Next-generation forecasts for screened and unscreened models of modified gravity

Santiago Casas, TTK, RWTH Aachen University

With collaboration from Euclid TWG WPs 1-6-7 and more...

Cosmic Microwave Background

Large Scale Structure

The Standard ΛCDM model

- LCDM is still best fit to observations.
- Concordance Cosmology:
- Combination of different observables.

- Lensing
- CMB
- Clustering
- Supernovae
- Clusters

The Standard ΛCDM model

$$G_{\mu
u}+\Lambda g_{\mu
u}=8\pi GT_{\mu
u}$$

- LCDM is still best fit to observations.
- Some questions remain:
- Λ and CDM.
- Cosmological Constant Problem:

O(100) orders of magnitude wrong (Zeldovich 1967, Weinberg 1989, Martin 2012). Composed of naturalness and coincidence sub-problems, among others.

The Standard ΛCDM model

- ΛCDM is still best fit to observations.
- Some questions remain:
- H0 tension, now $\sim 5\sigma$

• σ_8 - Ω_m discrepancy at ~ 2σ

Alternatives to ΛCDM

Ezquiaga, Zumalacárregui, Front. Astron. Space Sci., 2018

Constraints on Theories

- Background is well constrained to be around w = -1
- Gravitational Wave speed = c
- Galaxy morphology and solar system
- Black holes
- Coupling to baryons
- Non-linear regime still pretty much unconstrained
- Fifth forces
- Neutrinos?

Scalar field models

At lowest order in the perturbation of the scalar field $arphi \equiv \phi - \phi_0$

$$\mathcal{L}_2 = rac{Z(\phi_0)}{2} (\partial_\mu arphi)^2 + rac{m_\phi^2(\phi_0)}{2} arphi^2 - \delta g_{\mu
u} \delta T^{\mu
u}$$

- Matter is coupled to the perturbed Jordan metric
- In the case of a cosmological-stress energy tensor and a non-negligible scalar field mass :

$$G_{ ext{eff}} = \left(1 + rac{2eta^2(\phi_0)}{Z(\phi_0)}e^{-m(\phi_0)r}
ight)G_N$$

Yukawa term: Short range forces

Screened Scalar fields

$$G_{ ext{eff}} = \left(1 + rac{2eta^2(\phi_0)}{Z(\phi_0)}e^{-m(\phi_0)r}
ight)G_N$$
 ,

Different types of screening:

- Chameleon: The mass $m(\phi_0)$ increases sharply inside matter
- Damour-Polyakov: The coupling $\beta(\phi_0)$ vanishes inside matter
- K-mouflage and Vainshtein: $Z(\phi_0) \gg 1$

Screened models

As an effective field theory, the normalization factor can be expanded in a power series:

$$Z(\phi_0) = 1 + a(\phi_0) r_c^2 rac{\Box arphi}{m_{ ext{Pl}}} + b(\phi_0) rac{(\partial arphi)^2}{\Lambda^4} + c(\phi) rac{\Box^2 arphi}{\Lambda^5} + \dots$$

K-mouflage: first derivative term $\partial \varphi / \Lambda^2$ dominates, which implies:

Screening where Newtonian acceleration $a=-ec{
abla}\Phi_N$ large enough

Vainshtein: second derivative term $\Box \varphi$ dominates, which implies:

Screening where spatial curvature is large

When the $\Box^2 \varphi$ dominates \rightarrow massive gravity

Screened models

To summarize, screening mechanisms can be characterized by the inequality:

 $abla^k \Phi_N \gtrsim C$

- Chameleon: k = 0 (surface N. potential is large)
- K-mouflage: k = 1 (N. acceleration is large)
- Vainshtein: k = 2 (curvature is large)

For DE applications and under some assumptions:

- Chameleon screens everything above a certain potential threshold
- K-mouflage does not screen galaxy clusters
- Vainshtein screens all structures that turn non-linear

Examples of screened models

- Chameleon: f(R) Hu-Sawicki
- K-mouflage: *k*-essence + universal coupling
- Vainshtein: nDGP (3+1)d brane embedded in 5d

- Solar system and other local constraints and instabilities forbid selfacceleration in these models
- ΛCDM-like background
- Just one free parameter each
- Universal couplings

f(R) Hu-Sawicki model

Modification of the Einstein-Hilbert action

$$S=rac{c^4}{16\pi G}\int\mathrm{d}^4x\sqrt{-g}\left[R+f(R)
ight]$$
 .

Induces changes in the gravitational potentials *

$$-k^2\Psi=rac{4\pi\,G}{c^4}\,a^2\muar
ho\Delta$$

Scale-dependent growth of matter perturbations

$$\mu(a,k) = rac{1}{1+f_R(a)} rac{1+4k^2 a^{-2} m_{f_R}^{-2}(a)}{1+3k^2 a^{-2} m_{f_R}^{-2}(a)}$$

Free parameter: f_{R0}

$$f(R) = -6 \Omega_{
m DE} H_0^2 + |f_{R0}| rac{ar{R}_0^2}{R}$$

Hu, Sawicki (2007)

Small changes in lensing potential

$$\Sigma(a) = rac{1}{1+f_R(a)}$$

 $-k^2\left(\Phi+\Psi
ight)=rac{8\pi\,G}{c^4}\,a^2\Sigmaar
ho\Delta$

"Fifth-force" scale for cosmological densities

$$\lambda_C = 32 \mathrm{Mpc} \sqrt{|\mathrm{f_{R0}}|/10^{-4}}$$

Euclid: Casas et al (2022) in preparation

f(R) as a scalar field theory

Universal coupling through a conformal transformation between Einstein and Jordan metrics

$${ ilde g}_{\mu
u}=A^2(\phi,X)g_{\mu
u}+B^2(\phi,X)\partial_\mu\phi\partial_\mu\phi$$

General Chameleon scalar models are given by specifying V and A

$$V_{
m eff}(\phi) = V(\phi) + (A(\phi)-1)
ho$$

- With a coupling function:
- Map to a scalar field by:
- Carefully chosen potential can realize chameleon mechanism:
- Objects screened when:

$$A(\phi)=e^{eta \phi/m_{
m Pl}}$$

$$rac{df}{dR}=e^{-2eta \phi/_{
m m_{Pl}}}$$

$$V(\phi) = rac{m_{
m Pl}^2}{2} rac{R rac{df}{dR} - R}{(rac{df}{dR})^2}$$

 $|\Phi_N \gtrsim rac{3}{2} |f_{R_0}|$

f(R) Hu-Sawicki predicitons

Scale-dependent growth

Codes used: for linear perturbations: MGCAMB and EFTCAMB

Fitting formula for non-linear power spectrum: Winther, Casas, Baldi, Koyama, Li (2019) *Forge Emulator not available at time of first review

Scale-independent models

nDGP, K-mouflage and Jordan-Brans-Dicke have scaleindependent growth

"Extreme cases" far away from LCDM and close to current upper bounds

nDGP: free parameter Ω_{rc} (related to the transition scale) ReACT

KM: free parameter ϵ_2 (related to the conformal coupling amplitude) Halo+PT

JBD: free parameter ω_{BD} (related to the scalar coupling) HMCode

Scale-independent models

- K-Mouflage presents a large enhancement of the lensing potential
- Definitely detectable with nextgeneration WL observations

Next-generation Galaxy Surveys

DESI telescope

- 14 000 square degrees in the sky
- 30 million accurate galaxy spectra
- Redshifts: 0 < z < 2
- Quasars up to z~3.5
- 5 years of observation

Vera Rubin Observatory

- Located in Chile, 8.4m telescope
- 20 billion galaxies
- Redshifts: 0 < z ~< 3
- 18,000 square degrees
- 11 years of observation

Euclid Space Satellite

- Two instruments:
- VIS (visible photometer): shape and orientation of 1.5 billion galaxies!
- NISP (near infrared spectrograph): 30 million galaxy spectra!

- 15 000 square degrees in the sky
- 16 countries, ~1500 members
- ~170 Petabyte of data!

Photometric cross-correlations

Also known as 3x2pt analysys

Shear-Shear, Galaxy-Galaxy, Galaxy-Lensing correlations

Euclid preparation: VII. Forecast validation for Euclid cosmological probes. arXiv:1910.09273

Weak Lensing

The cosmic shear angular power spectrum depends on the Weyl spectrum (of gravitational potentials $\Phi+\Psi$)

$$C_{ij}^{\gamma\gamma}(\ell) = rac{c}{H_0}\int rac{\hat{W}_i^\gamma(z)\hat{W}_j^\gamma(z)}{E(z)r^2(z)}P_{\Phi+\Psi}\left(k_\ell,z
ight)dz$$

Which is related to the matter power spectrum (of density contrast δ) through

$$P_{\Phi+\Psi} = \left[3\left(rac{H_0}{c}
ight)^2\Omega_{
m M}^0(1+z)\Sigma(k,z)
ight]^2P_{\delta\delta}$$

Information about background geometry, matter content and clustering

Spectroscopic Galaxy Clustering

Euclid preparation: VII. Forecast validation for Euclid cosmological probes. arXiv:1910.09273

Spectroscopic Galaxy Clustering

 $\langle \delta({f k}) \delta({f k}')
angle \equiv P({f k}) \delta_D({f k}+{f k}')$

 $\begin{array}{l} \text{One loop Power Spectrum} \\ \langle \delta(\mathbf{k}) \delta(\mathbf{k'}) \rangle \approx \left\langle \delta^{(1)}(\mathbf{k}) \delta^{(1)}(\mathbf{k'}) \right\rangle + 2 \left\langle \delta^{(1)}(\mathbf{k}) \delta^{(3)}(\mathbf{k'}) \right\rangle + \left\langle \delta^{(2)}(\mathbf{k}) \delta^{(2)}(\mathbf{k'}) \right\rangle \\ P_{1-loop}(k) \equiv P_{lin}(\mathbf{k}) + 2P_{13}(\mathbf{k}) + P_{22}(\mathbf{k}) \end{array}$

 $egin{aligned} P_{22}(k,\eta) &= 2\int F_2^s({f k}-{f q},{f q})^2 P_{lin}({f k}-{f q},\eta) P_{lin}({f q},\eta) d^3{f q} \ P_{13}(k,\eta) &= 3\int F_3^s({f k},{f q},-{f q}) P_{lin}({f k},\eta) P_{lin}({f q},\eta) d^3{f q} \end{aligned}$

For mildly non-linear scales we need to use perturbation theory

- EFT smoothing over terms > UV counterterms

 (see previous talk by Filippo)

 Already being implemented
- into MCMC and Fisher pipelines like CosmicFish and CLOE

The Matter Power Spectrum

Current data:

Image: https://www.cosmos.esa.int/web/planck/picture-gallery

The Matter Power Spectrum

Euclid:

Scales from: ~ 10^{-3} to 10 hMpc⁻¹

Euclid: IST:Forecasts

- Here: Flat $w_0 w_a \text{CDM}$
- GCsp+WL+GCph+XC
- Figure of Merit: 1257
- Non-flat FoM:
 500
- $egin{array}{lll} egin{array}{lll} egin{array}{llll} egin{array}{lll} egin{array}{llll} egin{ar$

Euclid preparation: VII. Forecast validation for Euclid cosmological probes. arXiv:1910.09273

Forecasts for f(R) from Euclid probes

 Combined constraints from GCsp and Photo probes

- $\sigma_{\log_{10}|f_{R0}|} = 0.16$ with spectroscopic GC_{sp} alone (corresponding to a relative 3.0% error);
- $\sigma_{\log_{10}|f_{R0}|} = 0.20$ with WL alone (corresponding to a relative 3.8% error);
- $\sigma_{\log_{10}|f_{R0}|} = 0.07$ combining WL, GC_{ph}, and XC_{ph} (corresponding to a relative 1.3% error);
- $\sigma_{\log_{10}|f_{R0}|} = 0.05$ using the full combination GC_{sp}+WL+GC_{ph}+XC_{ph} (corresponding to a relative 0.9% error).

Forecasts for f(R) from Euclid probes

Forecasts for f(R) from Euclid probes

$$\begin{split} \boldsymbol{\Theta} &= \{\Omega_{\rm m,0}, \, \Omega_{\rm b,0}, \, h, \, n_{\rm s}, \, \sigma_8, \, \log_{10} |f_{R0}|\}, \\ {\rm HS5}: \, \boldsymbol{\Theta}_{\rm fid,HS5} = \{0.32, \, 0.05, \, 0.67, \, 0.96, \, 0.911, \, -4.301\}, \\ {\rm HS6}: \, \boldsymbol{\Theta}_{\rm fid,HS6} = \{0.32, \, 0.05, \, 0.67, \, 0.96, \, 0.853, \, -5.301\}, \\ {\rm HS7}: \, \boldsymbol{\Theta}_{\rm fid,HS7} = \{0.32, \, 0.05, \, 0.67, \, 0.96, \, 0.823, \, -6.301\}. \end{split}$$

• Transform into original space

- $|f_{R0}| = (5.0^{+0.58}_{-0.52} \times 10^{-6})$ with the combination GC_{sp}+WL+GC_{ph}+XC_{ph}.

• Current LSS data: "just" upper bounds of the order of $< 10^{-4}$

Forecasts for nDGP

- GCsp does not constrain the free parameter very well
- Most gain is at NL-scales for Photo probes

	nDGP1	$\Omega_{\rm rc} = 0.25$		
		$\Omega_{ m m,0}$	$\Omega_{\mathrm{b},0}$	$\log_{10}(\Omega_{\rm rc})$
Pessimistic setting				
$GC_{sp}(k_{max} = 0.15 h \mathrm{Mpc}^{-1})$		2.23 %	4.30 %	142.20 %
$GC_{sp}(k_{max} = 0.25 h \mathrm{Mpc}^{-1})$		1.41~%	2.43 %	97.63 %
WL+XC+GC _{ph}		1.13 %	5.64 %	49.59 %
$GC_{sp}+WL+XC+GC_{ph}$		0.55~%	1.95 %	40.27 %
Optimistic setting				
$GC_{\rm sp}(k_{\rm max} = 0.3 h \rm Mpc^{-1})$		1.33 %	2.15 %	90.06 %
$WL+XC+GC_{ph}$		0.30 %	5.08~%	19.59 %
$GC_{sp}+WL+XC+GC_{ph}$		0.25 %	1.28~%	16.99 %
	nDGP2	$\Omega_{\rm rc}=10^{-6}$		
Pessimistic setting				
$GC_{sp} (k_{max} = 0.15 h Mpc^{-1})$		2.36 %	4.51 %	3020.58 %
$GC_{sp}(k_{max} = 0.25 h \mathrm{Mpc}^{-1})$		1.46 %	2.51 %	1923.03 %
$WL+XC+GC_{ph}$		0.86~%	5.61 %	398.64 %
$GC_{sp}+WL+XC+GC_{ph}$		0.89~%	1.84 %	378.82 %
Optimistic setting				
$GC_{sp}(k_{max} = 0.3 h \mathrm{Mpc}^{-1})$		1.38 %	2.21 %	1801.03 %
$\dot{WL+XC+GC_{ph}}$		0.29 %	5.08~%	81.02 %
$GC_{sp}+WL+XC+GC_{ph}$		0.25 %	1.12 %	80.83 %

Euclid: WP1-WP6 et al (2022) in preparation

Forecasts for K-Mouflage

• For KM1:

GCsp can constrain the free parameter at ~10%

- Photo at ~1% (remember Σ_{WL})
- KM2 is basically Λ CDM, non detectable

	KM1 $\epsilon_{2,0} = -0.04$		
	$\Omega_{ m m,0}$	$\Omega_{\mathrm{b},0}$	$\epsilon_{2,0}$
Pessimistic setting			
$GC_{sp} (k_{max} = 0.15 h \mathrm{Mpc}^{-1})$	2.68 %	5.34 %	11.14~%
$GC_{sp}(k_{max} = 0.25 h \mathrm{Mpc}^{-1})$	1.57 %	3.22 %	5.77 %
WL+XC+GC _{ph}	0.36 %	7.36 %	0.22~%
$GC_{sp}+WL+XC+GC_{ph}$	0.34 %	1.73 %	0.22~%
Optimistic setting			
$GC_{sp}(k_{max} = 0.3 h \mathrm{Mpc}^{-1})$	1.48 %	3.08 %	4.99 %
$WL+XC+GC_{ph}$	0.20~%	4.30 %	0.15 %
$GC_{sp}+WL+XC+GC_{ph}$	0.17 %	1.47 %	0.14 %
	KM2 $\epsilon_{2,0} = -0.000$	1	
Pessimistic setting			
$GC_{sp} (k_{max} = 0.15 h \mathrm{Mpc}^{-1})$	2.99 %	5.61 %	1264.58 %
$GC_{sp}(k_{max} = 0.25 h \mathrm{Mpc}^{-1})$	1.60 %	3.08 %	824.38 %
WL+XC+GC _{ph}	1.18 %	5.22 %	939.23 %
$GC_{sp}+WL+XC+GC_{ph}$	0.68~%	1.90~%	645.16 %
Optimistic setting			
$GC_{sp}(k_{max} = 0.3 h \mathrm{Mpc}^{-1})$	1.45 %	2.69 %	759.45 %
WL+XC+GC _{ph}	0.40~%	3.43 %	658.67 %
$GC_{sp}+WL+\dot{XC}+GC_{ph}$	0.32 %	1.52 %	464.38 %

Euclid: WP1-WP6 et al (2022) in preparation

Bonus: Forecasts on parameterized MG

- DESI+Rubin have similar power than Euclid alone (under many assumptions)
- Optical + Radio is also competitive and can remove systematics / degeneracies
- Constraints on μ , Σ of the order of ~5-10% under optimistic assumptions
- PPN-approach screening assumed

Casas, Pettorino, Camera, Martinelli, Carucci (in preparation)

Conclusions

- Screening mechanisms can save scalar field models
- Current constraints don't allow for self-acceleration
- Screening mechanisms can be classified by the derivative order
- Euclid and next-generation surveys will be powerful probes for Cosmology.
- Primary LSS probes: Galaxy Clustering and Weak Lensing
- Many challenges ahead in non-linear modelling
- Next-generation surveys can constrain free parameters with percent precision accuracy

Thanks! Merci!

Santiago Casas, ADE Marseille, May 2022