optimized 
Design of Experiments

MODE Collaboration 
https://mode-collaboration.github.io

A. G. Baydin5, A. Boldyrev4, K. Cranmer8, P. de Castro Manzano1, T. Dorigo1, C. 
Delaere2, D. Derkach4, J. Donini3, A. Giammanco2, J. Kieseler7, G. Louppe6, L. 
Layer1, P. Martinez Ruiz del Arbol9, F. Ratnikov4, G. Strong1, M. Tosi1, A. 
Ustyuzhanin4, P. Vischia2, H. Yarar1 + more members that joined recently

1 INFN, Sezione di Padova (and associates from Padova and Naples Universities), Italy
2 Université Catholique de Louvain, Belgium
3 Université Clermont Auvergne, France
4 Laboratory for big data analysis of the Higher School of Economics, Russia 
5 University of Oxford
6 Université de Liege
7 CERN
8 New York University
9 IFCA

https://mode-collaboration.github.io/
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MODE ultimate goals

The target of MODE is to design and offer to the community a scalable, versatile 
architecture that can provide end-to-end optimization of particle detectors, 
proving it on a number of different applications across different domains

Toward Machine Learning Optimization of Experimental Design, Nuclear Physics News, 2021

https://inspirehep.net/literature/1850892
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Differentiable programming for muography

[images : A. Giammanco]

Tomography: exploit atmospheric muon flux to map the interior of objects  

Muon absorption Muon scattering

https://indico.cern.ch/event/1022938/sessions/407048/attachments/2305245/3921785/muography-mode-workshop2021-summary.pdf
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Muon tomography

Volume with unknown composition sandwiched between detectors

Infer X
0
 (radiation length) of volume by measuring muon scattering

How should detectors be positionned for best performances ?
● i.e Muon detection accuracy, resolution on X

0, ...

● But also: cost, size, ...
[see G. Strong talk]

https://indico.cern.ch/event/1022938/contributions/4487336/attachments/2304133/3919739/GSTD_ModeWS_06-09-21.pdf
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TomOpt: Tomography Optimization

Detector layers are regions of space 
containing a fixed number of panels

● Each panel exists and has a fixed 
resolution and efficiency

● The (x,y,z) position and xy-span are 
parameters to be optimised

● Cost of each panel scales with its area

Inference is fully differentiable w.r.t. 
detector parameters

Python package for differential optimisation of muon-tomography detectors
G.Strong, T.Dorigo, F.Fanzago, A.Giammanco, M.Lagrange, M.Lamparth, F.Nardi, and P.Vischia 

Muon scan of volume of unknown density 
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TomOpt: Tomography Optimization

Example volume
● Block of lead (X

0
=0.005612m)

● Surrounded by beryllium (X
0
=0.3528m)

Prediction based on 10k muons
● Lead block clearly visible
● The X0 predictions are biased due the 

assigning of the entirety of the muon 
scattering to a single point

● high z uncertainty in scatter location 
causes ‘ghosting’ above and below

[G. Strong]
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TomOpt: Tomography Optimization

[G. Strong]Important milestone for this use case

Loss contains:
● Predictive performance
● And detector cost

Live feedback of optimisation
● Both loss and detector states
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Calorimetry for Muon Collider

ECAL geometry optimization studies
● Focus on role of Beam Induced Background (mostly photons)
● Mitigate impact of BIB: granularity, segmentation, reconstruction, timing 
● Aim: use Diff. Programming to optimize geometry configuration

Detector scheme ECAL barrel and shielding “nozzle”

https://muoncollider.web.cern.ch/design/muon-collider-detector 

https://muoncollider.web.cern.ch/design/muon-collider-detector
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Conclusion

Differentiable programming paradigm opens to many different applications

For HEP: end-to-end optimization of analysis, simulators, detectors, ...

MODE collaboration: ML optimization of detector design
● Several projects: muon tomography (advanced), muon collider detector 

shielding (ongoing), Hybrid calorimeter (staring) + others considered 
● We know this is a challenging and ambitious task !
● Objective is not to substitute experts in detector design
● Domain knowledge crucial in setting up analysis workflow
● Consider joining and bring you use case
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Backup material
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Surrogates for differentiability

[slides G. Baydin]

https://indico.cern.ch/event/1022938/contributions/4487279/attachments/2303715/3918954/differentiable-programming-and-design-optimization%20%281%29.pdf
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Surrogates for differentiability
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TomOpt: end-to-end optimization

[G. Strong talk]

https://indico.cern.ch/event/1022938/contributions/4487336/attachments/2304133/3919739/GSTD_ModeWS_06-09-21.pdf
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Joining MODE ?

[slide T. Dorigo]
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Muon collider detector

https://muoncollider.web.cern.ch/design/muon-collider-detector 

https://muoncollider.web.cern.ch/design/muon-collider-detector
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