

ANGELA BURGER LABORATOIRE DE PHYSIQUE DE CLERMONT **SEMINAR LPC**

18TH OF MARCH 2022

RECENT RESULTS OF SEARCHES FOR NEW IN FINAL STATES WITH 3RD **GENERATION QUARKS USING THE ATLAS** DETECTOR

INTRODUCTION

- The large top Yukawa coupling to the Higgs boson motivates searches for new physics coupling to top or b-quarks
- Radiative corrections from the top quark lead to quadratic divergences to the Higgs boson mass
 - Search for a mechanism to cancel those corrections instead of fine tuning
- Many new physics models like Composite Higgs models, extra dimensions etc. predict new particles coupling preferentially to 3rd generation quarks like:
 - Vector-like quarks
 - New heavy gauge bosons like W' and Z' as mediators to new vector charged/neutral current interactions
 - New heavy top resonances
- This talk covers results from recent searches for these new physics models using data from proton-proton collisions recorded by the ATLAS experiment at a center-of-mass energy of 13 TeV collected during the LHC Run 2 (2015-2018)

THE ATLAS RUN 2 DATASET

- Use ATLAS collision dataset recorded during Run 2 of the LHC (2015-2018) @center-of-mass energy \sqrt{s} =13TeV from proton-proton collisions
 - 156 fb-1 pp data delivered
 - 139 fb-1 "good for physics" (uncertainty 1.7%)
- Thanks for successful operation of the LHC!

THE ATLAS DETECTOR

- 3 main subsystems
 - All information of the subsystems are combined to reconstruct and identify objects

Calorimeter:

- Electromagnetic calorimeter \rightarrow Electrons, photons
- Hadronic calorimeter \rightarrow Hadrons

PARTICLE IDENTIFICATION IN ATLAS

AS

EXPERIMENT

Muons travel trough all th detector through the muon spectrometer

Secondary vertices from b-hadron decay

Hadronic jets (in ner detector + calorimeters) **Electrons: EM calorimeter + inner detector**

Run: 311071 Event: 1452867343 2016-10-21 06:34:07 CEST

HADRONIC JETS IN ATLAS: PARTICLE FLOW JETS

- Jets in ATLAS are reconstructed using the particle flow algorithm Fixed radius R=0.4 ("small-R jets")
- - For "standard-use" case

HADRONIC JETS IN ATLAS: JETS OPTIMIZED FOR BOOSTED Particle decays

- Decay products from particles with high pT merged in a single large-radius jet
 - Reclustering from small-R jets (analysiscustom)
 - Dedicated ATLAS calorimeter jet reconstruction with a (fixed) radius of R=1.0

Boosted jets: Increasing transverse momentum, p_T

 $\Delta R \approx 2m/p_{\rm T}$

- Cannot resolve sub-jets as separate jets with fixedcone jet algorithm
- Dedicated track jet collection with variable size : R ~ 1/pT(jet)
- Defined by three parameters: ρ (dimensionless constant), Rmin=0.02 (minimal size) and Rmax=0.4 (maximal size)
- Use information from tracker only: "variable-radius track jets" (VRTrack)

IDENTIFICATION OF 3RD GENERATION QUARKS

- Many analyses exploit the high branching ratio of the allhadronic decay
- All searches presented in this talk rely on the identification of hadronic jets from top or bottom quarks
 - High identification efficiency
 - Good rejection of non-3rd generation quarks:
 - Bottom quarks <-> charm & light quarks
 - (boosted) Top quarks <-> multijet events

Rejection of (dominant) background from multijet events important, directly related to sensitivity to new physics!

Remaining background needs to be well modeled

IDENTIFICATION OF 3RD GENERATION QUARKS: TOP QUARKS

- Top quarks from heavy new physics decay produced with high transverse momentum $(p_T) \rightarrow top decay products collimated in single large-Radius jet (R=1.0)$
- Jet substructure techniques can be exploited to discriminate those top quarks from multijet events
 - Cut-based approach: cut on variables like number of large-R jet constituents, mass of the jet, etc.
 - Analysis-custom multi-variate discriminants
 - Dedicated top tagger by ATLAS

IDENTIFICATION OF 3RD GENERATION QUARKS: THE ATLAS DNN TOP TAGGER

0.025

6000

5000

4000

3000

2000

1000

1.5

0.5

0

Data/Pred.

- Training on Deep Neural Network (DNN) with large-R jet substructure moment variables as input
 - Jet mass, jet pT, energy correlation ratios, N-subjettiness, splitting measures
- Efficiency working points defined (50% & 80%) + calibrated
 - Cuts on the DNN output discriminant
- **Calibration**:
 - Efficiency: ttbar events (lepton+jets decay)
 - Mistag: multijet and photon+jets selection
 - Calibration in the large-R jet pT range [350;1000] GeV using data
 - Extend calibration pT range using **MC-based extrapolation**

IDENTIFICATION OF 3RD GENERATION QUARKS: B-TAGGING

- **Exploit properties of b-hadron decay to construct ATLAS b-taggers**:
 - Long lifetime, displaced secondary decay vertices, high mass, decay multiplicity
- Reconstruct properties of b-hadron: low-level taggers
 - Two approaches : exploit individual properties of charged particles or reconstruct displaced vertices/decay chain
 - Exploit the correlation between track impact parameters in b-hadron decay: output of recurrent neural network used in latest ATLAS b-taggers

ATL-PHYS-PUB-2017-013

IDENTIFICATION OF 3RD GENERATION QUARKS: B-TAGGING

 Combine output of "low-level" taggers in Deep Neural Network (DNN) → « high-level taggers»

- Dedicated b-taggers for particle-flow jets and VRTrack jets
- **Calibration**:
 - b-jet efficiency & charm mistag rate (data): ttbar selection
 - Light mistag rate (data): Z+jets selection
 - Up to pT(jet) = 400 GeV (PFlow) and 250GeV (VRTrack) for b-jet efficiency calibration
 - MC-based extrapolation up to pT(jet) = 3 TeV for b-jets

Eur. Phys. J. C 79 (2019) 970

TYPICAL ANALYSES STRATEGIES FOR THESE SEARCHES

1) Search for excess over background

- Condition: possible to reconstruct new physics particle as resonance
- Bump in invariant mass spectrum
- 2) "Divide and conquer"
 - Maximize sensitivity to several possible signal topologies
 - Construct several signal and control regions, perform combined fit in all regions
- 3) Cut-and-count analysis or construction of multivariate discriminant
 - Count events: expected background and data events in signal region
 - Fit to DNN/BDT-based discriminant

TYPICAL ANALYSES STRATEGIES FOR THESE SEARCHES

1) Search for excess over background

- Condition: possible to reconstruct new physics particle as resonance
- Bump in invariant mass spectrum

2) "Divide and conquer"

- Maximize sensitivity to several possible signal topologies
- Construct several signal and control regions, perform combined fit in all regions
- Solution 3) Cut-and-count analysis or construction of multivariate discriminant
 - Count events: expected background and data events in signal region
 - Fit to DNN/BDT-based discriminant

TYPICAL ANALYSES STRATEGIES FOR THESE SEARCHES

1) Search for excess over background

- Condition: possible to reconstruct new physics particle as resonance
- Bump in invariant mass spectrum
- 2) "Divide and conquer"
 - Maximize sensitivity to several possible signal topologies
 - Construct several signal and control regions, perform combined fit in all regions

3) Cut-and-count analysis or construction of multivariate discriminant

- Count events: expected background and data events in signal region
- Fit to DNN/BDT-based discriminant

BACKGROUND ESTIMATION STRATEGIES

- Use MC simulation
 - Requirement: good description of data by simulation
- MC-based with data-driven corrections
 - Derive correction in control region (normalization, reweighting factor)
 - Derive normalization in final fit
 - Example: some processes well modeled in "bulk" region but not in distribution tails/high pT

 ⁴⁰⁰⁰/₅ = 13 TeV, 139 fb⁻¹/₅
 ₃₅₀₀

Fit of ttbar MC normalization in dedicated Control region

BACKGROUND ESTIMATION STRATEGIES

Data-driven estimation strategies

- Bad modeling of process by simulation
- Multijet background
- Example: ABCD method
 - Derive extrapolation factor in regions C and D
 - Extrapolate yields/shape from region B to region A
 - Assume variable 1 and 2 uncorrelated, apply additional corrections
- **Description with analytic function**
 - Derive/validate analytic function in control region

SEARCHES FOR VECTOR-LIKE QUARKS

Searches for vector-like quarks

THEORETICAL MOTIVATION- VECTOR-LIKE QUARKS (VLQ)

- Heavy VLQs predicted in many models, especially those aimed at solving the hierarchy problem
 - SUSY: Scalar top partners VLQ: fermionic top partners
- Both chiralities transform the same under SM gauge groups -> vector-like
- Expected to decay to bosons and to top or bottom quarks
 - Singlet, doublet and triplet representations of T, B, and exotic-charged X & Y \rightarrow define relative couplings to V,H

TEST ALL POSSIBILITIES!

THEORETICAL MOTIVATION - VECTOR-LIKE QUARKS (VLQ)

Pair-production via the strong force

Pair-production cross-section only dependent on VLQ mass

Single production via the weak interaction

Single-production cross-section also dependent on coupling (K) to **Standard Model particles**

Т		Ξ		
		Ξ		
		Η		
		1		
		╡		
		Ξ		
		Ξ		
		∃		
		Ξ		
		F		
		Η		
		┛		
	-	4		
-	_	E		
_	_			
-	_	4		
~		+		
-	ì	>		
	- 5	n	n	h

SEARCH FOR PAIR-PRODUCTION OF VECTOR-LIKE QUARKS WITH AT LEAST ONE LEPTONICALLY DECAYING Z-BOSON – ANALYSIS STRATEGY

- Optimized for $\mathbf{T} \rightarrow \mathbf{Zt} + \mathbf{X}$
 - \blacktriangleright Z \rightarrow ee or Z \rightarrow mumu

- 2 or 3-leptons in the final state
- Train multi-class DNN on reclustered large-R jets ("MCBOT") to optimize selection for 2nd hadronically decaying VLQ to top, V(Z,W) or H
- Define exclusive event categories based on kinematic properties, b-tag and MCBOT decision for signal-sensitive regions, control and validation regions
- Combined fit performed in all regions to discriminating variable to extract signal and constrain background estimated by Monte-Carlo

ATLAS-CONF-2021-024

SEARCH FOR PAIR-PRODUCTION OF VECTOR-LIKE QUARKS WITH **AT LEAST ONE LEPTONICALLY DECAYING Z-BOSON - RESULTS** ATLAS-CONF-2021-024

- Use ATLAS data of the full Run 2 of the LH center-of-mass energy of 13 TeV (139fb⁻¹
- No deviations from the background-only observed
 - Sensitivity limited by statistical uncertainties
- Higher sensitivity to VLB in 2-lepton final state and to VLT in 3lepton final state
- Set limits in singlet and doublet model and as function of the VLT(B) branching ratio to SM bosons

Extend the excluded B & T mass limits by more than 200 GeV compared to previous analysis using 2015+16 data (36fb⁻¹)

	Madal	Observed (Expected) Mass Limits [T					
IC at a	wiodei	2ℓ	3ℓ	Combinat			
)	TT Singlet	1.14 (1.16)	1.22 (1.21)	1.27 (1.2			
	$T\bar{T}$ Doublet	1.34 (1.32)	1.38 (1.37)	1.46 (1.4			
model	$100\% T \rightarrow Zt$	1.43 (1.43)	1.54 (1.50)	1.60 (1.5			
	BB Singlet	1.14 (1.21)	1.11 (1.10)	1.20 (1.2			
	BB̄ Doublet	1.31 (1.37)	1.07 (1.04)	1.32 (1.3			
	$100\% B \rightarrow Zb$	1.40 (1.47)	1.16 (1.18)	1.42 (1.4)			

SEARCH FOR SINGLE PRODUCTION OF VECTOR-LIKE T QUARKS DECAYING TO Ht OR Zt – ANALYSIS STRATEGY

- Optimize sensitivity to $T \rightarrow Ht/Zt$
 - I lepton in final state from top quark decay
- Categorization in exclusive signal-sensitive, control and validation regions to constrain different signal models and Standard Model backgrounds
- Properties of reclustered large-R jets to divide into sensitive regions for final state containing boosted Higgs, vector bosons or top quarks
 - Cuts on large-R jet mass, p_T and number of constituents
- Data-driven corrections to dominant MC estimated background using a 2-D reweighting technique
- Combined fit in all regions to discriminating variable to extract the signal and improve background description

ATLAS-CONF-2021-040

SEARCH FOR SINGLE PRODUCTION OF VECTOR-LIKE T **QUARKS DECAYING TO Ht OR Zt - RESULTS** ATLAS-CONF-2021-040

1400

1600

1800

2000

m_T [GeV]

- Use ATLAS full Run 2 data set
- No deviation from the background only hypothesis
- Interpretation in terms of the universal coupling constant (κ), which determines the production cross section and total decay width for a given mass

ATLAS Preliminary $1.4 - \sqrt{s} = 13 \text{ TeV}, 139 \text{ fb}^{-1}$ — 95% CL observed limit 95% CL expected limit 95% CL expected limit $\pm 1\sigma$ 95% CL expected limit $\pm 2\sigma$ T singlet $\Gamma_T/M_T = 20\%$ $\Gamma_T/M_T = 10\%$ $\Gamma_{\tau}/M_{\tau}=5\%$

EXPERIMENT

VLT mass limit

SEARCH FOR SINGLE VECTOR-LIKE B QUARK PRODUCTION AND DECAY VIA B \rightarrow bH(bb) **ATLAS-CONF-2021-018**

- Identification of 3 b-jets important for dominant (90%) multijet background suppression
- **Identify boosted Higgs boson** using the jet mass, 2-pronged jet structure and associated b-tagged variable-radius track jets
- Purely data-driven background estimate using the ABCD method
- **Binned maximum-likelihood fit to reconstructed VLB mass**
- Limits on VLB production set in different coupling scenarios for (B,Y) doublet and as a function of the VLB mass using the ATLAS Full Run 2 dataset

- Search targets $T \rightarrow H(\rightarrow bb)t$ decay
- Top and Higgs reconstructed using leading and subleading large-R jet, identification using the jet mass and
 - ATLAS **DNN top tagger** (top)
 - Cuts on jet substructure variables (H)
- **Classify events** according to the number of
 - Higgs and top tags
 - **b-tagged VRTrack jets associated with large-R jet**

2D-grid of signal regions (SR), ttbar normalization regions (NR), control and validation regions

Dominant multijet background calculated using the **data-driv**

		-	-							
ven ABCD method	1t 0H ≥2b				VR8		NR		SR	NR
$\kappa_{\rm T} = 0.5$	0t 1H ≥2b			VR6			SR			SR
ung sta	0⁺ Ci⊐ ≥2b									
) or tage	1t 0H 1b						NR		SR	NR
e-R je	0t 1H 1b						VR1			
	Ot OH 1b						VR2			VR7
ading	1t 0H 0b						VR3		VR5	
	0t 1H 0b						VR4			
Second Se	Ot OH Ob									
2.8 3		0t 0H 0b	0t 1H 0b	1t 0H 0b	0t 0H 1b	0t 1H 1b	1t 0H 1b	0t 0H ≥2b	0t 1H ≥2b	1t 0H ≥2b
				Looding	a lorgo D i	ot togging	etete			

Leading large-R jet tagging state

- Search targets $T \rightarrow H(\rightarrow bb)t$ decay
- Top and Higgs reconstructed using leading and subleading large-R jet, identification using the jet mass and
 - ATLAS **DNN top tagger** (top)
 - Cuts on jet substructure variables (H)
- **Classify events** according to the number of
 - Higgs and top tags
 - b-tagged VRTrack jets associated with large-R jet

2D-grid of signal regions (SR), ttbar normalization regions (NR), control and validation regions

Dominant multijet background calculated using the **data-driven ABCD method**

Leading large-R jet tagging state

- Search targets $T \rightarrow H(\rightarrow bb)t$ decay
- Top and Higgs reconstructed using leading and subleading large-R jet, identification using the jet mass and
 - ATLAS **DNN top tagger** (top)
 - Cuts on jet substructure variables (H)
- **Classify events** according to the number of
 - Higgs and top tags
 - b-tagged VRTrack jets associated with large-R jet

2D-grid of signal regions (SR), ttbar normalization regions (NR), control and validation regions

Dominant multijet background calculated using the **data-driven ABCD method**

Leading large-R jet tagging state

- Binned likelihood fit to dijet invariant mass distribution simultaneously in Signal region and ttbar normalization region
 - Fit of signal cross section and normalization of MC-based ttbar estimation
- Limit set as a function of the VLQ mass and coupling
- VLQ masses up to m(VLQ)=2.3TeV excluded dependent on the coupling κ in the singlet scenario

Improvements in sensitivity beyond what is expected by integrated luminosity increase due to exploitation of boosted topologies, multijet estimation technique, jet tagging

SEARCHES FOR HEAVY GAUGE BOSONS & TOP RESONANCES

Searches for heavy gauge bosons & top resonances

SEARCH FOR VECTOR BOSON RESONANCES DECAYING TO A TOP QUARK ATLAS-CONF-2021-043 AND A BOTTOM QUARK IN HADRONIC FINAL STATES – STRATEGY

- Search for new heavy W' gauge bosons decaying to a (boosted) top quark and a b-quark
- Analysis profits from improved top and b-quark identification and improved multijet estimate
- Analysis regions classified according to
 - DNN top tag category
 - b-tag from W' decay
 - b-tagged jet in large-R jet
- Multijet background estimated with data-driven ABCD method

SEARCH FOR VECTOR BOSON RESONANCES DECAYING TO A TOP QUARK AND A BOTTOM QUARK IN HADRONIC FINAL STATES - RESULT ATLAS-CONF-2021-043

SEARCH FOR HEAVY PARTICLES IN THE b-TAGGED DIJET MASS DISTRIBUTION WITH ADDITIONAL b-JETS

- New W' and Z' could explain the lepton-flavour universality deviations from LHCb & Belle recent results
- The two jets leading in p_T (from Z' \rightarrow bb decay) and either 3rd or 4th jet in p_T are b-tagged to reduce multijet background
 - Previous searches did not include additional b-jets
- ► Use **new trijet trigger with asymmetric p_T thresholds**, introduced in 2017 \rightarrow use 103fb⁻¹ of 2017 & 2018 ATLAS data
- Dominant background from multijet events: fully data-driven estimate
 - Functional decomposition (FD) method : truncated series of a sum of orthonormal basis exponential functions describe background spectrum
- **Scan of reconstructed Z'**(\rightarrow **bb**) invariant mass spectrum using Bump-Hunter

Additional b-jets increase the sensitivity by 20-50% at a mass scale of 1.3-3 TeV

arXiv:2108.09059

SEARCH FOR HEAVY RESONANCES IN FOUR-TOP-QUARK FINAL STATES

- Search for new top-philic resonances using the full Run 2 dataset
- Final state with 1 lepton to suppress multijet background
- Z' resonance reconstructed from two large-R jets from boosted top quarks
 - Cuts on p_T, mass and number of constituents to identify as top quark
- Define signal and control regions according to multiplicity of additional jets and b-jets
- Estimate background (ttbar + jets) by extrapolating from control regions with 2 additional jets and 2 b-jets to signal regions using MC-derived extrapolation factors

34

SEARCH FOR HEAVY RESONANCES IN FOUR-TOP-QUARK FINAL STATES

- Profile-likelihood fit to further constrain the background
- at higher mass points

Scan m(tt) spectrum using Bump-Hunter and use also a model-dependent search for color-singlet top-philic Z'

Dominant uncertainty on ttbar background prediction at low Z' masses, statistical uncertainties

SUMMARY

- probed
- has been found
- using 2015+2016 data only

Many recent searches published with final states containing 3rd generation quarks using all (or most) of the ATLAS data collected during Run 2 of the LHC

Models predicting vector-like quarks, top resonances and heavy gauge bosons are

Improved top and b-quark identification techniques help to reject background from multijet events and to increase the sensitivity to new physics

Nevertheless, the data is compatible with the Standard Model and no deviation

Exclusion limits were set, good improvements have been observed w.r.t previous analyses

Eagerly anticipating Run 3 data to probe further into the O(TeV) regime!

LIST OF PRESENTED ANALYSES

- Search for pair-production of vector-like quarks in pp collision events at $\sqrt{s} = 13$ TeV with at least one leptonically-decaying Z boson and a third-generation quark with the ATLAS detector (<u>ATLAS-CONF-2021-024</u>)
- Search for single production of vector-like T quarks decaying to Ht or Zt in pp collisions at √s =13 TeV with the ATLAS detector (<u>ATLAS-CONF-2021-040</u>)
- Search for single Vector-Like *B* -quark production and decay via $B \rightarrow bH(bb)$ in pp collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector (<u>ATLAS-CONF-2021-018</u>)
- Search for tt resonances in fully hadronic final states in pp collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector (<u>JHEP 10 (2020)</u> <u>61</u>)
- Search for vector boson resonances decaying to a top quark and a bottom quark in hadronic final states using pp collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector (ATLAS-CONF-2021-043)
- Search for heavy resonances in four-top-quark final states in pp collisions at √s=13 TeV with the ATLAS detector (<u>ATLAS-CONF-2021-048</u>)
- ► Search for heavy particles in the *b*-tagged dijet mass distribution with additional *b*-tagged jets in proton-proton collisions at √s=13 TeV with the ATLAS experiment (<u>arXiv:2108.09059</u>)
- Search for a vector-like quark produced in 13 TeV proton-proton collisions and decaying into a Higgs bosocard top quark with a fully-hadronic final state at ATLAS (EXOT-2019-07)

THE ATLAS B-TAGGING ALGORITHM

DECAY OF B-HADRONS

- The distinct signature of a b-hadron decay can be used to identify jets containing b-hadrons in ATLAS
- lower track multiplicity, lifetime and mass w.r.t b-jets

Truth flavour definition

(definition of a b-jet in simulation):

- Search for **b-hadrons** with pT>5GeV within $\Delta R < 0.3$ within the jet
- If no b-hadron found, search for c-hadron, then tau-lepton
- Else: classify jet as light jet

C-hadrons also have a slightly longer lifetime and a larger mass w.r.t light jets,

THE OUTPUT DISCRIMINANT

THE OUTPUT DISCRIMINANTS Low-level tagger outputs are feed into Deep Fast neural network DNN creates output probabilities p_b, p_c, p_u Calculate output discriminant value: DL1 and DL1r (DL1r includes RNNIP)

12

Define single-cut operating points corresponding to an average btagging efficiency (in ttbar MC)

85%, 77%, 70%, 60%

$$D_{DL1(r)} = \ln\left(\frac{p_b}{f_c \cdot p_c + (1 - f_c) \cdot p_{\text{light}}}\right)$$

- Improvements by up to a factor of 2 with recent improvements: inclusion of RNNIP and use of Deep Neural network instead of boosted decision trees (MV2)
- B-tagging efficiency and light and charm rejection pT-dependent

JET RECONSTRUCTION: LARGE-RADIUS ("LARGE-R") JETS

- For a two-body decay, distance ΔR between the decay production is given by: $\Delta R \approx 2m/p_{\rm T}$
- Decay products from particles with high pT are expected to be merged in a single large-radius jet
- Reconstruct jets with a (fixed) radius of R=1.0
- Apply "grooming" for pile-up mitigation

Calibration: Simulation based jet pT, eta and jet mass correction, and datadriven in-situ correction using reference objects

Boosted jets: Increasing transverse momentum, p_T

Subjets with $p_{\tau} > 5\%$ of the original jet p.

PARTICLE IDENTIFICATION

JET RECONSTRUCTION: VARIABLE RADIUS JETS (VRTRACK)

- At high pT, (sub)jets are collimated \rightarrow cannot be resolved any more as separate jets with fixed-cone jet algorithm
- New jet collection in ATLAS to resolve the decay products of H->bb decay
 - Identify them as b-jets via b-tagging algorithm
- Jets have variable size which goes with R ~ 1/pT(jet)
 - Defined by three parameters: ρ (dimensionless constant), R_{min}=0.02 (minimal size) and R_{max}=0.4 (maximal size)
 - Optimized to resolve b-hadrons in H->bb decay
- Use only tracks for reconstruction, good angular and momentum resolution
- Note: b-tagging algorithm with dedicated training for VRTrack jets available

 $R \longrightarrow R_{\text{eff}}(p_{\text{T}}) = \frac{P}{n}$

76 GeV < m_, < 146 Ge Preliminary 3.0 p=30 GeV, R_m = 0.02 0.6 =0.2 Track Jet 0.4 0.2 500 2000 1500 1000

B-Labelling Efficiency

Double Subjet

Primary Vertex

DI-JET RESONANCE SEARCH

DIJET RESONANCE SEARCH (ARXIV:1910.08447)

- Search for high-mass resonance coupling to quark and/or gluons Heavy gauge bosons (Z' ->bb), Kaluza-Klein Graviton G->bb, excited quarks b*(->qb) Decay to two high-energetic hadronic jets

- Inclusive search and with >=1 or ==2 b-tagged jets
- Search performed on full Run2 ATLAS data
- First ATLAS analysis using new DL1r tagger
- Flagship measurement for high-pT jet b-tagging

SEARCH FOR TTBAR RESONANCES IN THE FULLY HADRONIC FINAL STATE

- Resonant ttbar production predicted by many models
 - Topcolor-assisted-technicolor model (TC2) is used as a benchmark model
 - Model-independent search using Bump-Hunter to search for a localized excess in the m(tt) spectrum
- Selection of two high-p_T large-R jets, kinematic cuts ensure multijet event suppression and back-to-back topology
- Analysis regions for signal extraction and derivation of background functional representation classified according to:
 - DNN Top-tag of leading and sub-leading large-R jet
 - b-tagged VRTrack jet assigned to 0/1/2 large-R jets
 - 2 top-tags and 1 or 2 associated b-tags characterize signal region
- Parameterize smoothly falling background spectrum using an analytic function

Improvements on cross section limit w.r.t analysis on 2015+2016 data by 65% at 4 TeV

signal region ctrum using an

tī) [pb]

 $Z') \times B(Z'$

J(pp

