Galaxy clustering in modified gravity

Filippo Vernizzi
IPhT - CEA, CNRS, Paris-Saclay

with Euclid TH-WG WP7
and other collaborators

5 May 2022
Marseille: Atelier Action Dark Energy 2022

Global picture

Initial Conditions
Large-Scale Structure

Standard perturbation theory + EFT of LSS

$$
\begin{gathered}
\delta(t, \vec{x})=\rho_{m}(t, \vec{x}) / \bar{\rho}_{m}(t)-1 \\
\left\langle\delta(\vec{k}) \delta\left(\vec{k}^{\prime}\right)\right\rangle=(2 \pi)^{3} \delta_{D}\left(\vec{k}+\vec{k}^{\prime}\right) P(k) \\
N_{\text {modes }} \sim 10^{6} \\
\delta=\delta^{(1)}+
\end{gathered}
$$

Long-wavelength DM fluctuations computed perturbatively + finite number of unknown coefficients (counterterms) parameterising the effect of short-wavelength physics on long-wavelength one, whose kdependence is dictated by symmetries

Global picture

Initial Conditions

Large-Scale Structure

$$
\zeta(\boldsymbol{x}, 0) \longrightarrow \delta(\boldsymbol{x}, \tau) \text { dark matter }
$$

$$
\delta_{g}(\boldsymbol{x}, \tau) \xrightarrow{\mathrm{RSD}} \delta_{g}(\theta, z) \text { galaxies }
$$

Standard perturbation theory + EFT of LSS

Dark matter described by continuity and Euler eqs. + Poisson eq.

$$
\begin{aligned}
& \dot{\delta}+\frac{1}{a} \partial_{i}\left((1+\delta) v^{i}\right)=0, \\
& \dot{v}^{i}+H v^{i}+\frac{1}{a} v^{j} \partial_{j} v^{i}+\frac{1}{a} \partial_{i} \Phi=-\frac{1}{a} \frac{1}{\rho_{m}} \partial_{j} \tau_{\text {short }}^{i j}, \quad \partial_{j} \tau_{\text {short }}^{i j} \rightarrow c_{\delta}^{2} \partial_{i} \delta
\end{aligned}
$$

$$
\frac{1}{a^{2}} \partial^{2} \Phi=\frac{3}{2} H^{2} \Omega_{m} \delta
$$

Baumann et al. 10
Carrasco, Hertzberg, Senatore 12

Standard perturbation theory + EFT of LSS

Dark matter described by continuity and Euler eqs. + Poisson eq.

$$
\begin{aligned}
& \dot{\delta}+\frac{1}{a} \partial_{i}\left((1+\delta) v^{i}\right)=0, \\
& \dot{v}^{i}+H v^{i}+\frac{1}{a} v^{j} \partial_{j} v^{i}+\frac{1}{a} \partial_{i} \Phi=-\frac{1}{a} \frac{1}{\rho_{m}} \partial_{j} \tau_{\text {short }}^{i j}, \quad \partial_{j} \tau_{\text {short }}^{i j} \rightarrow c_{\delta}^{2} \partial_{i} \delta
\end{aligned}
$$

$$
\frac{1}{a^{2}} \partial^{2} \Phi=\frac{3}{2} H^{2} \Omega_{m} \delta
$$

Baumann et al. 10
Carrasco, Hertzberg, Senatore 12

Power spectrum

$$
\begin{aligned}
& \left\langle\delta(\vec{k}) \delta\left(\vec{k}^{\prime}\right)\right\rangle=(2 \pi)^{3} \delta_{D}\left(\vec{k}+\vec{k}^{\prime}\right) P(k) \\
& \delta(\vec{k})=\delta^{(1)}(\vec{k})+\delta^{(2)}(\vec{k})+\delta^{(3)}(\vec{k})+\ldots
\end{aligned}
$$

One-loop solution

$$
P^{1-\text { loop }}(k)=P_{11}(k)+P_{22}(k)+P_{13}(k)+P_{13}^{c t}(k)
$$

Integrals

$$
\begin{array}{ll}
P_{22}(k)=2 \int \frac{d^{3} q}{(2 \pi)^{3}} P_{11}(q) P_{11}(|\vec{k}-\vec{q}|)\left[F_{2}(\vec{q}, \vec{k}-\vec{q})\right]^{2} & \\
P_{13}(k)=6 P_{11}(k) \int \frac{d^{3} q}{(2 \pi)^{3}} P_{11}(q) F_{3}(\vec{k}, \vec{q},-\vec{q}) & P_{13}^{c t}(k)=c_{\delta}^{2} \frac{k^{2}}{k_{\mathrm{NL}}^{2}} P_{11}(k)
\end{array}
$$

Scalar-tensor theories

Most general Lorentz-invariant scalar-tensor theory with 2nd-order EOM (Horndeski theory).
Horndeski 73

$$
\begin{aligned}
\mathcal{L}= & G_{4}(\phi, X) R+G_{2}(\phi, X)+G_{3}(\phi, X) \square \phi \\
& -2 G_{4, X}(\phi, X)\left[(\square \phi)^{2}-\left(\nabla_{\mu} \nabla_{\nu} \phi\right)^{2}\right] \quad \text { Deffayet et al. } 11 \\
& +G_{5}(\phi, X) G^{\mu \nu} \nabla_{\mu} \nabla_{\nu} \phi+\frac{1}{3} G_{5, X}(\phi, X)\left[(\square \phi)^{3} \cdots\right]
\end{aligned}
$$

Scalar-tensor theories

Most general Lorentz-invariant scalar-tensor theory with 2nd-order EOM (Horndeski theory).
Horndeski 73

$$
\begin{aligned}
\mathcal{L}= & G_{4}(\phi, X) R+G_{2}(\phi, X)+G_{3}(\phi, X) \square \phi \\
& -2 G_{4, X}(\phi, X)\left[(\square \phi)^{2}-\left(\nabla_{\mu} \nabla_{\nu} \phi\right)^{2}\right] \quad \text { Deffayet et al. } 11 \\
& +G_{5}(\phi, X) G^{\mu \nu} \nabla_{\mu} \nabla_{\nu} \phi+\frac{1}{3} G_{5, X}(\phi, X)\left[(\square \phi)^{3} \cdots\right]
\end{aligned}
$$

Higher derivatives \Rightarrow self-acceleration ($=$ observed acceleration explained by a modification of gravity on large scales)

$$
\frac{\square \phi}{\Lambda^{3}} \sim \frac{H_{0} \dot{\phi}_{0}}{\Lambda^{3}} \sim 1
$$

Higher derivatives also relevant on smaller scales (e.g. Screening). Effects on structure formation

$$
\frac{\square \phi}{\Lambda^{3}} \sim \frac{\nabla^{2} \phi}{\Lambda^{3}} \gg 1
$$

Effective approach

Space of theories
$G_{4}(\phi, X) R+G_{2}(\phi, X)+G_{3}(\phi, X) \square \phi$ $-2 G_{4, X}(\phi, X)\left[(\square \phi)^{2}-\left(\phi_{; \mu \nu}\right)^{2}\right]$ $+G_{5}(\phi, X) G^{\mu \nu} \phi_{; \mu \nu}+\frac{1}{3} G_{5, X}(\phi, X)$ $\times\left[(\square \phi)^{3}-3 \square \phi\left(\phi_{; \mu \nu}\right)^{2}+2\left(\phi_{; \mu \nu}\right)^{3}\right]$

Bridge models and observations in a minimal and systematic way

Gubitosi, Piazza, FV '13; Gleyzes, Langlois, Piazza, FV '14 + many refs and authors

Theory can be expanded around a FLRW background.
Deviation from GR can be parametrized in terms of few (4 at linear order) dimensionless parameters.

Effective approach

Space of theories

$G_{4}(\phi, X) R+G_{2}(\phi, X)+G_{3}(\phi, X) \square \phi$

 $-2 G_{4, X}(\phi, X)\left[(\square \phi)^{2}-\left(\phi_{; \mu \nu}\right)^{2}\right]$$+G_{5}(\phi, X) G^{\mu \nu} \phi_{; \mu \nu}+\frac{1}{3} G_{5, X}(\phi, X)$ $\times\left[(\square \phi)^{3}-3 \square \phi\left(\phi_{; \mu \nu}\right)^{2}+2\left(\phi_{; \mu \nu}\right)^{3}\right]$

Bridge models and observations in a minimal and systematic way

Future LSS observations:
$\left|\alpha_{i}\right| \simeq$ few $\times 0.01$

c_{M}

Mildly non-linear scales

Linear scales $k \sim H_{0}$:

$$
\Phi \sim \frac{\vec{\nabla} \Phi}{H_{0}} \sim \frac{\nabla^{2} \Phi}{H_{0}^{2}}
$$

$$
\dot{\Phi} \sim \omega \Phi \sim c_{s} k \Phi
$$

Mildly non-linear scales $k \gg H_{0}$:

$$
\Phi \ll \frac{\vec{\nabla} \Phi}{H_{0}} \ll \frac{\nabla^{2} \Phi}{H_{0}^{2}} \ll 1
$$

$$
\begin{gathered}
\dot{\Phi} \sim \omega \Phi \sim H_{0} \Phi \ll k \Phi \\
\text { Quasi-Static limit }
\end{gathered}
$$

Focus on the case $m_{\phi} \sim H_{0} \Rightarrow$ Scale-independent growth on MNL scales

Mildly non-linear scales

Linear scales $k \sim H_{0}$:

$$
\Phi \sim \frac{\vec{\nabla} \Phi}{H_{0}} \sim \frac{\nabla^{2} \Phi}{H_{0}^{2}}
$$

$$
\dot{\Phi} \sim \omega \Phi \sim c_{s} k \Phi
$$

Mildly non-linear scales $k \gg H_{0}$:

$$
\Phi \ll \frac{\vec{\nabla} \Phi}{H_{0}} \ll \frac{\nabla^{2} \Phi}{H_{0}^{2}} \ll 1
$$

$\dot{\Phi} \sim \omega \Phi \sim H_{0} \Phi \ll k \Phi$
Quasi-Static limit

Focus on the case $m_{\phi} \sim H_{0} \Rightarrow$ Scale-independent growth on MNL scales
We can retain only spatial derivatives for non-linear operators $\quad \chi_{a}=\{\Psi, \Phi, \phi\}$

$$
\begin{aligned}
& \nabla^{2} \Psi+f_{1}^{\Psi} \nabla^{2} \Phi+f_{2}^{\Psi} \nabla^{2} \phi=A^{\Psi} \delta+B_{a b}^{\Psi}\left[\nabla^{2} \chi_{a} \nabla^{2} \chi_{b}-\nabla_{i} \nabla_{j} \chi_{a} \nabla^{i} \nabla^{j} \chi_{b}\right]+C_{a b c}^{\Psi}\left[\nabla^{2} \chi_{a} \nabla^{2} \chi_{b} \nabla^{2} \chi_{c}+\ldots\right] \\
& \nabla^{2} \Phi+f_{1}^{\Phi} \nabla^{2} \Psi+f_{2}^{\Phi} \nabla^{2} \phi=B_{a b}^{\Phi}\left[\nabla^{2} \chi_{a} \nabla^{2} \chi_{b}-\nabla_{i} \nabla_{j} \chi_{a} \nabla^{i} \nabla^{j} \chi_{b}\right]+C_{a b c}^{\Phi}\left[\nabla^{2} \chi_{a} \nabla^{2} \chi_{b} \nabla^{2} \chi_{c}+\ldots\right] \\
& \nabla^{2} \phi+f_{1}^{\phi} \nabla^{2} \Psi+f_{2}^{\phi} \nabla^{2} \Phi=B_{a b}^{\phi}\left[\nabla^{2} \chi_{a} \nabla^{2} \chi_{b}-\nabla_{i} \nabla_{j} \chi_{a} \nabla^{i} \nabla^{j} \chi_{b}\right]+C_{a b c}^{\phi}\left[\nabla^{2} \chi_{a} \nabla^{2} \chi_{b} \nabla^{2} \chi_{c}+\ldots\right]
\end{aligned}
$$

Perturbation theory in MG

Standard Perturbation Theory fluid equations:

$$
\begin{aligned}
& \dot{\delta}_{m}+\nabla\left[\left(1+\delta_{m}\right) \vec{v}_{m}\right]=0 \\
& \dot{v}_{m}^{i}+H v_{m}^{i}+v_{m}^{j} \nabla_{j} v_{m}^{i}+\nabla_{i} \Phi=0
\end{aligned}
$$

We can retain only spatial derivatives for non-linear operators $\quad \chi_{a}=\{\Psi, \Phi, \phi\}$

$$
\begin{aligned}
& \nabla^{2} \Psi+f_{1}^{\Psi} \nabla^{2} \Phi+f_{2}^{\Psi} \nabla^{2} \phi=A^{\Psi} \delta+B_{a b}^{\Psi}\left[\nabla^{2} \chi_{a} \nabla^{2} \chi_{b}-\nabla_{i} \nabla_{j} \chi_{a} \nabla^{i} \nabla^{j} \chi_{b}\right]+C_{a b c}^{\Psi}\left[\nabla^{2} \chi_{a} \nabla^{2} \chi_{b} \nabla^{2} \chi_{c}+\ldots\right] \\
& \nabla^{2} \Phi+f_{1}^{\Phi} \nabla^{2} \Psi+f_{2}^{\Phi} \nabla^{2} \phi=B_{a b}^{\Phi}\left[\nabla^{2} \chi_{a} \nabla^{2} \chi_{b}-\nabla_{i} \nabla_{j} \chi_{a} \nabla^{i} \nabla^{j} \chi_{b}\right]+C_{a b c}^{\Phi}\left[\nabla^{2} \chi_{a} \nabla^{2} \chi_{b} \nabla^{2} \chi_{c}+\ldots\right] \\
& \nabla^{2} \phi+f_{1}^{\phi} \nabla^{2} \Psi+f_{2}^{\phi} \nabla^{2} \Phi=B_{a b}^{\phi}\left[\nabla^{2} \chi_{a} \nabla^{2} \chi_{b}-\nabla_{i} \nabla_{j} \chi_{a} \nabla^{i} \nabla^{j} \chi_{b}\right]+C_{a b c}^{\phi}\left[\nabla^{2} \chi_{a} \nabla^{2} \chi_{b} \nabla^{2} \chi_{c}+\ldots\right]
\end{aligned}
$$

Perturbation theory in MG

Standard Perturbation Theory fluid equations:

$$
\begin{aligned}
& \dot{\delta}_{m}+\nabla\left[\left(1+\delta_{m}\right) \vec{v}_{m}\right]=0 \\
& \dot{v}_{m}^{i}+H v_{m}^{i}+v_{m}^{j} \nabla_{j} v_{m}^{i}+\nabla_{i} \Phi=0
\end{aligned}
$$

Modified Poisson equation, assume $\delta \ll 1$ and $k \ll k_{\mathrm{NL}} \ll k_{V}$:

$$
\begin{aligned}
\partial^{2} \Phi= & H^{2} a^{2}\left\{\frac{3 \Omega_{\mathrm{m}}}{2} \mu_{\Phi} \delta+\left(\frac{3 \Omega_{\mathrm{m}}}{2}\right)^{2} \mu_{\Phi, 2}\left[\delta^{2}-\left(\partial^{-2} \partial_{i} \partial_{j} \delta\right)^{2}\right] \quad\right. \text { Cusin, Lewandokswi, FV } \\
& +\left(\frac{3 \Omega_{\mathrm{m}}}{2}\right)^{3} \mu_{\Phi, 22}\left[\delta-\left(\partial^{-2} \partial_{i} \partial_{j} \delta\right) \partial^{-2} \partial_{i} \partial_{j}\right]\left[\delta^{2}-\left(\partial^{-2} \partial_{k} \partial_{l} \delta\right)^{2}\right] \\
& \left.+\left(\frac{3 \Omega_{\mathrm{m}}}{2}\right)^{3} \mu_{\Phi, 3}\left[\delta^{3}-3 \delta\left(\partial^{-2} \partial_{i} \partial_{j} \delta\right)^{2}+2\left(\partial^{-2} \partial_{i} \partial_{j} \delta\right)\left(\partial^{-2} \partial_{k} \partial_{j} \delta\right)\left(\partial^{-2} \partial_{i} \partial_{k} \delta\right)\right]\right\}+\mathcal{O}\left(\delta^{4}\right) \\
& \mu_{\Phi}=\mu_{\Phi}\left(\alpha_{M}, \alpha_{B}, \alpha_{T}\right), \quad \mu_{\Phi, 2}=\mu_{\Phi, 2}\left(\alpha_{M}, \alpha_{B}, \alpha_{T}, \alpha_{V 1}, \alpha_{V 2}\right), \quad \ldots
\end{aligned}
$$

Counterterms enter similarly to the GR case

Global picture

Initial Conditions
Large-Scale Structure
 $\zeta(\boldsymbol{x}, 0) \longrightarrow \delta(\boldsymbol{x}, \tau)$ dark matter

Galaxy biasing

Long-wavelength fluctuations of galaxies are described as biased tracers of the long-wavelength fluctuations of DM + DM counterterms.

Controlled expansion (in perturbation theory and in derivatives)

$$
\begin{aligned}
\delta_{g}(x, t) & =\sum_{n} \int d t^{\prime} K_{n}\left(t, t^{\prime}\right) \tilde{\mathcal{O}}_{n}\left(x_{\mathrm{f}}, t^{\prime}\right) \\
& =\sum_{n, m} b_{n, m}(t) \mathcal{O}_{n, m}(x, t)
\end{aligned}
$$

In GR, one has, up to third order

$$
\delta_{t}=b_{1} \delta+\frac{b_{2}}{2} \delta^{2}+\frac{b_{3}}{3!} \delta^{3}+b_{\mathcal{G}_{2}} \mathcal{G}_{2}(\Phi)+b_{\mathcal{G}_{3}} \mathcal{G}_{3}(\Phi)+b_{\delta \mathcal{G}_{2}} \delta \mathcal{G}_{2}(\Phi)+b_{\mathcal{G}_{N}} \mathcal{G}_{N}\left(\varphi_{2}, \varphi_{1}\right)
$$

Eggemeier, Scoccimarro and Smith '18
with

$$
\begin{aligned}
\mathcal{G}_{2}(\Phi) & \equiv\left(\nabla_{i j} \Phi\right)^{2}-\left(\nabla^{2} \Phi\right)^{2} \\
\mathcal{G}_{3}(\Phi) & \equiv\left(\nabla^{2} \Phi\right)^{3}+2 \nabla_{i j} \Phi \nabla_{j k} \Phi \nabla_{k i} \Phi-3\left(\nabla_{i j} \Phi\right)^{2} \nabla^{2} \Phi \\
\mathcal{G}_{N}\left(\varphi_{2}, \varphi_{1}\right) & \equiv \nabla_{i j} \varphi_{2} \nabla_{i j} \varphi_{1}-\nabla^{2} \varphi_{2} \nabla^{2} \varphi_{1} \quad \varphi_{1}=-\nabla^{-2} \delta \quad \varphi_{2}=-\nabla^{-2} \mathcal{G}_{2}(\Phi)
\end{aligned}
$$

LSS bootstrap

$$
\delta_{\mathbf{k}}^{(n)}(\eta) \equiv \frac{1}{n!} \int \frac{d^{3} q_{1}}{(2 \pi)^{3}} \cdots \frac{d^{3} q_{n}}{(2 \pi)^{3}}(2 \pi)^{3} \delta_{D}\left(\mathbf{k}-\sum_{i=1}^{n} \mathbf{q}_{i}\right) F^{(n)}\left(\mathbf{q}_{1}, \cdots, \mathbf{q}_{n} ; \eta\right) \varphi_{\mathbf{q}_{1}}(\eta) \cdots \varphi_{\mathbf{q}_{n}}(\eta)
$$

Structure of PT kernels dictated by symmetries (e.g. translation, rotations, Bose)

LSS bootstrap

$$
\delta_{\mathbf{k}}^{(n)}(\eta) \equiv \frac{1}{n!} \int \frac{d^{3} q_{1}}{(2 \pi)^{3}} \cdots \frac{d^{3} q_{n}}{(2 \pi)^{3}}(2 \pi)^{3} \delta_{D}\left(\mathbf{k}-\sum_{i=1}^{n} \mathbf{q}_{i}\right) F^{(n)}\left(\mathbf{q}_{1}, \cdots, \mathbf{q}_{n} ; \eta\right) \varphi_{\mathbf{q}_{1}}(\eta) \cdots \varphi_{\mathbf{q}_{n}}(\eta)
$$

Structure of PT kernels dictated by symmetries (e.g. translation, rotations, Bose)
D’Amico, Marinucci, Pietroni, FV '21
Time-dependent translation symmetry (Equivalence Principle)

$$
\begin{aligned}
\tilde{x}^{i}=x^{i}+n^{i}(t), \quad \tilde{t}=t, \quad \tilde{\varphi}_{a}\left(\tilde{x}^{j}, t\right) & =\varphi_{a}\left(x^{j}, t\right)+h_{\varphi_{a}}^{i}(t) \tilde{x}^{i} \\
\tilde{\delta}\left(\tilde{x}^{j}, t\right) & =\delta\left(x^{j}, t\right), \\
\tilde{v}^{i}\left(\tilde{x}^{j}, t\right) & =v^{i}\left(x^{j}, t\right)+a \dot{n}^{i}(t),
\end{aligned}
$$

Dark matter is conserved (mass and momentum conservation)

$$
\int d^{3} x \delta(\mathbf{x}, \eta)=0 \quad \int d^{3} x x^{i} \delta(\mathbf{x}, \eta)=0
$$

LSS bootstrap

$$
\delta_{\mathbf{k}}^{(n)}(\eta) \equiv \frac{1}{n!} \int \frac{d^{3} q_{1}}{(2 \pi)^{3}} \cdots \frac{d^{3} q_{n}}{(2 \pi)^{3}}(2 \pi)^{3} \delta_{D}\left(\mathbf{k}-\sum_{i=1}^{n} \mathbf{q}_{i}\right) F^{(n)}\left(\mathbf{q}_{1}, \cdots, \mathbf{q}_{n} ; \eta\right) \varphi_{\mathbf{q}_{1}}(\eta) \cdots \varphi_{\mathbf{q}_{n}}(\eta)
$$

For dark matter

$$
\begin{aligned}
F_{1}\left(\mathbf{q}_{1}\right) & =1 \\
F_{2}\left(\mathbf{q}_{1}, \mathbf{q}_{2}\right) & =2 \beta\left(\mathbf{q}_{1}, \mathbf{q}_{2}\right)+a_{1}^{(2)} \gamma\left(\mathbf{q}_{1}, \mathbf{q}_{2}\right) \\
F_{3}\left(\mathbf{q}_{1}, \mathbf{q}_{2}, \mathbf{q}_{3}\right) & =2 \beta\left(\mathbf{q}_{1}, \mathbf{q}_{2}\right) \beta\left(\mathbf{q}_{12}, \mathbf{q}_{3}\right)+a_{5}^{(3)} \gamma\left(\mathbf{q}_{1}, \mathbf{q}_{2}\right) \gamma\left(\mathbf{q}_{12}, \mathbf{q}_{3}\right) \\
& -2\left(a_{10}^{(3)}-h\right) \gamma\left(\mathbf{q}_{1}, \mathbf{q}_{2}\right) \beta\left(\mathbf{q}_{12}, \mathbf{q}_{3}\right)+2\left(a_{1}^{(2)}+2 a_{10}^{(3)}-h\right) \beta\left(\mathbf{q}_{1}, \mathbf{q}_{2}\right) \gamma\left(\mathbf{q}_{12}, \mathbf{q}_{3}\right) \\
& +a_{10}^{(3)} \gamma\left(\mathbf{q}_{1}, \mathbf{q}_{2}\right) \alpha_{a}\left(\mathbf{q}_{12}, \mathbf{q}_{3}\right)+\text { cyclic }
\end{aligned}
$$

where

$$
\beta\left(\mathbf{q}_{1}, \mathbf{q}_{2}\right) \equiv \frac{\left|\mathbf{q}_{1}+\mathbf{q}_{2}\right|^{2} \mathbf{q}_{1} \cdot \mathbf{q}_{2}}{2 q_{1}^{2} q_{2}^{2}}, \quad \gamma\left(\mathbf{q}_{1}, \mathbf{q}_{2}\right) \equiv 1-\frac{\left(\mathbf{q}_{1} \cdot \mathbf{q}_{2}\right)^{2}}{q_{1}^{2} q_{2}^{2}}, \quad \alpha_{a}\left(\mathbf{q}_{1}, \mathbf{q}_{2}\right) \equiv \frac{\mathbf{q}_{1} \cdot \mathbf{q}_{2}}{q_{1}^{2}}-\frac{\mathbf{q}_{1} \cdot \mathbf{q}_{2}}{q_{2}^{2}}
$$

$a_{1}^{(2)}, a_{5}^{(3)}, a_{10}^{(3)}, h \quad$ are cosmology dependent

LSS bootstrap for tracers

$$
\delta_{t, \mathbf{k}}^{(n)}(\eta) \equiv \frac{1}{n!} \int \frac{d^{3} q_{1}}{(2 \pi)^{3}} \cdots \frac{d^{3} q_{n}}{(2 \pi)^{3}}(2 \pi)^{3} \delta_{D}\left(\mathbf{k}-\sum_{i=1}^{n} \mathbf{q}_{i}\right) K^{(n)}\left(\mathbf{q}_{1}, \cdots, \mathbf{q}_{n} ; \eta\right) \varphi_{\mathbf{q}_{1}}(\eta) \cdots \varphi_{\mathbf{q}_{n}}(\eta),
$$

Structure of PT kernels dictated by symmetries (e.g. translation, rotations, Bose)

Time-dependent translation symmetry (Equivalence Principle)

$$
\begin{aligned}
\tilde{x}^{i}=x^{i}+n^{i}(t), \quad \tilde{t}=t, \quad \tilde{\varphi}_{a}\left(\tilde{x}^{j}, t\right) & =\varphi_{a}\left(x^{j}, t\right)+h_{\varphi_{a}}^{i}(t) \tilde{x}^{i} \\
\tilde{\delta}\left(\tilde{x}^{j}, t\right) & =\delta\left(x^{j}, t\right), \\
\tilde{v}^{i}\left(\tilde{x}^{j}, t\right) & =v^{i}\left(x^{j}, t\right)+a \dot{n}^{i}(t),
\end{aligned}
$$

Tracers are not conserved in general (no mass and momentum conservation)

LSS bootstrap for tracers

$$
\delta_{t, \mathbf{k}}^{(n)}(\eta) \equiv \frac{1}{n!} \int \frac{d^{3} q_{1}}{(2 \pi)^{3}} \cdots \frac{d^{3} q_{n}}{(2 \pi)^{3}}(2 \pi)^{3} \delta_{D}\left(\mathbf{k}-\sum_{i=1}^{n} \mathbf{q}_{i}\right) K^{(n)}\left(\mathbf{q}_{1}, \cdots, \mathbf{q}_{n} ; \eta\right) \varphi_{\mathbf{q}_{1}}(\eta) \cdots \varphi_{\mathbf{q}_{n}}(\eta)
$$

For tracers

$$
\begin{aligned}
K_{1}\left(\mathbf{q}_{1}\right) & =c_{0}^{(1)}, \\
K_{2}\left(\mathbf{q}_{1}, \mathbf{q}_{2}\right) & =c_{0}^{(2)}+2 c_{0}^{(1)} \beta\left(\mathbf{q}_{1}, \mathbf{q}_{2}\right)+c_{1}^{(2)} \gamma\left(\mathbf{q}_{1}, \mathbf{q}_{2}\right), \\
K_{3}\left(\mathbf{q}_{1}, \mathbf{q}_{2}, \mathbf{q}_{3}\right) & =\frac{1}{3} c_{0}^{(3)}+c_{1}^{(3)} \gamma\left(\mathbf{q}_{1}, \mathbf{q}_{2}\right)+2 c_{0}^{(2)} \beta\left(\mathbf{q}_{1}, \mathbf{q}_{2}\right) \\
& +c_{5}^{(3)} \gamma\left(\mathbf{q}_{1}, \mathbf{q}_{2}\right) \gamma\left(\mathbf{q}_{12}, \mathbf{q}_{3}\right)+2 c_{0}^{(1)} \beta\left(\mathbf{q}_{1}, \mathbf{q}_{2}\right) \beta\left(\mathbf{q}_{12}, \mathbf{q}_{3}\right) \\
& +2\left(h c_{0}^{(1)}-c_{10}^{(3)}\right) \gamma\left(\mathbf{q}_{1}, \mathbf{q}_{2}\right) \beta\left(\mathbf{q}_{12}, \mathbf{q}_{3}\right)+2\left(c_{1}^{(2)}+2 c_{10}^{(3)}-h c_{0}^{(1)}\right) \beta\left(\mathbf{q}_{1}, \mathbf{q}_{2}\right) \gamma\left(\mathbf{q}_{12}, \mathbf{q}_{3}\right) \\
& +c_{10}^{(3)} \gamma\left(\mathbf{q}_{1}, \mathbf{q}_{2}\right) \alpha_{a}\left(\mathbf{q}_{12}, \mathbf{q}_{3}\right)+\text { cyclic },
\end{aligned}
$$

LSS bootstrap for tracers

$$
\delta_{t, \mathbf{k}}^{(n)}(\eta) \equiv \frac{1}{n!} \int \frac{d^{3} q_{1}}{(2 \pi)^{3}} \cdots \frac{d^{3} q_{n}}{(2 \pi)^{3}}(2 \pi)^{3} \delta_{D}\left(\mathbf{k}-\sum_{i=1}^{n} \mathbf{q}_{i}\right) K^{(n)}\left(\mathbf{q}_{1}, \cdots, \mathbf{q}_{n} ; \eta\right) \varphi_{\mathbf{q}_{1}}(\eta) \cdots \varphi_{\mathbf{q}_{n}}(\eta)
$$

For tracers

$$
\begin{aligned}
K_{1}\left(\mathbf{q}_{1}\right) & =c_{0}^{(1)} \\
K_{2}\left(\mathbf{q}_{1}, \mathbf{q}_{2}\right) & =c_{0}^{(2)}+2 c_{0}^{(1)} \beta\left(\mathbf{q}_{1}, \mathbf{q}_{2}\right)+c_{1}^{(2)} \gamma\left(\mathbf{q}_{1}, \mathbf{q}_{2}\right) \\
K_{3}\left(\mathbf{q}_{1}, \mathbf{q}_{2}, \mathbf{q}_{3}\right) & =\frac{1}{3} c_{0}^{(3)}+c_{1}^{(3)} \gamma\left(\mathbf{q}_{1}, \mathbf{q}_{2}\right)+2 c_{0}^{(2)} \beta\left(\mathbf{q}_{1}, \mathbf{q}_{2}\right) \\
& +c_{5}^{(3)} \gamma\left(\mathbf{q}_{1}, \mathbf{q}_{2}\right) \gamma\left(\mathbf{q}_{12}, \mathbf{q}_{3}\right)+2 c_{0}^{(1)} \beta\left(\mathbf{q}_{1}, \mathbf{q}_{2}\right) \beta\left(\mathbf{q}_{12}, \mathbf{q}_{3}\right) \\
& +2\left(h c_{0}^{(1)}-c_{10}^{(3)}\right) \gamma\left(\mathbf{q}_{1}, \mathbf{q}_{2}\right) \beta\left(\mathbf{q}_{12}, \mathbf{q}_{3}\right)+2\left(c_{1}^{(2)}+2 c_{10}^{(3)}-h c_{0}^{(1)}\right) \beta\left(\mathbf{q}_{1}, \mathbf{q}_{2}\right) \gamma\left(\mathbf{q}_{12}, \mathbf{q}_{3}\right) \\
& +c_{10}^{(3)} \gamma\left(\mathbf{q}_{1}, \mathbf{q}_{2}\right) \alpha_{a}\left(\mathbf{q}_{12}, \mathbf{q}_{3}\right)+\text { cyclic }
\end{aligned}
$$

We can compare with other basis, e.g.

$$
\delta_{t}=b_{1} \delta+\frac{b_{2}}{2} \delta^{2}+\frac{b_{3}}{3!} \delta^{3}+b_{\mathcal{G}_{2}} \mathcal{G}_{2}(\Phi)+b_{\mathcal{G}_{3}} \mathcal{G}_{3}(\Phi)+b_{\delta \mathcal{G}_{2}} \delta \mathcal{G}_{2}(\Phi)+b_{\mathcal{G}_{N}} \mathcal{G}_{N}\left(\varphi_{2}, \varphi_{1}\right)
$$

with

$$
\begin{aligned}
& \mathcal{G}_{2}(\Phi) \equiv\left(\nabla_{i j} \Phi\right)^{2}-\left(\nabla^{2} \Phi\right)^{2} \\
& \mathcal{G}_{3}(\Phi) \equiv\left(\nabla^{2} \Phi\right)^{3}+2 \nabla_{i j} \Phi \nabla_{j k} \Phi \nabla_{k i} \Phi-3\left(\nabla_{i j} \Phi\right)^{2} \nabla^{2} \Phi
\end{aligned}
$$

$$
\mathcal{G}_{N}\left(\varphi_{2}, \varphi_{1}\right) \equiv \nabla_{i j} \varphi_{2} \nabla_{i j} \varphi_{1}-\nabla^{2} \varphi_{2} \nabla^{2} \varphi_{1}
$$

$$
\varphi_{1}=-\nabla^{-2} \delta
$$

$$
\varphi_{2}=-\nabla^{-2} \mathcal{G}_{2}(\Phi)
$$

LSS bootstrap for tracers

$$
\delta_{t, \mathbf{k}}^{(n)}(\eta) \equiv \frac{1}{n!} \int \frac{d^{3} q_{1}}{(2 \pi)^{3}} \cdots \frac{d^{3} q_{n}}{(2 \pi)^{3}}(2 \pi)^{3} \delta_{D}\left(\mathbf{k}-\sum_{i=1}^{n} \mathbf{q}_{i}\right) K^{(n)}\left(\mathbf{q}_{1}, \cdots, \mathbf{q}_{n} ; \eta\right) \varphi_{\mathbf{q}_{1}}(\eta) \cdots \varphi_{\mathbf{q}_{n}}(\eta)
$$

For tracers

$$
\begin{aligned}
K_{1}\left(\mathbf{q}_{1}\right) & =c_{0}^{(1)} \\
K_{2}\left(\mathbf{q}_{1}, \mathbf{q}_{2}\right) & =c_{0}^{(2)}+2 c_{0}^{(1)} \beta\left(\mathbf{q}_{1}, \mathbf{q}_{2}\right)+c_{1}^{(2)} \gamma\left(\mathbf{q}_{1}, \mathbf{q}_{2}\right), \\
K_{3}\left(\mathbf{q}_{1}, \mathbf{q}_{2}, \mathbf{q}_{3}\right) & =\frac{1}{3} c_{0}^{(3)}+c_{1}^{(3)} \gamma\left(\mathbf{q}_{1}, \mathbf{q}_{2}\right)+2 c_{0}^{(2)} \beta\left(\mathbf{q}_{1}, \mathbf{q}_{2}\right) \\
& +c_{5}^{(3)} \gamma\left(\mathbf{q}_{1}, \mathbf{q}_{2}\right) \gamma\left(\mathbf{q}_{12}, \mathbf{q}_{3}\right)+2 c_{0}^{(1)} \beta\left(\mathbf{q}_{1}, \mathbf{q}_{2}\right) \beta\left(\mathbf{q}_{12}, \mathbf{q}_{3}\right) \\
& +2\left(h c_{0}^{(1)}-c_{10}^{(3)}\right) \gamma\left(\mathbf{q}_{1}, \mathbf{q}_{2}\right) \beta\left(\mathbf{q}_{12}, \mathbf{q}_{3}\right)+2\left(c_{1}^{(2)}+2 c_{10}^{(3)}-h c_{0}^{(1)}\right) \beta\left(\mathbf{q}_{1}, \mathbf{q}_{2}\right) \gamma\left(\mathbf{q}_{12}, \mathbf{q}_{3}\right) \\
& +c_{10}^{(3)} \gamma\left(\mathbf{q}_{1}, \mathbf{q}_{2}\right) \alpha_{a}\left(\mathbf{q}_{12}, \mathbf{q}_{3}\right)+\text { cyclic },
\end{aligned}
$$

We can compare with other basis, e.g.

$$
\delta_{t}=b_{1} \delta+\frac{b_{2}}{2} \delta^{2}+\frac{b_{3}}{3!} \delta^{3}+b_{\mathcal{G}_{2}} \mathcal{G}_{2}(\Phi)+b_{\mathcal{G}_{3}} \mathcal{G}_{3}(\Phi)+b_{\delta \mathcal{G}_{2}} \delta \mathcal{G}_{2}(\Phi)+b_{\mathcal{G}_{N}} \mathcal{G}_{N}\left(\varphi_{2}, \varphi_{1}\right)
$$

Our basis: $1^{\text {st }}$ order: $c_{0}^{(1)}, \quad 2^{\text {nd }}$ order: $c_{0}^{(2)}, c_{0}^{(2)}, \quad 3^{\text {rd }}$ order: $c_{0}^{(3)}, c_{1}^{(3)}, c_{5}^{(3)}, c_{10}^{(3)}$, Ref. [40]: $\quad 1^{\text {st }}$ order: $b_{1}, \quad 2^{\text {nd }}$ order: $b_{2}, b_{\mathcal{G}_{2}}, \quad 3^{\text {rd }}$ order: $b_{3}, b_{\mathcal{G}_{3}}, b_{\delta \mathcal{G}_{2}}, b_{\mathcal{G}_{N}}$

Global picture

Initial Conditions
Large-Scale Structure
$\zeta(\boldsymbol{x}, 0) \longrightarrow \delta(\boldsymbol{x}, \tau)$ dark matter

$$
\delta_{g}(\boldsymbol{x}, \tau) \xrightarrow{\mathrm{RSD}} \delta_{g}(\theta, z) \text { galaxies }
$$

Redshift-Space Distortions

Galaxies are measured in redshift space but we can relate the density in redshift space and real space by mass conservation

$$
\begin{aligned}
1+\delta_{s}\left(\vec{x}_{s}\right) & =\left[1+\delta\left(\vec{x}\left(\vec{x}_{s}\right)\right)\right]\left|\frac{\partial \vec{x}_{s}}{\partial \vec{x}}\right|_{\vec{x}\left(\vec{x}_{s}\right)}^{-1} \\
\vec{x}_{s} & =\vec{x}+\frac{\vec{v} \cdot \hat{z}}{H_{0}} \hat{z}
\end{aligned}
$$

In GR one-loop power spectrum

$$
\begin{aligned}
P_{g}(k, \mu) & =Z_{1}(\mu)^{2} P_{11}(k) \\
& +2 \int \frac{d^{3} q}{(2 \pi)^{3}} Z_{2}(\boldsymbol{q}, \boldsymbol{k}-\boldsymbol{q}, \mu)^{2} P_{11}(|\boldsymbol{k}-\boldsymbol{q}|) P_{11}(q) \\
& +6 Z_{1}(\mu) P_{11}(k) \int \frac{d^{3} q}{(2 \pi)^{3}} Z_{3}(\boldsymbol{q},-\boldsymbol{q}, \boldsymbol{k}, \mu) P_{11}(q) \\
& +2 Z_{1}(\mu) P_{11}(k)\left(c_{\mathrm{ct}} \frac{k^{2}}{k_{\mathrm{M}}^{2}}+c_{r, 1} \mu^{2} \frac{k^{2}}{k_{\mathrm{M}}^{2}}+c_{r, 2} \mu^{4} \frac{k^{2}}{k_{\mathrm{M}}^{2}}\right) \\
& +\frac{1}{\bar{n}_{g}}\left(c_{\epsilon, 1}+c_{\epsilon, 2} \frac{k^{2}}{k_{\mathrm{M}}^{2}}+c_{\epsilon, 3} f \mu^{2} \frac{k^{2}}{k_{\mathrm{M}}^{2}}\right) .
\end{aligned}
$$

EFT counterterms

Perturbation theory fails on small scales (and new physics appears) $k>k_{\mathrm{NL}}$. Effects can be accounted for by an expansion in k / k_{NL}

Two types of counterterms: speed of sound and stochastic. Up to third order and $\left(\mathrm{k} / \mathrm{kNL}_{\mathrm{N}}\right)^{4}$:

$$
\begin{aligned}
& \delta_{t}^{(1)}(\mathbf{k}, \eta)=\delta_{t}^{(1), \mathrm{PT}}(\mathbf{k}, \eta) \\
& \delta_{t}^{(2)}(\mathbf{k}, \eta)=\delta_{t}^{(2), \mathrm{PT}}(\mathbf{k}, \eta)+\epsilon_{t}^{(2)}(\eta)+\epsilon_{k}^{(2)} \frac{k^{2}}{k_{\mathrm{NL}}^{2}}+O\left(\frac{k^{4}}{k_{\mathrm{NL}}^{4}}\right) \\
& \delta_{t}^{(3)}(\mathbf{k}, \eta)=\delta_{t}^{(3), P T}(\mathbf{k}, \eta)+\left[\tilde{b}_{0, t}(\eta)+\eta_{t}^{(3)}(\eta)+c_{s, t}^{2}(\eta) \frac{k^{2}}{k_{\mathrm{NL}}^{2}}\right] \varphi_{\mathbf{k}}(\eta)+\epsilon_{t}^{(3)}(\eta)+\epsilon_{k}^{(3)} \frac{k^{2}}{k_{\mathrm{NL}}^{2}}+O\left(\frac{k^{4}}{k_{\mathrm{NL}}^{4}}\right)
\end{aligned}
$$

In redshift-space

$$
\begin{aligned}
\delta_{t, s}^{(1)}(\mathbf{k} ; \eta)= & \delta_{t, s}^{(1), \mathrm{PT}}(\mathbf{k}, \eta) \\
\delta_{t, s}^{(2)}(\mathbf{k} ; \eta)= & \delta_{t, s}^{(2), \mathrm{PT}}(\mathbf{k}, \eta)+\epsilon_{t}^{(2)}(\eta)+f \mu_{k}^{2} \frac{k^{2}}{k_{\mathrm{NL}}^{2}} \epsilon_{\theta}^{(2)}(\eta)+\epsilon_{k}^{(2)} \frac{k^{2}}{k_{\mathrm{NL}}^{2}}, \\
\delta_{t, s}^{(3)}(\mathbf{k} ; \eta)= & \delta_{t, s}^{(3), \mathrm{PT}}(\mathbf{k}, \eta)+\left[\tilde{b}_{0, t}+\eta_{t}^{(3)}+c_{s, t}^{2} \frac{k^{2}}{k_{\mathrm{NL}}^{2}}+f \mu_{k}^{2} \frac{k^{2}}{k_{\mathrm{NL}}^{2}}\left(c_{s, \theta}^{2}+\eta_{\theta}^{(3)}\right)\right] \varphi_{\mathbf{k}}(\eta) \\
& +\epsilon_{t}^{(3)}(\eta)+\epsilon_{k}^{(3)} \frac{k^{2}}{k_{\mathrm{NL}}^{2}}+f \mu_{k}^{2} \frac{k^{2}}{k_{\mathrm{NL}}^{2}} \epsilon_{\theta}^{(3)}(\eta) .
\end{aligned}
$$

Conclusions

For GR:

- Galaxy clustering can be modelled by perturbation theory + finite number of effective parameters + bias expansion + redshift-space distorsions

Beyond GR:

- Perturbation theory in the mildly nonlinear regime constructed, in terms of a few MG parameters
- If same symmetries as GR (equivalence principle): same PT kernels, same bias and RSD expansion as GR. We can apply same procedure as in GR
- Future I: Analyse simulations
- If not same symmetries as GR (e.g. EP violations): new structure of the kernels expected. Can be used as signature of GR/symmetries violations.
- Future II: systematic study of these deviations
- Future III: We focused on scale-independent models. Scale-dependent models more complicated to model but procedure can be extended similarly.

