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Global picture

1 Introduction

Over the next decade, large-scale structure (LSS) surveys will play an increasingly important

role in the measurement of cosmological parameters and as a probe of initial conditions. In order

to relate late-time observables to the physics of the early universe, several sources of secondary

non-linearities need to be understood (see fig. 1). Reducing the theory error is essential if the

full potential of future surveys is to be realized.1 Non-linearities in the gravitational evolution

can be characterized by numerical N-body simulations [3] and, on su�ciently large scales, by

perturbation theory [4, 5]. Less well understood are non-linearities in the biasing between the

clustering of galaxies and the underlying dark matter density.
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Figure 1. Non-linearities in the gravitational evolution, in the biasing and in redshift space distor-
tions (RSD) complicate the relationship between the primordial initial conditions and large-scale structure
observables.

The biasing problem is already visible in dark matter-only simulations, where it is reflected

in the biasing of dark matter halos. On large scales, linear biasing has been shown to be a good

approximation:

�h = b1� , (1.1)

where �h and � are the density contrasts of the halos and the dark matter, respectively, and

the bias parameter b1 is an unknown coe�cient (to be fit to data). However, linear biasing is

known to fail on small scales where non-linearities becomes important. One common procedure

for describing halos beyond the linear biasing model is local Eulerian biasing [6] which assumes

that the halo density contrast is a local function of the dark matter density, �h(x, ⌧) = F [�(x, ⌧)].

Formally, we might write this relation as a Taylor expansion

�h(x, ⌧) =
1X

n=0

b
(0)
n

n!
�
n(x, ⌧) . (1.2)

Local biasing is motivated both as a natural generalization of linear biasing and as a consequence

of a number of semi-analytic models of halo formation. It is also often employed in data anal-

ysis [7–12]. However, the meaning of (1.2) is far from clear, as we need to define �
n(x, ⌧) for

1
The number of useful modes in galaxy surveys scales as the cube of the maximum wavenumber, kmax, at which

the theoretical predictions can still be trusted. Even a relatively modest gain in kmax can therefore dramatically

impact the scientific potential of galaxy surveys (but see [1, 2]).
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Standard perturbation theory + EFT of LSS
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Scalar-tensor theories
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Most general Lorentz-invariant scalar-tensor theory with 2nd-order EOM (Horndeski theory).
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Scalar-tensor theories
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Horndeski 73

Deffayet et al. 11

Most general Lorentz-invariant scalar-tensor theory with 2nd-order EOM (Horndeski theory).
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Higher derivatives ⇒ self-acceleration ( = observed acceleration explained by a modification of 
gravity on large scales)

Higher derivatives also relevant on smaller scales (e.g. Screening). Effects on structure 
formation
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Bridge models and observations 

in a minimal and systematic way

Our Limited Eyes

Galaxy Counts Galaxy Shapes/ 
Brightness

Supernovae:
𝑑

13 August 2014 Modern Cosmology 2014, Benasque

Effective approach

EFT of DE
↵1(t), ↵2(t), . . .
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Space of 
theories


Gubitosi, Piazza, FV ’13; Gleyzes, Langlois, Piazza, FV ’14 + many refs and authors
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Theory can be expanded around a FLRW background. 
Deviation from GR can be parametrized in terms of few (4 at linear order) dimensionless 
parameters. 
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FIG. 9. Top figure: The T T , EE, lensing and T E angular powerspectra of the CMB for a reference LCDM and four different choices of the
{wDE, aX} functions along with the relative difference between EFTCAMB and hi class . Bottom figure: The same as in the top figure but
for the matter power spectrum at different redshifts.

For the models we considered we verified that the disagree-
ment between the different codes was never worse than 1%,
but it should be care of the user to verify that the precision pa-
rameters chosen are sufficient in order to obtain the accuracy
desired.

All the models we considered in this paper have the com-
mon property of being insensitive to the initial conditions as-
sumed for the evolution of the perturbation. This is a cru-
cial point when adding new degrees of freedom to the stan-
dard cosmological model. If it is true that probably most of

the models in the literature satisfy this requirement (with the
remarkable exceptions of the so-called “early dark energy”
models), it is also true that if one chooses arbitrary config-
urations for the additional degree of freedom the issue of the
initial conditions may be important. In these cases the agree-
ment between different codes could be much worse, due to
the fact that either during the era dominated by radiation the
scalar field has no attractor or it exists but the initial condi-
tions chosen are outside its basin of attraction. In the first
scenario one could simply discard the model under considera-
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but it should be care of the user to verify that the precision pa-
rameters chosen are sufficient in order to obtain the accuracy
desired.

All the models we considered in this paper have the com-
mon property of being insensitive to the initial conditions as-
sumed for the evolution of the perturbation. This is a cru-
cial point when adding new degrees of freedom to the stan-
dard cosmological model. If it is true that probably most of

the models in the literature satisfy this requirement (with the
remarkable exceptions of the so-called “early dark energy”
models), it is also true that if one chooses arbitrary config-
urations for the additional degree of freedom the issue of the
initial conditions may be important. In these cases the agree-
ment between different codes could be much worse, due to
the fact that either during the era dominated by radiation the
scalar field has no attractor or it exists but the initial condi-
tions chosen are outside its basin of attraction. In the first
scenario one could simply discard the model under considera-
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For the models we considered we verified that the disagree-
ment between the different codes was never worse than 1%,
but it should be care of the user to verify that the precision pa-
rameters chosen are sufficient in order to obtain the accuracy
desired.

All the models we considered in this paper have the com-
mon property of being insensitive to the initial conditions as-
sumed for the evolution of the perturbation. This is a cru-
cial point when adding new degrees of freedom to the stan-
dard cosmological model. If it is true that probably most of

the models in the literature satisfy this requirement (with the
remarkable exceptions of the so-called “early dark energy”
models), it is also true that if one chooses arbitrary config-
urations for the additional degree of freedom the issue of the
initial conditions may be important. In these cases the agree-
ment between different codes could be much worse, due to
the fact that either during the era dominated by radiation the
scalar field has no attractor or it exists but the initial condi-
tions chosen are outside its basin of attraction. In the first
scenario one could simply discard the model under considera-
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FIG. 1. Cosmological parameter constraints for the dark energy cB and cM parameters, using the ai = ci ·a (left triangle plot) and ai = ci ·WDE
(right triangle plot) parametrisations and different combinations of datasets and priors (see section III). All constraints shown assume aT = 0,
but note that constraints in the cM � cB plane, as shown here, are only mildly affected by allowing aT 6= 0 [34]. Contours mark 68% and 95%
confidence intervals, computed using just Planck data (P15), Planck data plus RSD, BAO and matter power spectrum measurements (P15 +
LSS), and P15 + LSS with an additional prior ensuring the absence of GW-induced instabilities (P15 + LSS + GW). In fig. 3 below we show
that P15 + LSS + GW and P15 + GW lead to near identical constraints. Dotted lines mark ci = 0 (the GR value), cB = 2 (a singular line
physical models cannot cross in the ai = cia parametrisation – see [34–36] for details) and cM =�cB (constraint derived from the GW prior).

instability constraints introduces one additional class of in-
teractions not constrained by current GW bounds [12]. We
will leave an exploration of the phenomenology associated
with this additional freedom for future research. Finally note
that, while the conformal G4(f) coupling can of course be ab-
sorbed by a conformal transformation, such a transformation
does then change the coupling to matter (which cosmological
constraints are also sensitive to). While both descriptions are
physically equivalent, we here stay in Jordan frame, which is
typically the more straightforward frame to use when compar-
ing with large scale structure (LSS) data constraints.

III. COSMOLOGICAL PARAMETER CONSTRAINTS

Having reduced the space of Horndeski theories to (8), we
will now compute cosmological data constraints on these the-
ories and in particular on the sole remaining relevant free
function at the level of linear perturbations, aM .5 As discussed
above, we consider such perturbations around an FRW back-
ground. More specifically we will assume this background to
be LCDM-like (motivated by the observed proximity to such

5 For a comparison with cosmological parameter constraints on models with-
out the aT constraint (and employing the same parametrisations as in this
paper), see [17, 34].

a solution) and constrain perturbations around it. The back-
ground equations then read

H2 = rtot, Ḣ = �3
2
(rtot + ptot) , (10)

where rtot and ptot are the total energy density and pressure
in the universe, and we have set 8pG = 1 (and re-scaled all
densities and pressures by a factor of 3, using CLASS con-
ventions). Computing cosmological constraints also requires
choosing a parametrisation for the ai and this will turn out to
be particularly important in the context of the reduced Horn-
deski theories (8) we are focusing on here. While numerous
parametrisations exist – for a discussion of their relative mer-
its see Refs. [16–18, 34, 43–47] – here we will compute con-
straints using the two most commonly used ones [16]:

1) ai = cia, 2) ai = ciWDE. (11)

These parameterise each ai in terms of just one constant
parameter, ci, and ensure that any deviation from GR (i.e.
non-zero ai) smoothly switches off towards higher redshift
and only becomes relevant in the late universe.

Data sets and priors: We now perform a Markov chain
Monte Carlo (MCMC) analysis, computing constraints on the
modified gravity/dark energy parameters cM and cB for (5) vs.
just cM for (8), while marginalising over the standard LCDM
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<latexit sha1_base64="K7ScTKn69ad3pbBw8lVfsIreQsY=">AAACFHicbVDLSsNAFJ3UV62vqEs3g0VwVRLxBW4KbrqsYB/QlDCZTtqhM0mYuRFK6W+48VfciAii4N6/cZpk09YLA4dzznDvOUEiuAbH+bVKa+sbm1vl7crO7t7+gX141NZxqihr0VjEqhsQzQSPWAs4CNZNFCMyEKwTjO/neueJKc3j6BEmCetLMox4yCkBQ/n2lTeIAXvNEcee5hJ7sWRDkhM50/AdXBiEwOMM+nbVqTnZ4FXgFqCKimn69qfZQ1PJIqCCaN1znQT6U6KAU8FmFS/VLCF0TIZsmoWa4TNDDXAYK/MiwBm74CNS64kMjFMSGOllbU7+p/VSCG/7Ux4lKbCI5ovCVGCI8bwhPOCKURATAwhV3FyI6YgoQsH0WDHR3eWgq6B9UXOva5cPl9X6XVFCGZ2gU3SOXHSD6qiBmqiFKHpBb+gLfVvP1qv1bn3k1pJV/DlGC2P9/AFucJum</latexit>

�̇ ⇠ !� ⇠ H0� ⌧ k�

Quasi-Static limit

We can retain only spatial derivatives for non-linear operators 
<latexit sha1_base64="xCauquWdxKkFK2WXJZC/iUUYSPk=">AAAB/nicbVDLSsNAFL2pr1pfUZcuHCyCCymJFBVEKLhxWcE+oClhMp00QycPZiZCCQU3/oobETcKfoK/4N84abNp64G5HM65l7n3eAlnUlnWr1FaWV1b3yhvVra2d3b3zP2DtoxTQWiLxDwWXQ9LyllEW4opTruJoDj0OO14o7vc7zxRIVkcPapxQvshHkbMZwQrLbnmsUMC5mJ0i5wMOU3JznUN8poEDDkT16xaNWsKtEzsglShQNM1f5xBTNKQRopwLGXPthLVz7BQjHA6qTippAkmIzyk2XT9CTrV0gD5sdAvUmiqzvXhUMpx6OnOEKtALnq5+J/XS5V/3c9YlKSKRmT2kZ9ypGKUZ4EGTFCi+FgTTATTGyISYIGJ0olV9On24qHLpH1Rsy9r9Yd6tXFThFCGIziBM7DhChpwD01oAYEXeINP+DKejVfj3fiYtZaMYuYQ5mB8/wFFNZOF</latexit>

�a = { ,�,�}

<latexit sha1_base64="TO4W56pgXQT5/CT3oS0K9Jk/rzQ=">AAAB4nicbVBdSwJBFL1rX2ZfVo+9DEnQk+yGWNCL0EuPBq0KKjI7O6uDs7PLzN1AxD/QS0QvBf2g/kL/plH3Re3AwOGcM9x7bpBKYdB1f53C1vbO7l5xv3RweHR8Uj49a5kk04z7LJGJ7gTUcCkU91Gg5J1UcxoHkreD8cPcb79wbUSinnGS8n5Mh0pEglG0kt+TkniDcsWtuguQTeLlpAI5moPyTy9MWBZzhUxSY7qem2J/SjUKJvms1MsMTykb0yGfLlackSsrhSRKtH0KyUJdydHYmEkc2GRMcWTWvbn4n9fNMLrrT4VKM+SKLQdFmSSYkHlfEgrNGcqJJZRpYTckbEQ1ZWivUrLVvfWim6R1U/Xq1dpTrdK4z49QhAu4hGvw4BYa8AhN8IGBgDf4hC8ndF6dd+djGS04+Z9zWIHz/QcAlone</latexit>

⌧ 1

Focus on the case                      ⇒   Scale-independent growth on MNL scales
<latexit sha1_base64="xKEc/OXW58csPGNqe7SDqD9S+l0=">AAAB8HicbVDLSsNAFL2pr1pfqS7dDBbBVUmkqOCm4KbLCvYBTQmT6aQdOpOEmYlSQv/DjYgbBb/EX/BvnLTZtPXAwOGcM9x7bpBwprTj/Fqlre2d3b3yfuXg8Oj4xK6edlWcSkI7JOax7AdYUc4i2tFMc9pPJMUi4LQXTB9yv/dMpWJx9KRnCR0KPI5YyAjWRvLtqvAzL5mwOfIUE6jlO75dc+rOAmiTuAWpQYG2b/94o5ikgkaacKzUwHUSPcyw1IxwOq94qaIJJlM8ptli4Tm6NNIIhbE0L9Jooa7ksFBqJgKTFFhP1LqXi/95g1SHd8OMRUmqaUSWg8KUIx2jvD0aMUmJ5jNDMJHMbIjIBEtMtLlRxVR314tuku513b2pNx4bteZ9cYQynMMFXIELt9CEFrShAwRe4A0+4cuS1qv1bn0soyWr+HMGK7C+/wAs/o8f</latexit>

m� ⇠ H0

<latexit sha1_base64="uV3pUcDlfWDuwQumdTIibKFXeDE="></latexit>

r2 = A � +B ab
⇥
r2�ar2�b �rirj�arirj�b

⇤
+ C abc

⇥
r2�ar2�br2�c + . . .

⇤

<latexit sha1_base64="vSA98pNjNpc8ErcRHcET02xGOY4="></latexit>

r2� = B�
ab

⇥
r2�ar2�b �rirj�arirj�b

⇤
+ C�

abc

⇥
r2�ar2�br2�c + . . .

⇤

<latexit sha1_base64="RkHqKnqMokfDAqJ1wwAP9m3K67E="></latexit>

r2� = B�
ab

⇥
r2�ar2�b �rirj�arirj�b

⇤
+ C�

abc

⇥
r2�ar2�br2�c + . . .

⇤

<latexit sha1_base64="i1JfASy7jaPTuexjWsCYq9I5tA8=">AAACHnicbVBLS8NAGPzis9ZX1KOXxSIIQklKUcGDBS8eK9gHNG3YbDfN0s0m7G6EUvpfvPhXRBDxoqD/xjTNwbYOLAwzs+zOeDFnSlvWj7Gyura+sVnYKm7v7O7tmweHTRUlktAGiXgk2x5WlDNBG5ppTtuxpDj0OG15w9up33qkUrFIPOhRTLshHgjmM4J1KrnmjSOwx3Gvgpy6Yugc+a7dy+gfI5gZlUUjDphrlqyylQEtEzsnJchRd81Xpx+RJKRCE46V6thWrLtjLDUjnE6KTqJojMkQD+g4qzdBp6nUR34k0yM0ytS5HA6VGoVemgyxDtSiNxX/8zqJ9q+6YybiRFNBZg/5CUc6QtOtUJ9JSjQfpQQTydIfIhJgiYlOFy2m1e3FosukWSnbF+XqfbVUu85HKMAxnMAZ2HAJNbiDOjSAwDO8wSd8GU/Gi/FufMyiK0Z+5wjmYHz/AnmDn10=</latexit>

r2 + f 1 r2�+ f 2 r2�

<latexit sha1_base64="ZMAZ2jZbdJLg9mWd4PLVUxvVXS0=">AAACHnicbVBLS8NAGPzis9ZX1KOXxSIIQklKUcGDBS8eK9gHNG3YbDfN0s0m7G6EUvpfvPhXRBDxoqD/xjTNwbYOLAwzs+zOeDFnSlvWj7Gyura+sVnYKm7v7O7tmweHTRUlktAGiXgk2x5WlDNBG5ppTtuxpDj0OG15w9up33qkUrFIPOhRTLshHgjmM4J1KrnmjSOwx3Gvgpx6wNA58l27l9E/hpoZlUUjDphrlqyylQEtEzsnJchRd81Xpx+RJKRCE46V6thWrLtjLDUjnE6KTqJojMkQD+g4qzdBp6nUR34k0yM0ytS5HA6VGoVemgyxDtSiNxX/8zqJ9q+6YybiRFNBZg/5CUc6QtOtUJ9JSjQfpQQTydIfIhJgiYlOFy2m1e3FosukWSnbF+XqfbVUu85HKMAxnMAZ2HAJNbiDOjSAwDO8wSd8GU/Gi/FufMyiK0Z+5wjmYHz/AlWXn0c=</latexit>

r2�+ f�
1 r2 + f�

2 r2�
<latexit sha1_base64="tfqR0jWV+oQMQvsRc5yqVox0/mU=">AAACHnicbVBLSwMxGPzWZ62vVY9egkUQhLJbigoeLHjxWME+oNsu2TTbDc0+SLJCKf0vXvwrIoh4UdB/Y7pdkLYOBIaZCcmMl3AmlWX9GCura+sbm4Wt4vbO7t6+eXDYlHEqCG2QmMei7WFJOYtoQzHFaTsRFIcepy1veDv1W49USBZHD2qU0G6IBxHzGcFKS65540TY47hXQU4SMHSOfNfuZfTPqMuZUVkyAuaaJatsZUDLxM5JCXLUXfPV6cckDWmkCMdSdmwrUd0xFooRTidFJ5U0wWSIB3Sc1ZugUy31kR8LfSKFMnUuh0MpR6GnkyFWgVz0puJ/XidV/lV3zKIkVTQis4f8lCMVo+lWqM8EJYqPNMFEMP1DRAIsMFF60aKubi8WXSbNStm+KFfvq6XadT5CAY7hBM7AhkuowR3UoQEEnuENPuHLeDJejHfjYxZdMfI7RzAH4/sXwXefhw==</latexit>

r2�+ f�
1 r2 + f�

2 r2�



Perturbation theory in MG

�̇m +r [(1 + �m)~vm] = 0

Standard Perturbation Theory fluid equations:
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<latexit sha1_base64="gjhkKcRtNR4Y+Bj21uUtyvm9vt0="></latexit><latexit sha1_base64="gjhkKcRtNR4Y+Bj21uUtyvm9vt0="></latexit><latexit sha1_base64="gjhkKcRtNR4Y+Bj21uUtyvm9vt0="></latexit><latexit sha1_base64="gjhkKcRtNR4Y+Bj21uUtyvm9vt0="></latexit>

0
<latexit sha1_base64="Yb3UlTbf88QiYeikE2HKhFxisPc=">AAAB3nicbVBNS0JBFL3Pvsy+rJZthiRoJe9FYNBGaNNSIT9AxeaN9+ngvA9m7gtE3LaJaFPQT+ov9G8a9W3UDgwczjnDvef6iZKGXPfXyW1t7+zu5fcLB4dHxyfF07OmiVMtsCFiFeu2zw0qGWGDJClsJxp56Cts+eOHud96QW1kHD3RJMFeyIeRDKTgZKW62y+W3LK7ANskXkZKkKHWL/50B7FIQ4xIKG5Mx3MT6k25JikUzgrd1GDCxZgPcbpYb8aurDRgQazti4gt1JUcD42ZhL5NhpxGZt2bi/95nZSCu95URklKGInloCBVjGI278oGUqMgNbGECy3thkyMuOaC7EUKtrq3XnSTNG/Knlv26rel6n12hDxcwCVcgwcVqMIj1KABAhDe4BO+nGfn1Xl3PpbRnJP9OYcVON9/btmIWA==</latexit><latexit sha1_base64="Yb3UlTbf88QiYeikE2HKhFxisPc=">AAAB3nicbVBNS0JBFL3Pvsy+rJZthiRoJe9FYNBGaNNSIT9AxeaN9+ngvA9m7gtE3LaJaFPQT+ov9G8a9W3UDgwczjnDvef6iZKGXPfXyW1t7+zu5fcLB4dHxyfF07OmiVMtsCFiFeu2zw0qGWGDJClsJxp56Cts+eOHud96QW1kHD3RJMFeyIeRDKTgZKW62y+W3LK7ANskXkZKkKHWL/50B7FIQ4xIKG5Mx3MT6k25JikUzgrd1GDCxZgPcbpYb8aurDRgQazti4gt1JUcD42ZhL5NhpxGZt2bi/95nZSCu95URklKGInloCBVjGI278oGUqMgNbGECy3thkyMuOaC7EUKtrq3XnSTNG/Knlv26rel6n12hDxcwCVcgwcVqMIj1KABAhDe4BO+nGfn1Xl3PpbRnJP9OYcVON9/btmIWA==</latexit><latexit sha1_base64="Yb3UlTbf88QiYeikE2HKhFxisPc=">AAAB3nicbVBNS0JBFL3Pvsy+rJZthiRoJe9FYNBGaNNSIT9AxeaN9+ngvA9m7gtE3LaJaFPQT+ov9G8a9W3UDgwczjnDvef6iZKGXPfXyW1t7+zu5fcLB4dHxyfF07OmiVMtsCFiFeu2zw0qGWGDJClsJxp56Cts+eOHud96QW1kHD3RJMFeyIeRDKTgZKW62y+W3LK7ANskXkZKkKHWL/50B7FIQ4xIKG5Mx3MT6k25JikUzgrd1GDCxZgPcbpYb8aurDRgQazti4gt1JUcD42ZhL5NhpxGZt2bi/95nZSCu95URklKGInloCBVjGI278oGUqMgNbGECy3thkyMuOaC7EUKtrq3XnSTNG/Knlv26rel6n12hDxcwCVcgwcVqMIj1KABAhDe4BO+nGfn1Xl3PpbRnJP9OYcVON9/btmIWA==</latexit><latexit sha1_base64="Yb3UlTbf88QiYeikE2HKhFxisPc=">AAAB3nicbVBNS0JBFL3Pvsy+rJZthiRoJe9FYNBGaNNSIT9AxeaN9+ngvA9m7gtE3LaJaFPQT+ov9G8a9W3UDgwczjnDvef6iZKGXPfXyW1t7+zu5fcLB4dHxyfF07OmiVMtsCFiFeu2zw0qGWGDJClsJxp56Cts+eOHud96QW1kHD3RJMFeyIeRDKTgZKW62y+W3LK7ANskXkZKkKHWL/50B7FIQ4xIKG5Mx3MT6k25JikUzgrd1GDCxZgPcbpYb8aurDRgQazti4gt1JUcD42ZhL5NhpxGZt2bi/95nZSCu95URklKGInloCBVjGI278oGUqMgNbGECy3thkyMuOaC7EUKtrq3XnSTNG/Knlv26rel6n12hDxcwCVcgwcVqMIj1KABAhDe4BO+nGfn1Xl3PpbRnJP9OYcVON9/btmIWA==</latexit>

We can retain only spatial derivatives for non-linear operators 
<latexit sha1_base64="xCauquWdxKkFK2WXJZC/iUUYSPk=">AAAB/nicbVDLSsNAFL2pr1pfUZcuHCyCCymJFBVEKLhxWcE+oClhMp00QycPZiZCCQU3/oobETcKfoK/4N84abNp64G5HM65l7n3eAlnUlnWr1FaWV1b3yhvVra2d3b3zP2DtoxTQWiLxDwWXQ9LyllEW4opTruJoDj0OO14o7vc7zxRIVkcPapxQvshHkbMZwQrLbnmsUMC5mJ0i5wMOU3JznUN8poEDDkT16xaNWsKtEzsglShQNM1f5xBTNKQRopwLGXPthLVz7BQjHA6qTippAkmIzyk2XT9CTrV0gD5sdAvUmiqzvXhUMpx6OnOEKtALnq5+J/XS5V/3c9YlKSKRmT2kZ9ypGKUZ4EGTFCi+FgTTATTGyISYIGJ0olV9On24qHLpH1Rsy9r9Yd6tXFThFCGIziBM7DhChpwD01oAYEXeINP+DKejVfj3fiYtZaMYuYQ5mB8/wFFNZOF</latexit>

�a = { ,�,�}

<latexit sha1_base64="uV3pUcDlfWDuwQumdTIibKFXeDE="></latexit>

r2 = A � +B ab
⇥
r2�ar2�b �rirj�arirj�b

⇤
+ C abc

⇥
r2�ar2�br2�c + . . .

⇤

<latexit sha1_base64="vSA98pNjNpc8ErcRHcET02xGOY4="></latexit>

r2� = B�
ab

⇥
r2�ar2�b �rirj�arirj�b

⇤
+ C�

abc

⇥
r2�ar2�br2�c + . . .

⇤

<latexit sha1_base64="RkHqKnqMokfDAqJ1wwAP9m3K67E="></latexit>

r2� = B�
ab

⇥
r2�ar2�b �rirj�arirj�b

⇤
+ C�

abc

⇥
r2�ar2�br2�c + . . .

⇤

<latexit sha1_base64="i1JfASy7jaPTuexjWsCYq9I5tA8=">AAACHnicbVBLS8NAGPzis9ZX1KOXxSIIQklKUcGDBS8eK9gHNG3YbDfN0s0m7G6EUvpfvPhXRBDxoqD/xjTNwbYOLAwzs+zOeDFnSlvWj7Gyura+sVnYKm7v7O7tmweHTRUlktAGiXgk2x5WlDNBG5ppTtuxpDj0OG15w9up33qkUrFIPOhRTLshHgjmM4J1KrnmjSOwx3Gvgpy6Yugc+a7dy+gfI5gZlUUjDphrlqyylQEtEzsnJchRd81Xpx+RJKRCE46V6thWrLtjLDUjnE6KTqJojMkQD+g4qzdBp6nUR34k0yM0ytS5HA6VGoVemgyxDtSiNxX/8zqJ9q+6YybiRFNBZg/5CUc6QtOtUJ9JSjQfpQQTydIfIhJgiYlOFy2m1e3FosukWSnbF+XqfbVUu85HKMAxnMAZ2HAJNbiDOjSAwDO8wSd8GU/Gi/FufMyiK0Z+5wjmYHz/AnmDn10=</latexit>

r2 + f 1 r2�+ f 2 r2�

<latexit sha1_base64="ZMAZ2jZbdJLg9mWd4PLVUxvVXS0=">AAACHnicbVBLS8NAGPzis9ZX1KOXxSIIQklKUcGDBS8eK9gHNG3YbDfN0s0m7G6EUvpfvPhXRBDxoqD/xjTNwbYOLAwzs+zOeDFnSlvWj7Gyura+sVnYKm7v7O7tmweHTRUlktAGiXgk2x5WlDNBG5ppTtuxpDj0OG15w9up33qkUrFIPOhRTLshHgjmM4J1KrnmjSOwx3Gvgpx6wNA58l27l9E/hpoZlUUjDphrlqyylQEtEzsnJchRd81Xpx+RJKRCE46V6thWrLtjLDUjnE6KTqJojMkQD+g4qzdBp6nUR34k0yM0ytS5HA6VGoVemgyxDtSiNxX/8zqJ9q+6YybiRFNBZg/5CUc6QtOtUJ9JSjQfpQQTydIfIhJgiYlOFy2m1e3FosukWSnbF+XqfbVUu85HKMAxnMAZ2HAJNbiDOjSAwDO8wSd8GU/Gi/FufMyiK0Z+5wjmYHz/AlWXn0c=</latexit>

r2�+ f�
1 r2 + f�

2 r2�
<latexit sha1_base64="tfqR0jWV+oQMQvsRc5yqVox0/mU=">AAACHnicbVBLSwMxGPzWZ62vVY9egkUQhLJbigoeLHjxWME+oNsu2TTbDc0+SLJCKf0vXvwrIoh4UdB/Y7pdkLYOBIaZCcmMl3AmlWX9GCura+sbm4Wt4vbO7t6+eXDYlHEqCG2QmMei7WFJOYtoQzHFaTsRFIcepy1veDv1W49USBZHD2qU0G6IBxHzGcFKS65540TY47hXQU4SMHSOfNfuZfTPqMuZUVkyAuaaJatsZUDLxM5JCXLUXfPV6cckDWmkCMdSdmwrUd0xFooRTidFJ5U0wWSIB3Sc1ZugUy31kR8LfSKFMnUuh0MpR6GnkyFWgVz0puJ/XidV/lV3zKIkVTQis4f8lCMVo+lWqM8EJYqPNMFEMP1DRAIsMFF60aKubi8WXSbNStm+KFfvq6XadT5CAY7hBM7AhkuowR3UoQEEnuENPuHLeDJejHfjYxZdMfI7RzAH4/sXwXefhw==</latexit>

r2�+ f�
1 r2 + f�

2 r2�
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<latexit sha1_base64="gjhkKcRtNR4Y+Bj21uUtyvm9vt0=">AAACSHicbVBdSxtBFJ2NVmOsNrWPvlwMQqEYdqXQghQCvvgYwajgxuXuZNZMnP1g5m4gLPv/xBef/Re+lNIX29m4CIkeGOZwzr0z954wU9KQ6z46jZXVD2vrzY3W5set7U/tzzvnJs01FwOeqlRfhmiEkokYkCQlLjMtMA6VuAhvjyv/Yiq0kWlyRrNMDGO8SWQkOZKVgrb0RynBNIivJXyDk1dW3RPwEwwVBpNXuRYk+P2xhF8AB+BHGnnhlQWCr8dpEJfgZ6hJorKNPmF+XUxkCUG743bdOeAt8WrSYTX6QfvOzsbzWCTEFRpz5bkZDYvqaa5E2fJzIzLkt3gjinkQJexbaQRRqu1JCObqQh3Gxszi0FbGSGOz7FXie95VTtHPYSGTLCeR8JePolwBpVClCiOpBSc1swS5lnZC4GO0wZDNvmVX95YXfUvOD7ue2/VOv3d6R3UITbbL9thX5rEfrMdOWJ8NGGcP7Dd7Zv+ce+fJ+eP8fSltOHXPF7aARuM/5vyvUw==</latexit><latexit sha1_base64="gjhkKcRtNR4Y+Bj21uUtyvm9vt0="></latexit><latexit sha1_base64="gjhkKcRtNR4Y+Bj21uUtyvm9vt0="></latexit><latexit sha1_base64="gjhkKcRtNR4Y+Bj21uUtyvm9vt0="></latexit>

0
<latexit sha1_base64="Yb3UlTbf88QiYeikE2HKhFxisPc=">AAAB3nicbVBNS0JBFL3Pvsy+rJZthiRoJe9FYNBGaNNSIT9AxeaN9+ngvA9m7gtE3LaJaFPQT+ov9G8a9W3UDgwczjnDvef6iZKGXPfXyW1t7+zu5fcLB4dHxyfF07OmiVMtsCFiFeu2zw0qGWGDJClsJxp56Cts+eOHud96QW1kHD3RJMFeyIeRDKTgZKW62y+W3LK7ANskXkZKkKHWL/50B7FIQ4xIKG5Mx3MT6k25JikUzgrd1GDCxZgPcbpYb8aurDRgQazti4gt1JUcD42ZhL5NhpxGZt2bi/95nZSCu95URklKGInloCBVjGI278oGUqMgNbGECy3thkyMuOaC7EUKtrq3XnSTNG/Knlv26rel6n12hDxcwCVcgwcVqMIj1KABAhDe4BO+nGfn1Xl3PpbRnJP9OYcVON9/btmIWA==</latexit><latexit sha1_base64="Yb3UlTbf88QiYeikE2HKhFxisPc=">AAAB3nicbVBNS0JBFL3Pvsy+rJZthiRoJe9FYNBGaNNSIT9AxeaN9+ngvA9m7gtE3LaJaFPQT+ov9G8a9W3UDgwczjnDvef6iZKGXPfXyW1t7+zu5fcLB4dHxyfF07OmiVMtsCFiFeu2zw0qGWGDJClsJxp56Cts+eOHud96QW1kHD3RJMFeyIeRDKTgZKW62y+W3LK7ANskXkZKkKHWL/50B7FIQ4xIKG5Mx3MT6k25JikUzgrd1GDCxZgPcbpYb8aurDRgQazti4gt1JUcD42ZhL5NhpxGZt2bi/95nZSCu95URklKGInloCBVjGI278oGUqMgNbGECy3thkyMuOaC7EUKtrq3XnSTNG/Knlv26rel6n12hDxcwCVcgwcVqMIj1KABAhDe4BO+nGfn1Xl3PpbRnJP9OYcVON9/btmIWA==</latexit><latexit sha1_base64="Yb3UlTbf88QiYeikE2HKhFxisPc=">AAAB3nicbVBNS0JBFL3Pvsy+rJZthiRoJe9FYNBGaNNSIT9AxeaN9+ngvA9m7gtE3LaJaFPQT+ov9G8a9W3UDgwczjnDvef6iZKGXPfXyW1t7+zu5fcLB4dHxyfF07OmiVMtsCFiFeu2zw0qGWGDJClsJxp56Cts+eOHud96QW1kHD3RJMFeyIeRDKTgZKW62y+W3LK7ANskXkZKkKHWL/50B7FIQ4xIKG5Mx3MT6k25JikUzgrd1GDCxZgPcbpYb8aurDRgQazti4gt1JUcD42ZhL5NhpxGZt2bi/95nZSCu95URklKGInloCBVjGI278oGUqMgNbGECy3thkyMuOaC7EUKtrq3XnSTNG/Knlv26rel6n12hDxcwCVcgwcVqMIj1KABAhDe4BO+nGfn1Xl3PpbRnJP9OYcVON9/btmIWA==</latexit><latexit sha1_base64="Yb3UlTbf88QiYeikE2HKhFxisPc=">AAAB3nicbVBNS0JBFL3Pvsy+rJZthiRoJe9FYNBGaNNSIT9AxeaN9+ngvA9m7gtE3LaJaFPQT+ov9G8a9W3UDgwczjnDvef6iZKGXPfXyW1t7+zu5fcLB4dHxyfF07OmiVMtsCFiFeu2zw0qGWGDJClsJxp56Cts+eOHud96QW1kHD3RJMFeyIeRDKTgZKW62y+W3LK7ANskXkZKkKHWL/50B7FIQ4xIKG5Mx3MT6k25JikUzgrd1GDCxZgPcbpYb8aurDRgQazti4gt1JUcD42ZhL5NhpxGZt2bi/95nZSCu95URklKGInloCBVjGI278oGUqMgNbGECy3thkyMuOaC7EUKtrq3XnSTNG/Knlv26rel6n12hDxcwCVcgwcVqMIj1KABAhDe4BO+nGfn1Xl3PpbRnJP9OYcVON9/btmIWA==</latexit>
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(3.27) to obtain the fluid-like equations. From the smoothing of eqs. (3.27) and (3.29), the final
form of the fluid-like equations for the long-wavelength fields is
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where here we have dropped the subscript ` to remove clutter.
Note that the situation that we discuss here is di↵erent from the case of clustering quintessence

for small sound speed [22–24], where the dark energy behaves as a second dynamical fluid. More
generally, multiple fluids (see e.g. [32, 24, 33]), can exchange momentum between themselves
through their interactions with gravity. As a consequence, counterterms could enter the Euler
equation through an e↵ective force term �

i
s(~x, a) that is not a total derivative [32]. The quasi-static

assumption made in this article ensures that the dark energy field satisfies constraint equations
that can be used to re-express the scalar field fluctuations in terms of matter fluctuations and that
there is no separate independent dark energy fluid.

Coming back to eq. (3.31), to get the expression for @2�`, the equivalent of the Poisson equation
(3.18) in the case of pure dark matter, we must perturbatively solve the system of constraint
equations (2.13) which arises from varying the gravitational and matter actions; see [1] for details.
While the field � is already an e↵ective long-wavelength field, the metric potentials � and  are the
full fields, and so these equations must be smoothed to be written in terms of the long-wavelength
fields. However, one can check that the constraint equations (2.13) are linear in � and  , and thus
the smoothing can be done without adding additional counterterms. Dropping the subscript ` to
reduce clutter, to order �3 one finds [1]

@
2� = H

2
a
2

⇢
3⌦m

2
µ� � +

✓
3⌦m

2

◆
2

µ�,2

h
�
2 �

�
@
�2

@i@j�
�2i

(3.32)

+

✓
3⌦m

2

◆
3

µ�,22
⇥
� �

�
@
�2

@i@j�
�
@
�2

@i@j
⇤ h

�
2 �

�
@
�2

@k@l�
�2i

+

✓
3⌦m

2

◆
3

µ�,3

h
�
3 � 3�

�
@
�2

@i@j�
�2

+ 2(@�2
@i@j�)(@

�2
@k@j�)(@

�2
@i@k�)

i�
+O(�4) ,

where

⌦m ⌘ ⇢̄m

3M2H2
. (3.33)

The functions µ�(a), µ�,2(a), µ�,22(a), and µ�,3(a) are related to the coe�cients of the action
eq. (2.3) [1]. Their expressions are explicitely given in App. A but from the viewpoint of the LSS
equations, they are simply free functions of time. We stress that this solution is only valid on
scales above the nonlinear scale where � ⇠ 1 and above the Vainshtein scale where scalar field
fluctuations enter the nonlinear regime, as shown in our companion article [1].

As the last piece to the puzzle, we will give the explicit expansion, in terms of the long-
wavelength fields, of the e↵ective stress tensor appearing in eq. (3.31) in Sec. 4 when we discuss
the perturbative solution.

4 Calculation of the one-loop power spectrum

In this section, we solve eq. (3.30) - eq. (3.32) for the one-loop power spectrum of dark matter
density fluctuations in the presence of the dark-energy operators presented above. For the one-
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Counterterms enter similarly to the GR case



Global picture

1 Introduction

Over the next decade, large-scale structure (LSS) surveys will play an increasingly important

role in the measurement of cosmological parameters and as a probe of initial conditions. In order

to relate late-time observables to the physics of the early universe, several sources of secondary

non-linearities need to be understood (see fig. 1). Reducing the theory error is essential if the

full potential of future surveys is to be realized.1 Non-linearities in the gravitational evolution

can be characterized by numerical N-body simulations [3] and, on su�ciently large scales, by

perturbation theory [4, 5]. Less well understood are non-linearities in the biasing between the

clustering of galaxies and the underlying dark matter density.
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SPT, EFT-of-LSS
N-body simulations
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Figure 1. Non-linearities in the gravitational evolution, in the biasing and in redshift space distor-
tions (RSD) complicate the relationship between the primordial initial conditions and large-scale structure
observables.

The biasing problem is already visible in dark matter-only simulations, where it is reflected

in the biasing of dark matter halos. On large scales, linear biasing has been shown to be a good

approximation:

�h = b1� , (1.1)

where �h and � are the density contrasts of the halos and the dark matter, respectively, and

the bias parameter b1 is an unknown coe�cient (to be fit to data). However, linear biasing is

known to fail on small scales where non-linearities becomes important. One common procedure

for describing halos beyond the linear biasing model is local Eulerian biasing [6] which assumes

that the halo density contrast is a local function of the dark matter density, �h(x, ⌧) = F [�(x, ⌧)].

Formally, we might write this relation as a Taylor expansion

�h(x, ⌧) =
1X

n=0

b
(0)
n

n!
�
n(x, ⌧) . (1.2)

Local biasing is motivated both as a natural generalization of linear biasing and as a consequence

of a number of semi-analytic models of halo formation. It is also often employed in data anal-

ysis [7–12]. However, the meaning of (1.2) is far from clear, as we need to define �
n(x, ⌧) for

1
The number of useful modes in galaxy surveys scales as the cube of the maximum wavenumber, kmax, at which

the theoretical predictions can still be trusted. Even a relatively modest gain in kmax can therefore dramatically

impact the scientific potential of galaxy surveys (but see [1, 2]).
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Galaxy biasing
Long-wavelength fluctuations of galaxies are described as biased tracers of the long-wavelength 
fluctuations of DM + DM counterterms. 
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IV. THEORETICAL TEMPLATE

In this section we describe the implementation of the
theoretical model by the two teams participating in the
cosmological analysis challenge. The employed method-
ologies are almost identical to the ones used in the anal-
ysis of the actual BOSS data by the same teams [28–30].

Both teams participating in the PT challenge use, es-
sentially, the same theoretical template. However, there
are di↵erences in the implementation of IR resummation,
the choice of nuisance parameters and their priors. Be-
sides, the two teams use absolutely independent pipelines
based on di↵erent software. This section describes in de-
tail the pipelines used by the two teams and focuses on
methodological di↵erences.

A. Common basis for the EFT formulation

On general grounds, it is believed that any physical
system has a unique and correct description at long wave-
lengths where the microscopical details of the physical
system under consideration can be encoded in just a few
coe�cients of the terms in the equations of motion. In
the context of the long-distance universe, this description
is believed to be the E↵ective Field Theory of Large-
Scale Structure (EFTofLSS) [63, 64]. The originality of
the EFTofLSS with respect to other pre-existing pertur-
bative methods that were applied in the context of LSS
is two-fold. First is the presence of suitable terms in
the equations of motion that encode the e↵ect of short-
distance non-linearities and galaxies at long distances,
and that cannot be predicted without detailed knowl-
edge of galaxy physics, and therefore are generically fit
to observations. Second, the equations of motion in the
EFTofLSS have non-linear terms that are proportional
to some parameters. Due to the many phenomena that
control the evolution of our universe, there are several of
these parameters, such as the size of the density pertur-
bation or the ratio of a given wavelength with respect to
the size of the displacements induced by short distance
modes [18]. For all of these parameters but one, an iter-
ative solution is performed. Instead for one parameter,
the one encoding the e↵ect of long wavelength displace-
ments, a non-linear solution is performed, which goes
under the name of IR-Resummation [18, 65–68]. Di↵er-
ent incarnations of the EFTofLSS make this expansion
more or less manifest. For example, the Lagrangian-
space EFTofLSS [69] automatically solves non-linearly in
the e↵ect of long-displacements, and so, it is identical to
the Eulerian EFTofLSS that we use here after this has
been IR-Resummed [18].

In the EFTofLSS, the description of the clustering of
galaxies in redshift space is performed in the following
way. First, the dark matter and baryonic fields are de-
scribed in terms of fluids with a non-trivial stress tensor.
Galaxies are biased tracers, in the sense that, if �g is the

galaxy overdensity, we have that [19]

�g(x, t) =
X

n

Z
dt

0
Kn(t, t

0) Õn(xfl, t
0) (12)

=
X

n,m

bn,m(t)On,m(x, t)

where Õn are all possible fields, such as, for example,
the dark matter density, that, by general relativity, can
a↵ect the formation of galaxies. Kn(t, t0) are some ker-
nels that relate how a field at a certain time a↵ects the
galaxies at later times, and xfl is the location at time t

0

of the fluid element that is at x at time t. The last step
of the above equation can be performed using the per-
turbative expression for the matter and baryonic fields.
In fact, in perturbation theory the time- and space-
dependence parts factorize in a form, schematically, given
by �(~k, t) ⇠

P
n fn(t)�

(n)(~k), where �(n) is order n in the
expansion parameters. This allows us to define the bi-
ases b as bn,m(t) ⇠

R
dt

0
Kn(t, t0)fm(t0). This provides

the first complete parametrization of the bias expansion,
though many earlier attempts were made and substantial
but partial successes were obtained.
Next, we need to describe the observed density

field in redshift space. This is a combination of
the density field in configuration space and density
times powers of the velocity field of galaxies, such
as ⇢(~x, t)v(~x, t)i, ⇢(~x, t)vi(~x, t)vi(~x, t), . . .. Again, these
short-distance-dependent terms are described as above
as biased tracers of the density and baryonic fields [20].
Because of what we just discussed, the range over

which di↵erent implementations of the EFTofLSS can
di↵er is extremely limited: they may choose a di↵erent
basis for the EFT-parameters, they may add an incom-
plete, and therefore di↵erent, set of higher-order contert-
erms to partially include the e↵ect of some higher order
calculation that was not performed, or they may have
di↵erent implementations or approximations for the IR-
Resummation. We are going to list them in detail next.

B. Group dependent implementation

Although both teams use the same theoretical model,
there are several important methodological di↵erences.
Moreover, the two groups have made very di↵erent
choices in the model implementation and numerical al-
gorithms. This section describes in detail the pipelines
used by the two teams.

1. East Coast Team

The East Coast Team used only the monopole and the
quadrupole in the analysis. The East Coast Team ana-
lyzed the challenge data with and without the hexade-
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Figure 6: Sketch of the spacetime region involved in the formation of tracers such as halos or galaxies. Time is running
vertically. The solid line denotes the fluid trajectory xfl(⌧ 0) from a Lagrangian position q = xfl(⌧ = 0) to a Eulerian position
x = xfl(⌧) at time ⌧ . The shaded region with a comoving spatial extent of order R⇤ denotes the region from which the matter
within the galaxy and its host halo originates, or the region of influence feedback processes—whichever is larger.

complicated dynamics of the formation of galaxies (Sec. 2.10).
When considering galaxy formation as e↵ectively local, the only quantities that are relevant for the

formation of galaxies are then the density and the tidal field @i@j�(xfl(⌧ 0), ⌧ 0) along the trajectory of a
Lagrangian patch enclosing the galaxy ([88, 131]; Ref. [125] only considered the matter density along the
fluid trajectory). One way to prove this statement is to invoke the equivalence principle, which states that
in a free-falling frame, such as that comoving with the trajectory xfl(⌧), the leading locally observable
gravitational e↵ect is given by second derivatives of the metric tensor. Moreover, essentially all tracers
of the LSS are non-relativistic. Then, the only relevant component of the metric tensor is the time-time-
component. On sub-horizon scales, this is in turn equivalent to the tensor @i@j�, where � is the gravitational
potential defined in Eq. (1.2). This tensor can further be decomposed into the trace r2� which is directly
related to the density perturbation � through the Poisson equation; and the trace-free part Kij [Eq. (2.22)],
which quantifies the tidal field proper. An alternative, more rigorous derivation of the same result is given
by the Conformal Fermi Coordinate (CFC) approach [145, 146], which clarifies the meaning of the density
perturbation and Kij in the relativistic context. We will return to this in Sec. 2.9.

This reasoning provides the physical justification for our definition of local bias (Sec. 1.3) as encompassing
all terms in the general bias expansion that are constructed (without any further spatial derivatives) out
of the density and tidal field along the fluid trajectory: these are precisely the leading local gravitational
observables for a comoving observer. In conformal-Newtonian gauge, these terms are characterized by
exactly two spatial derivatives acting on each power of the potential �. Note that we do not need to assume
a conserved, passively evolving galaxy sample here. Any gravitational interactions such as mergers [147]
do not, on su�ciently large scales, depend on any property apart from the local density and tidal field. A
galaxy sample that preferentially resides in halos formed from recent major mergers might have a larger
nonlocality scale R⇤ than that of typical halos of the same mass. Nevertheless, it will be a finite scale, and
presumably still of order the Lagrangian radius of these halos as argued above.

In our reasoning we did however implicitly assume that the small-scale initial conditions, i.e. those of
much smaller scale than the large-scale correlations we are interested in, are statistically uncorrelated over
large scales. This is the case for Gaussian initial conditions, which we assume in this section.

Now, let us formalize our reasoning. The dependence on �(xfl(⌧ 0), ⌧ 0) and Kij(xfl(⌧ 0), ⌧ 0) can be written
as multiple time integrals over the fluid trajectory. For example, in the simplest case, for a given operator
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for biased tracers, the condition from mass and momentum conservation given by eq. (2.41) should
be lifted, while keeping the ones from EGI and the Equivalence Principle.

The explicit calculations of the kernels in this case can be also found in App. C. Up to third
order, mass and momentum conservation give four independent constraints. So, compared to the
matter case, which is described by three independent coe�cients (one for n = 2 and two for n = 3),
the kernels for general tracers have a total of 7 independent coe�cients, which can be chosen to
be n

c(1)0 , c(2)0 , c(2)1 , c(3)0 , c(3)1 , c(3)5 , c(3)10

o
. (4.1)

The kernels are given by,

K1(q1) = c(1)0 , (4.2)

K2(q1,q2) = c(2)0 + 2 c(1)0 �(q1,q2) + c(2)1 �(q1,q2) , (4.3)

K3(q1,q2,q3) =
1

3
c(3)0 + c(3)1 �(q1,q2) + 2c(2)0 �(q1,q2)

+ c(3)5 �(q1,q2)�(q12,q3) + 2 c(1)0 �(q1,q2)�(q12,q3)

+ 2(h c(1)0 � c(3)10 )�(q1,q2)�(q12,q3) + 2(c(2)1 + 2 c(3)10 � h c(1)0 )�(q1,q2)�(q12,q3)

+ c(3)10 �(q1,q2)↵a(q12,q3) + cyclic , (4.4)

where the coe�cient h has been defined in eq. (3.15). Notice that it enters the matter kernels and
depends only on the underlying cosmology and not on the type of tracer. For instance, in the EdS
case, it is given by (see eq. (3.24))

hEdS(⌘) =
3

7
. (4.5)

The fact that it appears explicitly in the tracer kernels opens the possibility, at least in principle,
to extract cosmological information in a model independent way.

4.2 Relation with other bias expansions

Here we compare the present approach to other bias expansions (see [64, 22] for a review on bias).
For instance, we can compare our general kernel expansion up to third order in Eqs. (4.2), (4.3)
and (4.4), with the bias expansion given in [40]. Up to third order in PT, the density contrast for
a given biased tracer in configuration space is expressed as the sum of 7 independent operators,

�t = b1 � +
b2
2
�2 +

b3
3!

�3 + bG2 G2(�) + bG3 G3(�) + b�G2 � G2(�) + bGN GN ('2,'1) , (4.6)

where we have omitted the time dependence and we have defined the two Galilean-invariant com-
binations

G2(�) ⌘ (rij�)
2 �

�
r2�

�2
,

G3(�) ⌘
�
r2�

�3
+ 2rij�rjk�rki�� 3 (rij�)

2r2� ,
(4.7)

where � is the Poisson potential normalized in such a way thatr2� = �, and the Galilean-invariant
“non-local” combination

GN ('2,'1) ⌘ rij'2rij'1 �r2'2r2'1 , (4.8)
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1 Constraints on PT kernels for general tracers

Let us use the logarithm of the scale factor as time,

⌘ ⌘ log

✓
a

a0

◆
, (1.1)

and introduce the linear growth factor D(⌘) and the linear growth rate

f(⌘) ⌘ d logD(⌘)

d⌘
. (1.2)

We denote by D+(⌘) and D�(⌘) the growth factor in the growing and decaying mode, respectively.
For the growth rate, an analogous definition of f+ and f� follows from eq. (1.2).

We compress the notation and introduce the linear doublet ��

k(⌘) (� = 1, 2) that includes the
density contrast and the velocity divergence,

�
1(x, ⌘) ⌘ �

(1)(x, ⌘) , �
2(x, ⌘) ⌘ �r · v(1)(x, ⌘)

f+(⌘)H(⌘)
. (1.3)

After decomposing the doublet in Fourier space,

�
�(x, ⌘) =

Z
d
3
k

(2⇡)3
e
�ik·x

�
�

k(⌘) , (1.4)

for each mode k the linear solution reads

�
�

k(⌘) = u
�

f
(⌘)'k(⌘) , u

�

f
(⌘) ⌘

 
1

f(⌘)
f+(⌘)

!
, (1.5)

where 'k(⌘) is related to the initial field 'k(0) by the linear growth, 'k(⌘) = D(⌘)'k(0), with
D(0) = 1. For simplicity, and because this is what happens in most cosmological situations,
in the following we will assume that the external fields are in the growing mode, in which case
u
�

f+
(⌘) ⌘ (1, 1)T . One can straightforwardly generalize our discussion to include the decaying

mode as well.
Assuming deterministic evolution, the full matter density contrast �(⌘,x), or any of its tracers

�t(⌘,x), are a functional of the linear matter density field '(⌘,x),

�(x, ⌘) = F ['(x, ⌘)] , (1.6)

�t(x, ⌘) = Ft['(x, ⌘)] . (1.7)

Focusing on the tracer �t (which can be galaxies, halos, etc.) and going to Fourier space, we can
use perturbation theory to expand the matter density contrast, the velocity divergence and the
tracer density contrast in terms of the linear fields as

�k(⌘) =
1X

n=1

�
(n)
k (⌘), ✓k(⌘) =

1X

n=1

✓
(n)
k (⌘), �t,k(⌘) =

1X

n=1

�
(n)
t,k (⌘) , (1.8)

with
�
(n)
k (⌘) ⌘ Ik;q1··· ,qn F

(n)(q1, · · · ,qn; ⌘)'q1(⌘) · · ·'qn(⌘), (1.9)
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Figure 1: Symbolic representation of the K
(n)(q1, · · · ,qn; a) halo amplitude.
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(n)
k (⌘) ⌘ Ik;q1··· ,qn G

(n)(q1, · · · ,qn; ⌘)'q1(⌘) · · ·'qn(⌘), (1.10)

�
(n)
t,k (⌘) ⌘ Ik;q1··· ,qn K

(n)(q1, · · · ,qn; ⌘)'q1(⌘) · · ·'qn(⌘), (1.11)

where, assuming translation invariance, we have defined

Ik;q1··· ,qn ⌘ 1

n!

Z
d
3
q1

(2⇡)3
· · · d

3
qn

(2⇡)3
(2⇡)3�D

 
k�

nX

i=1

qi

!
. (1.12)

The kernels in the expansion (1.8), K(n)(q1, · · · ,qn; ⌘), can be interpreted as transition amplitudes
between linear and nonlinear (tracer field) states, represented in Fig. 1. In writing eq. (1.11) we
have assumed perturbation theory on all scales. However, the perturbative expansion is well known
to break down at short scales. This is usually taken into account by suitable counterterms. We
ignore these terms for the time being and will discuss them in Sec. 5.

The symmetry of the integration domain and of the multi-dimensional integration measure in
(1.11) translates in the requirement that the amplitude is symmetric under exchange of any pair
of external momenta, i.e.,

K
(n)(q1, · · · ,qi, · · · ,qj · · · ,qn; ⌘) = K

(n)(q1, · · · ,qj , · · · ,qi · · · ,qn; ⌘) . (1.13)

1.1 Galilean Invariance

We will use the invariance under time-dependent translations following from Galilean transforma-
tions and the Equivalence Principle, to derive relations between the kernels at di↵erent orders. In
the non-relativistic limit, the dark matter fluid dynamics is invariant under the following change
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This is a symmetry regardless of the time dependence of d and follows from the Galilean
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where 'k(⌘) is related to the initial field 'k(0) by the linear growth, 'k(⌘) = D(⌘)'k(0), with
D(0) = 1. For simplicity, and because this is what happens in most cosmological situations,
in the following we will assume that the external fields are in the growing mode, in which case
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(⌘) ⌘ (1, 1)T . One can straightforwardly generalize our discussion to include the decaying

mode as well.
Assuming deterministic evolution, the full matter density contrast �(⌘,x), or any of its tracers
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�(x, ⌘) = F ['(x, ⌘)] , (1.6)

�t(x, ⌘) = Ft['(x, ⌘)] . (1.7)

Focusing on the tracer �t (which can be galaxies, halos, etc.) and going to Fourier space, we can
use perturbation theory to expand the matter density contrast, the velocity divergence and the
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It is possible to further simplify the coe�cient A↵(t),
as we show in App. B 2. The result is

A↵(t) = 1 +

Z t

0
dt1Ḡ(t, t1)K2(t1)

D+(t1)2

D+(t)2
, (44)

where

K2 =
⌫�L�v + ��(3HfL�v + L̇�v)

1� ��
, (45)

and

L�v ⌘ Hf � L⇡ (46)

is defined analogously to eq. (35) for the relative velocity

�v
i
⌘ v

i
� v

i
⇡ . (47)

(We will return to this coe�cient in the next subsection,
in relation to symmetries of the field and fluid equa-
tions.) For Horndeski theories (which include the EdS
(Einstein de Sitter) approximation and ⇤CDM) we have
⌫� = �� = 0 and thus A↵(t) = 1. In Sec. IVA we will
discuss how this value is fixed by the consistency rela-
tions in Horndeski theories. Only DHOST theories can
change this coe�cient. This was shown in [40] restricting
to GLPV theories.

The coe�cient A�(t) has a complicated expression, in
general. It simplifies in the EdS approximation, where
A�(t) = �2/7, but in ⇤CDM and beyond it is in gen-
eral time dependent [48]. A study of this coe�cient in
Horndeski theories can be found in [33–37].

We plot these functions for two di↵erent redshifts and
di↵erent values of the EFT parameters in Fig. 1. As
expected, K2 = 0 and thus A↵ = 1 for Horndeski theories
(�1 = 0) while A� is modified in both Horndeski and
DHOST theories.

Notice that we can organize the kernel in eq. (40) as a
multipolar expansion in the angle µ ⌘ k̂1 ·k̂2, i.e. in terms
of the monopole (proportional to µ

0), dipole (propor-
tional to µ

1) and quadrupole (proportional to µ
2
� 1/3)

contributions. Explicitly, we have (suppressing the time
argument)

F2(~k1,~k2) = A↵ +
2

3
A� +A↵

µ

2

✓
k2

k1
+

k1

k2

◆

�A�

�
µ
2
� 1/3

�
.

(48)

As expected, the solution eq. (38) respects the conser-
vation of mass and momentum, since5

Z
d
3
x �

(2)(~x, t) = 0 and

Z
d
3
xx

i
�
(2)(~x, t) = 0 .

(50)

5 As discussed in [53], this means that in Fourier space,

�
(2)(~k) / k

2 (49)

for k ! 0, which one can explicitly verify for the solution eq. (38).
This contributes to the power spectrum with a term / k

4, which
is why one includes the so-called stochastic contribution in the
EFT of LSS [54].

In fact, mass and momentum conservation is the reason
that the non-linear corrections in eq. (38) appear in the
specific combinations eq. (17).

B. Symmetries of the fluid equations and infrared
behavior

To find the leading terms in the IR limit, one could of
course start with the explicit solution eq. (38) and take
the IR limit. However, we are going to show that the
leading IR behavior is related to the symmetries of the
gravitational field equations, discussed in Sec. II C, and
the symmetries of the fluid equations, which we discuss
next.
The fluid equations eq. (31) are invariant under the

following coordinate change and shifts of the fields:

x̃
i = x

i + n
i(t) , t̃ = t ,

'̃a(x̃
j
, t) = 'a(x

j
, t) + h

i
'a

(t)x̃i
,

�̃(x̃j
, t) = �(xj

, t) ,

ṽ
i(x̃j

, t) = v
i(xj

, t) + aṅ
i(t) ,

(51)

for generic n
i(t) and h

i
 ,⇡(t), as long as

h
i
�(t) = �a

2(n̈i(t) + 2Hṅ
i(t)) . (52)

These symmetries have been discussed to derive the con-
sistency relations of LSS, in e.g. [23–25, 55, 56], where
they apply to both the fluid and gravitational field equa-
tions. Here, we have introduced di↵erent notation from
the transformation eq. (23) to facilitate our discussion of
the adiabatic mode construction in Sec. IV.
Equivalently, the fluid equations are invariant under

the replacements

@i ! @i , @t ! @t � ṅ
i(t)@i , (53)

'a ! 'a + h
i
'a

(t)xi
, � ! � , v

i
! v

i + aṅ
i(t) .

One can explicitly check that the leading IR terms on the
right-hand side of eq. (32) are generated by this trans-
formation.
In the gravitational equations, the transformation of

⇡, eq. (25), is related to the coordinate change (while the
transformations of the other fields are arbitrary). In the
fluid equations, the transformations of vi and � are re-
lated to the coordinate transformation (while the trans-
formations of the other fields are arbitrary). These
transformations can be combined by taking ⇠

i(t) = n
i(t),

b
i
�, (t) = h

i
�, (t), and b

i
⇡(t) = �a

2
ṅ
i(t) to give an over-

all Galilean invariance. In this case, by eq. (23), eq. (28),
and eq. (53), the transformations of vi and v

i
⇡ are the

same, so both velocities can only be simultaneously elim-
inated if there is no relative velocity on large scales. As
we will see later, this means that a physical adiabatic
mode cannot be constructed.
Now, we show how these symmetries determine the

leading IR behavior of �(2). We start with the equations
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Time-dependent translation symmetry (Equivalence Principle)
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1 Constraints on PT kernels for general tracers

Let us use the logarithm of the scale factor as time,

⌘ ⌘ log
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, (1.1)

and introduce the linear growth factor D(⌘) and the linear growth rate

f(⌘) ⌘ d logD(⌘)

d⌘
. (1.2)

We denote by D+(⌘) and D�(⌘) the growth factor in the growing and decaying mode, respectively.
For the growth rate, an analogous definition of f+ and f� follows from eq. (1.2).

We compress the notation and introduce the linear doublet ��

k(⌘) (� = 1, 2) that includes the
density contrast and the velocity divergence,

�
1(x, ⌘) ⌘ �

(1)(x, ⌘) , �
2(x, ⌘) ⌘ �r · v(1)(x, ⌘)

f+(⌘)H(⌘)
. (1.3)

After decomposing the doublet in Fourier space,
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�(x, ⌘) =
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d
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k(⌘) , (1.4)

for each mode k the linear solution reads
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f(⌘)
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, (1.5)

where 'k(⌘) is related to the initial field 'k(0) by the linear growth, 'k(⌘) = D(⌘)'k(0), with
D(0) = 1. For simplicity, and because this is what happens in most cosmological situations,
in the following we will assume that the external fields are in the growing mode, in which case
u
�

f+
(⌘) ⌘ (1, 1)T . One can straightforwardly generalize our discussion to include the decaying

mode as well.
Assuming deterministic evolution, the full matter density contrast �(⌘,x), or any of its tracers

�t(⌘,x), are a functional of the linear matter density field '(⌘,x),

�(x, ⌘) = F ['(x, ⌘)] , (1.6)

�t(x, ⌘) = Ft['(x, ⌘)] . (1.7)

Focusing on the tracer �t (which can be galaxies, halos, etc.) and going to Fourier space, we can
use perturbation theory to expand the matter density contrast, the velocity divergence and the
tracer density contrast in terms of the linear fields as

�k(⌘) =
1X
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with
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k (⌘) ⌘ Ik;q1··· ,qn F

(n)(q1, · · · ,qn; ⌘)'q1(⌘) · · ·'qn(⌘), (1.9)
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Figure 1: Symbolic representation of the K
(n)(q1, · · · ,qn; a) halo amplitude.
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where, assuming translation invariance, we have defined
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The kernels in the expansion (1.8), K(n)(q1, · · · ,qn; ⌘), can be interpreted as transition amplitudes
between linear and nonlinear (tracer field) states, represented in Fig. 1. In writing eq. (1.11) we
have assumed perturbation theory on all scales. However, the perturbative expansion is well known
to break down at short scales. This is usually taken into account by suitable counterterms. We
ignore these terms for the time being and will discuss them in Sec. 5.

The symmetry of the integration domain and of the multi-dimensional integration measure in
(1.11) translates in the requirement that the amplitude is symmetric under exchange of any pair
of external momenta, i.e.,

K
(n)(q1, · · · ,qi, · · · ,qj · · · ,qn; ⌘) = K

(n)(q1, · · · ,qj , · · · ,qi · · · ,qn; ⌘) . (1.13)

1.1 Galilean Invariance

We will use the invariance under time-dependent translations following from Galilean transforma-
tions and the Equivalence Principle, to derive relations between the kernels at di↵erent orders. In
the non-relativistic limit, the dark matter fluid dynamics is invariant under the following change
of coordinates [? ? ],

⌘ ! ⌘̃ = ⌘ , x ! x̃ = x+ d(⌘) , (1.14)

followed by an appropriate transformation of the density and velocity fields,

�(x, ⌘) ! �̃(x̃, ⌘̃) = �(x, ⌘) v(x, ⌘) ! ṽ(x̃, ⌘̃) = v(x, ⌘) +H @⌘d(⌘) , (1.15)

while the Newtonian potential transforms as

� ! ��
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H@⌘(H@⌘d) +H2

@⌘d
⇤
· x . (1.16)

This is a symmetry regardless of the time dependence of d and follows from the Galilean
invariance of the equations in the non-relativistic limit. However, to derive relations between the
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2

Dark matter is conserved (mass and momentum conservation)

the momentum of the nonlinear field, k, is ⌧ qi for all i’s. We consider a tracer that satisfies mass
and momentum conservation, such as for instance the dark matter density contrast.

Mass conservation imposes that,
Z

d3x �(x, ⌘) = 0 , (2.39)

while momentum conservation, namely that the center of mass of the dark matter distribution is
fixed, imposes that, Z

d3xxi �(x, ⌘) = 0 . (2.40)

Inserting (2.3) in these two conditions and imposing that they are true independently of the linear
initial linear fields give two independent constraints on the kernels,

lim
Qn,0!0

Fn(q1, · · ·qn; ⌘) = 0 ,

lim
Qn,0!0

@

@qi1
Fn(q1, · · ·qn; ⌘) = 0 , (2.41)

where the limit is taken by keeping all the individual qi’s non vanishing. The conditions above
ensure that the density contrast decouples as

�k(⌘) = O
�
k2/q2i

�
, (2.42)

when the external momentum is much smaller than the qi’s, i.e. k ⌧ qi, as implied by general
arguments on momentum conservation [55, 56, 46, 57].

The two conditions eq. (2.39) and (2.40) hold for the matter density contrast and velocity
divergence [46], so that eq. (2.41) apply to the matter and velocity kernels , i.e. Fn and Gn.
However, they do not hold for a generic tracer, such as the galaxy number density, which does not
satisfy a conservation equation and for which eqs. (2.41) do not apply. Therefore, in the following
we will denote as ‘matter kernels’ the ones satisfying the conditions in eq. (2.41). We turn now to
derive their explicit forms by imposing the symmetries discussed above.

3 Matter Kernels

3.1 Imposing the constraints

Here we will implement all the constraints discussed in Sec. 2, including the last one, and derive the
expressions of the matter kernels, i.e. for Fn and Gn. The details of these calculations are explicitly
given in App. C. We will use isotropy to write the kernels in terms of rotationally invariant objects
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1 Constraints on PT kernels for general tracers

Let us use the logarithm of the scale factor as time,

⌘ ⌘ log

✓
a

a0

◆
, (1.1)

and introduce the linear growth factor D(⌘) and the linear growth rate

f(⌘) ⌘ d logD(⌘)

d⌘
. (1.2)

We denote by D+(⌘) and D�(⌘) the growth factor in the growing and decaying mode, respectively.
For the growth rate, an analogous definition of f+ and f� follows from eq. (1.2).

We compress the notation and introduce the linear doublet ��

k(⌘) (� = 1, 2) that includes the
density contrast and the velocity divergence,

�
1(x, ⌘) ⌘ �

(1)(x, ⌘) , �
2(x, ⌘) ⌘ �r · v(1)(x, ⌘)

f+(⌘)H(⌘)
. (1.3)

After decomposing the doublet in Fourier space,

�
�(x, ⌘) =

Z
d
3
k

(2⇡)3
e
�ik·x

�
�

k(⌘) , (1.4)

for each mode k the linear solution reads

�
�

k(⌘) = u
�

f
(⌘)'k(⌘) , u

�

f
(⌘) ⌘

 
1

f(⌘)
f+(⌘)

!
, (1.5)

where 'k(⌘) is related to the initial field 'k(0) by the linear growth, 'k(⌘) = D(⌘)'k(0), with
D(0) = 1. For simplicity, and because this is what happens in most cosmological situations,
in the following we will assume that the external fields are in the growing mode, in which case
u
�

f+
(⌘) ⌘ (1, 1)T . One can straightforwardly generalize our discussion to include the decaying

mode as well.
Assuming deterministic evolution, the full matter density contrast �(⌘,x), or any of its tracers

�t(⌘,x), are a functional of the linear matter density field '(⌘,x),

�(x, ⌘) = F ['(x, ⌘)] , (1.6)

�t(x, ⌘) = Ft['(x, ⌘)] . (1.7)

Focusing on the tracer �t (which can be galaxies, halos, etc.) and going to Fourier space, we can
use perturbation theory to expand the matter density contrast, the velocity divergence and the
tracer density contrast in terms of the linear fields as

�k(⌘) =
1X

n=1

�
(n)
k (⌘), ✓k(⌘) =

1X

n=1

✓
(n)
k (⌘), �t,k(⌘) =

1X

n=1

�
(n)
t,k (⌘) , (1.8)

with
�
(n)
k (⌘) ⌘ Ik;q1··· ,qn F

(n)(q1, · · · ,qn; ⌘)'q1(⌘) · · ·'qn(⌘), (1.9)
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qn�1
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�q1

�q2

�qn�1
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�(n)
t,k

Figure 1: Symbolic representation of the K
(n)(q1, · · · ,qn; a) halo amplitude.

✓
(n)
k (⌘) ⌘ Ik;q1··· ,qn G

(n)(q1, · · · ,qn; ⌘)'q1(⌘) · · ·'qn(⌘), (1.10)

�
(n)
t,k (⌘) ⌘ Ik;q1··· ,qn K

(n)(q1, · · · ,qn; ⌘)'q1(⌘) · · ·'qn(⌘), (1.11)

where, assuming translation invariance, we have defined

Ik;q1··· ,qn ⌘ 1

n!

Z
d
3
q1

(2⇡)3
· · · d

3
qn

(2⇡)3
(2⇡)3�D

 
k�

nX

i=1

qi

!
. (1.12)

The kernels in the expansion (1.8), K(n)(q1, · · · ,qn; ⌘), can be interpreted as transition amplitudes
between linear and nonlinear (tracer field) states, represented in Fig. 1. In writing eq. (1.11) we
have assumed perturbation theory on all scales. However, the perturbative expansion is well known
to break down at short scales. This is usually taken into account by suitable counterterms. We
ignore these terms for the time being and will discuss them in Sec. 5.

The symmetry of the integration domain and of the multi-dimensional integration measure in
(1.11) translates in the requirement that the amplitude is symmetric under exchange of any pair
of external momenta, i.e.,

K
(n)(q1, · · · ,qi, · · · ,qj · · · ,qn; ⌘) = K

(n)(q1, · · · ,qj , · · · ,qi · · · ,qn; ⌘) . (1.13)

1.1 Galilean Invariance

We will use the invariance under time-dependent translations following from Galilean transforma-
tions and the Equivalence Principle, to derive relations between the kernels at di↵erent orders. In
the non-relativistic limit, the dark matter fluid dynamics is invariant under the following change
of coordinates [? ? ],

⌘ ! ⌘̃ = ⌘ , x ! x̃ = x+ d(⌘) , (1.14)

followed by an appropriate transformation of the density and velocity fields,

�(x, ⌘) ! �̃(x̃, ⌘̃) = �(x, ⌘) v(x, ⌘) ! ṽ(x̃, ⌘̃) = v(x, ⌘) +H @⌘d(⌘) , (1.15)

while the Newtonian potential transforms as

� ! ��
⇥
H@⌘(H@⌘d) +H2

@⌘d
⇤
· x . (1.16)

This is a symmetry regardless of the time dependence of d and follows from the Galilean
invariance of the equations in the non-relativistic limit. However, to derive relations between the
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2In this case the kernel reads

F1(q1) = 1 (3.9)

F2(q1,q2) = 2�(q1,q2) + a(2)1 �(q1,q2) , (3.10)

F3(q1,q2,q3) = 2�(q1,q2)�(q12,q3) + a(3)5 �(q1,q2)�(q12,q3)

� 2
⇣
a(3)10 � h

⌘
�(q1,q2)�(q12,q3) + 2(a(2)1 + 2 a(3)10 � h)�(q1,q2)�(q12,q3)

+ a(3)10 �(q1,q2)↵a(q12,q3) + cyclic , (3.11)

where the time-dependent coe�cient h is not independent and is defined below (eq. (3.15)).
All the kernel relations above hold analogously for the velocity divergence: Gn can be rewritten

up to the third order as eq. (3.1), (3.5) and (3.11), i.e.,

G1(q1) = 1 (3.12)

G2(q1,q2) = 2�(q1,q2) + d(2)1 �(q1,q2) , (3.13)

G3(q1,q2,q3) = 2�(q1,q2)�(q12,q3) + d(3)5 �(q1,q2)�(q12,q3)

� 2
⇣
d(3)10 � h

⌘
�(q1,q2)�(q12,q3) + 2(d(2)1 + 2 d(3)10 � h)�(q1,q2)�(q12,q3)

+ d(3)10 �(q1,q2)↵a(q12,q3) + cyclic . (3.14)

The coe�cient h is defined as

h(⌘) ⌘
Z ⌘

d⌘0 f+(⌘
0)


D+(⌘0)

D+(⌘)

�2
d(2)1 (⌘0) , (3.15)

with d(2)1 being the time-dependent coe�cient of G2 in eq. (3.13).

3.2 Time dependence

The discussion so far did not assume any specific cosmological model, namely a background evolu-
tion and a definite form of the system of Euler, continuity and Poisson equations. In this section
we show how fixing a cosmology allows to derive the time dependence on the three parameters in
eq. (3.8) and the corresponding ones for the velocity field. We will do this first in the standard
⇤CDM case and then for a particular modified gravity model.

3.2.1 ⇤CDM

Extending the notation of eq. (2.4) to nonlinear fields, and switching the time variable from ⌘ to

� ⌘ log
D+(⌘)

D+(0)
, (3.16)

we can write the equation of motion for the n-th order (n > 1) one as (see e.g. [58]),

(���0@� + ⌦��0(�)) �0,(n)
k (�) = Ik;q1,q2���0�00(q1,q2)

n�1X

m=1

 �0,(m)
q1 (�) �00,(n�m)

q2 (�) , (3.17)
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For dark matter

where

of observables that could provide model independent constraints a will be investigated in future
studies.

Here we briefly summarize the results obtained for real space in [14].The starting point is the
assumption of a perturbative solution for the density and velocity fields of the form

�(n)k (⌘) ⌘ Ik;q1,...,qnFn(q1, . . . ,qn; ⌘)'q1(⌘) . . .'qn(⌘) , (3.1)

⇥(n)
k (⌘) ⌘ Ik;q1,...,qnGn(q1, . . . ,qn; ⌘)'q1(⌘) . . .'qn(⌘) , (3.2)

�(n)t,k (⌘) ⌘ Ik;q1,...,qnKn(q1, . . . ,qn; ⌘)'q1(⌘) . . .'qn(⌘) , (3.3)

where we have defined

Ik;q1,...,qn ⌘
1

n!

Z
d3q1

(2⇡)3
· · ·

Z
d3qn

(2⇡)3
(2⇡)3�D(k� q1...n) , (3.4)

and 'k indicates the linear field at initial time.
In the explicit expressions of the kernels introduced in eqs. 3.1, 3.2 and 3.3 we include all the

rotational invariant terms that can be constructed using di↵erent combinations of the internal
momenta. By imposing the EGI one obtains a full hierarchy of constraints for each perturbative
order ..., which lead to the final expression

F1(q1) = 1 (3.5)

F2(q1,q2) = 2�(q1,q2) + a� �(q1,q2) , (3.6)

F3(q1,q2,q3) = 2�(q1,q2)�(q12,q3) + a���(q1,q2)�(q12,q3)

� 2 (a�↵ � h) �(q1,q2)�(q12,q3) + 2(a� + 2 a�↵ � h)�(q1,q2)�(q12,q3)

+ a�↵�(q1,q2)↵a(q12,q3) + cyclic , (3.7)

and analogously for the velocity kernels Gn. We have defined the momenta combinations as

�(q1,q2) ⌘
|q1 + q2|

2 q1 · q2

2q21q
2
2

, �(q1,q2) ⌘ 1�
(q1 · q2)

2

q21q
2
2

, ↵a(q1,q2) ⌘
q1 · q2

q21
�

q1 · q2

q22
.

(3.8)
In eqs. 3.7 we are implicitly assuming that the bias coe�cients are general function of time only,
meaning ai = ai(⌘), and the same is true for the velocity kernels.

The coe�cient h is defined as

h(⌘) ⌘

Z ⌘

d⌘0 f+(⌘
0)


D+(⌘0)

D+(⌘)

�2
d(2)1 (⌘0) , (3.9)

with d(2)1 being the time-dependent coe�cient of G2. The expansion presented in eqs. 3.7 is
valid for all those models that satisfy the equivalence principle and for which the growth of density
perturbations is scale independent. This assumption on the scale dependence of the growth function
can be, in principle, relaxed in order to provide a general basis for the bootstrap approach. The
study of these models is not the object of this study and will be investigated in more details in
future works.
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It is possible to further simplify the coe�cient A↵(t),
as we show in App. B 2. The result is

A↵(t) = 1 +

Z t

0
dt1Ḡ(t, t1)K2(t1)

D+(t1)2

D+(t)2
, (44)

where

K2 =
⌫�L�v + ��(3HfL�v + L̇�v)

1� ��
, (45)

and

L�v ⌘ Hf � L⇡ (46)

is defined analogously to eq. (35) for the relative velocity

�v
i
⌘ v

i
� v

i
⇡ . (47)

(We will return to this coe�cient in the next subsection,
in relation to symmetries of the field and fluid equa-
tions.) For Horndeski theories (which include the EdS
(Einstein de Sitter) approximation and ⇤CDM) we have
⌫� = �� = 0 and thus A↵(t) = 1. In Sec. IVA we will
discuss how this value is fixed by the consistency rela-
tions in Horndeski theories. Only DHOST theories can
change this coe�cient. This was shown in [40] restricting
to GLPV theories.

The coe�cient A�(t) has a complicated expression, in
general. It simplifies in the EdS approximation, where
A�(t) = �2/7, but in ⇤CDM and beyond it is in gen-
eral time dependent [48]. A study of this coe�cient in
Horndeski theories can be found in [33–37].

We plot these functions for two di↵erent redshifts and
di↵erent values of the EFT parameters in Fig. 1. As
expected, K2 = 0 and thus A↵ = 1 for Horndeski theories
(�1 = 0) while A� is modified in both Horndeski and
DHOST theories.

Notice that we can organize the kernel in eq. (40) as a
multipolar expansion in the angle µ ⌘ k̂1 ·k̂2, i.e. in terms
of the monopole (proportional to µ

0), dipole (propor-
tional to µ

1) and quadrupole (proportional to µ
2
� 1/3)

contributions. Explicitly, we have (suppressing the time
argument)

F2(~k1,~k2) = A↵ +
2

3
A� +A↵

µ

2

✓
k2

k1
+

k1

k2

◆

�A�

�
µ
2
� 1/3

�
.

(48)

As expected, the solution eq. (38) respects the conser-
vation of mass and momentum, since5

Z
d
3
x �

(2)(~x, t) = 0 and

Z
d
3
xx

i
�
(2)(~x, t) = 0 .

(50)

5 As discussed in [53], this means that in Fourier space,

�
(2)(~k) / k

2 (49)

for k ! 0, which one can explicitly verify for the solution eq. (38).
This contributes to the power spectrum with a term / k

4, which
is why one includes the so-called stochastic contribution in the
EFT of LSS [54].

In fact, mass and momentum conservation is the reason
that the non-linear corrections in eq. (38) appear in the
specific combinations eq. (17).

B. Symmetries of the fluid equations and infrared
behavior

To find the leading terms in the IR limit, one could of
course start with the explicit solution eq. (38) and take
the IR limit. However, we are going to show that the
leading IR behavior is related to the symmetries of the
gravitational field equations, discussed in Sec. II C, and
the symmetries of the fluid equations, which we discuss
next.
The fluid equations eq. (31) are invariant under the

following coordinate change and shifts of the fields:

x̃
i = x

i + n
i(t) , t̃ = t ,

'̃a(x̃
j
, t) = 'a(x

j
, t) + h

i
'a

(t)x̃i
,

�̃(x̃j
, t) = �(xj

, t) ,

ṽ
i(x̃j

, t) = v
i(xj

, t) + aṅ
i(t) ,

(51)

for generic n
i(t) and h

i
 ,⇡(t), as long as

h
i
�(t) = �a

2(n̈i(t) + 2Hṅ
i(t)) . (52)

These symmetries have been discussed to derive the con-
sistency relations of LSS, in e.g. [23–25, 55, 56], where
they apply to both the fluid and gravitational field equa-
tions. Here, we have introduced di↵erent notation from
the transformation eq. (23) to facilitate our discussion of
the adiabatic mode construction in Sec. IV.
Equivalently, the fluid equations are invariant under

the replacements

@i ! @i , @t ! @t � ṅ
i(t)@i , (53)

'a ! 'a + h
i
'a

(t)xi
, � ! � , v

i
! v

i + aṅ
i(t) .

One can explicitly check that the leading IR terms on the
right-hand side of eq. (32) are generated by this trans-
formation.
In the gravitational equations, the transformation of

⇡, eq. (25), is related to the coordinate change (while the
transformations of the other fields are arbitrary). In the
fluid equations, the transformations of vi and � are re-
lated to the coordinate transformation (while the trans-
formations of the other fields are arbitrary). These
transformations can be combined by taking ⇠

i(t) = n
i(t),

b
i
�, (t) = h

i
�, (t), and b

i
⇡(t) = �a

2
ṅ
i(t) to give an over-

all Galilean invariance. In this case, by eq. (23), eq. (28),
and eq. (53), the transformations of vi and v

i
⇡ are the

same, so both velocities can only be simultaneously elim-
inated if there is no relative velocity on large scales. As
we will see later, this means that a physical adiabatic
mode cannot be constructed.
Now, we show how these symmetries determine the
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It is possible to further simplify the coe�cient A↵(t),
as we show in App. B 2. The result is

A↵(t) = 1 +

Z t

0
dt1Ḡ(t, t1)K2(t1)

D+(t1)2

D+(t)2
, (44)

where

K2 =
⌫�L�v + ��(3HfL�v + L̇�v)

1� ��
, (45)

and

L�v ⌘ Hf � L⇡ (46)

is defined analogously to eq. (35) for the relative velocity

�v
i
⌘ v

i
� v

i
⇡ . (47)

(We will return to this coe�cient in the next subsection,
in relation to symmetries of the field and fluid equa-
tions.) For Horndeski theories (which include the EdS
(Einstein de Sitter) approximation and ⇤CDM) we have
⌫� = �� = 0 and thus A↵(t) = 1. In Sec. IVA we will
discuss how this value is fixed by the consistency rela-
tions in Horndeski theories. Only DHOST theories can
change this coe�cient. This was shown in [40] restricting
to GLPV theories.

The coe�cient A�(t) has a complicated expression, in
general. It simplifies in the EdS approximation, where
A�(t) = �2/7, but in ⇤CDM and beyond it is in gen-
eral time dependent [48]. A study of this coe�cient in
Horndeski theories can be found in [33–37].

We plot these functions for two di↵erent redshifts and
di↵erent values of the EFT parameters in Fig. 1. As
expected, K2 = 0 and thus A↵ = 1 for Horndeski theories
(�1 = 0) while A� is modified in both Horndeski and
DHOST theories.

Notice that we can organize the kernel in eq. (40) as a
multipolar expansion in the angle µ ⌘ k̂1 ·k̂2, i.e. in terms
of the monopole (proportional to µ

0), dipole (propor-
tional to µ

1) and quadrupole (proportional to µ
2
� 1/3)

contributions. Explicitly, we have (suppressing the time
argument)

F2(~k1,~k2) = A↵ +
2

3
A� +A↵

µ
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◆

�A�

�
µ
2
� 1/3

�
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As expected, the solution eq. (38) respects the conser-
vation of mass and momentum, since5

Z
d
3
x �

(2)(~x, t) = 0 and

Z
d
3
xx

i
�
(2)(~x, t) = 0 .

(50)

5 As discussed in [53], this means that in Fourier space,

�
(2)(~k) / k

2 (49)

for k ! 0, which one can explicitly verify for the solution eq. (38).
This contributes to the power spectrum with a term / k

4, which
is why one includes the so-called stochastic contribution in the
EFT of LSS [54].

In fact, mass and momentum conservation is the reason
that the non-linear corrections in eq. (38) appear in the
specific combinations eq. (17).

B. Symmetries of the fluid equations and infrared
behavior

To find the leading terms in the IR limit, one could of
course start with the explicit solution eq. (38) and take
the IR limit. However, we are going to show that the
leading IR behavior is related to the symmetries of the
gravitational field equations, discussed in Sec. II C, and
the symmetries of the fluid equations, which we discuss
next.
The fluid equations eq. (31) are invariant under the

following coordinate change and shifts of the fields:

x̃
i = x

i + n
i(t) , t̃ = t ,

'̃a(x̃
j
, t) = 'a(x

j
, t) + h

i
'a

(t)x̃i
,

�̃(x̃j
, t) = �(xj

, t) ,

ṽ
i(x̃j

, t) = v
i(xj

, t) + aṅ
i(t) ,

(51)

for generic n
i(t) and h

i
 ,⇡(t), as long as

h
i
�(t) = �a

2(n̈i(t) + 2Hṅ
i(t)) . (52)

These symmetries have been discussed to derive the con-
sistency relations of LSS, in e.g. [23–25, 55, 56], where
they apply to both the fluid and gravitational field equa-
tions. Here, we have introduced di↵erent notation from
the transformation eq. (23) to facilitate our discussion of
the adiabatic mode construction in Sec. IV.
Equivalently, the fluid equations are invariant under

the replacements

@i ! @i , @t ! @t � ṅ
i(t)@i , (53)

'a ! 'a + h
i
'a

(t)xi
, � ! � , v

i
! v

i + aṅ
i(t) .

One can explicitly check that the leading IR terms on the
right-hand side of eq. (32) are generated by this trans-
formation.
In the gravitational equations, the transformation of

⇡, eq. (25), is related to the coordinate change (while the
transformations of the other fields are arbitrary). In the
fluid equations, the transformations of vi and � are re-
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i(t),

b
i
�, (t) = h

i
�, (t), and b

i
⇡(t) = �a

2
ṅ
i(t) to give an over-
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and eq. (53), the transformations of vi and v

i
⇡ are the

same, so both velocities can only be simultaneously elim-
inated if there is no relative velocity on large scales. As
we will see later, this means that a physical adiabatic
mode cannot be constructed.
Now, we show how these symmetries determine the

leading IR behavior of �(2). We start with the equations

Time-dependent translation symmetry (Equivalence Principle)

Tracers are not conserved in general (no mass and momentum conservation)

the momentum of the nonlinear field, k, is ⌧ qi for all i’s. We consider a tracer that satisfies mass
and momentum conservation, such as for instance the dark matter density contrast.

Mass conservation imposes that,
Z

d3x �(x, ⌘) = 0 , (2.39)

while momentum conservation, namely that the center of mass of the dark matter distribution is
fixed, imposes that, Z

d3xxi �(x, ⌘) = 0 . (2.40)

Inserting (2.3) in these two conditions and imposing that they are true independently of the linear
initial linear fields give two independent constraints on the kernels,

lim
Qn,0!0

Fn(q1, · · ·qn; ⌘) = 0 ,

lim
Qn,0!0

@

@qi1
Fn(q1, · · ·qn; ⌘) = 0 , (2.41)

where the limit is taken by keeping all the individual qi’s non vanishing. The conditions above
ensure that the density contrast decouples as

�k(⌘) = O
�
k2/q2i

�
, (2.42)

when the external momentum is much smaller than the qi’s, i.e. k ⌧ qi, as implied by general
arguments on momentum conservation [55, 56, 46, 57].

The two conditions eq. (2.39) and (2.40) hold for the matter density contrast and velocity
divergence [46], so that eq. (2.41) apply to the matter and velocity kernels , i.e. Fn and Gn.
However, they do not hold for a generic tracer, such as the galaxy number density, which does not
satisfy a conservation equation and for which eqs. (2.41) do not apply. Therefore, in the following
we will denote as ‘matter kernels’ the ones satisfying the conditions in eq. (2.41). We turn now to
derive their explicit forms by imposing the symmetries discussed above.

3 Matter Kernels

3.1 Imposing the constraints

Here we will implement all the constraints discussed in Sec. 2, including the last one, and derive the
expressions of the matter kernels, i.e. for Fn and Gn. The details of these calculations are explicitly
given in App. C. We will use isotropy to write the kernels in terms of rotationally invariant objects
constructed from the external momenta. For n = 1 we have one invariant, i.e. q21 = k2. For n � 2
we need 3n � 3 of them and we can take them from the n(n + 1)/2 scalar products ql · qm. For
n = 2 these are q21, q

2
2, q1 · q2, and for n = 3 they are q21, q

2
2, q

2
3, q1 · q2, q1 · q3 and q2 · q3. We

will then construct, up to third order, the most general dimensionless functions built out of the
qi momenta satisfying the above conditions. We restrict to rational functions, which is consistent
with the perturbative nature of the present analysis, as expressed by eq. (2.3).

For n = 1, the kernel depends only on one momentum, q, but isotropy implies that the
dimensionless rotational invariant is just a numerical constant, implying

F1(q1; ⌘) = 1 . (3.1)
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1 Constraints on PT kernels for general tracers

Let us use the logarithm of the scale factor as time,

⌘ ⌘ log

✓
a

a0

◆
, (1.1)

and introduce the linear growth factor D(⌘) and the linear growth rate

f(⌘) ⌘ d logD(⌘)

d⌘
. (1.2)

We denote by D+(⌘) and D�(⌘) the growth factor in the growing and decaying mode, respectively.
For the growth rate, an analogous definition of f+ and f� follows from eq. (1.2).

We compress the notation and introduce the linear doublet ��

k(⌘) (� = 1, 2) that includes the
density contrast and the velocity divergence,

�
1(x, ⌘) ⌘ �

(1)(x, ⌘) , �
2(x, ⌘) ⌘ �r · v(1)(x, ⌘)

f+(⌘)H(⌘)
. (1.3)

After decomposing the doublet in Fourier space,

�
�(x, ⌘) =

Z
d
3
k

(2⇡)3
e
�ik·x

�
�

k(⌘) , (1.4)

for each mode k the linear solution reads

�
�

k(⌘) = u
�

f
(⌘)'k(⌘) , u

�

f
(⌘) ⌘

 
1

f(⌘)
f+(⌘)

!
, (1.5)

where 'k(⌘) is related to the initial field 'k(0) by the linear growth, 'k(⌘) = D(⌘)'k(0), with
D(0) = 1. For simplicity, and because this is what happens in most cosmological situations,
in the following we will assume that the external fields are in the growing mode, in which case
u
�

f+
(⌘) ⌘ (1, 1)T . One can straightforwardly generalize our discussion to include the decaying

mode as well.
Assuming deterministic evolution, the full matter density contrast �(⌘,x), or any of its tracers

�t(⌘,x), are a functional of the linear matter density field '(⌘,x),

�(x, ⌘) = F ['(x, ⌘)] , (1.6)

�t(x, ⌘) = Ft['(x, ⌘)] . (1.7)

Focusing on the tracer �t (which can be galaxies, halos, etc.) and going to Fourier space, we can
use perturbation theory to expand the matter density contrast, the velocity divergence and the
tracer density contrast in terms of the linear fields as

�k(⌘) =
1X

n=1

�
(n)
k (⌘), ✓k(⌘) =

1X

n=1

✓
(n)
k (⌘), �t,k(⌘) =

1X

n=1

�
(n)
t,k (⌘) , (1.8)

with
�
(n)
k (⌘) ⌘ Ik;q1··· ,qn F

(n)(q1, · · · ,qn; ⌘)'q1(⌘) · · ·'qn(⌘), (1.9)
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Figure 1: Symbolic representation of the K
(n)(q1, · · · ,qn; a) halo amplitude.
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(n)(q1, · · · ,qn; ⌘)'q1(⌘) · · ·'qn(⌘), (1.10)

�
(n)
t,k (⌘) ⌘ Ik;q1··· ,qn K

(n)(q1, · · · ,qn; ⌘)'q1(⌘) · · ·'qn(⌘), (1.11)

where, assuming translation invariance, we have defined

Ik;q1··· ,qn ⌘ 1

n!

Z
d
3
q1

(2⇡)3
· · · d

3
qn

(2⇡)3
(2⇡)3�D

 
k�

nX

i=1

qi

!
. (1.12)

The kernels in the expansion (1.8), K(n)(q1, · · · ,qn; ⌘), can be interpreted as transition amplitudes
between linear and nonlinear (tracer field) states, represented in Fig. 1. In writing eq. (1.11) we
have assumed perturbation theory on all scales. However, the perturbative expansion is well known
to break down at short scales. This is usually taken into account by suitable counterterms. We
ignore these terms for the time being and will discuss them in Sec. 5.

The symmetry of the integration domain and of the multi-dimensional integration measure in
(1.11) translates in the requirement that the amplitude is symmetric under exchange of any pair
of external momenta, i.e.,

K
(n)(q1, · · · ,qi, · · · ,qj · · · ,qn; ⌘) = K

(n)(q1, · · · ,qj , · · · ,qi · · · ,qn; ⌘) . (1.13)

1.1 Galilean Invariance

We will use the invariance under time-dependent translations following from Galilean transforma-
tions and the Equivalence Principle, to derive relations between the kernels at di↵erent orders. In
the non-relativistic limit, the dark matter fluid dynamics is invariant under the following change
of coordinates [? ? ],

⌘ ! ⌘̃ = ⌘ , x ! x̃ = x+ d(⌘) , (1.14)

followed by an appropriate transformation of the density and velocity fields,

�(x, ⌘) ! �̃(x̃, ⌘̃) = �(x, ⌘) v(x, ⌘) ! ṽ(x̃, ⌘̃) = v(x, ⌘) +H @⌘d(⌘) , (1.15)

while the Newtonian potential transforms as

� ! ��
⇥
H@⌘(H@⌘d) +H2

@⌘d
⇤
· x . (1.16)

This is a symmetry regardless of the time dependence of d and follows from the Galilean
invariance of the equations in the non-relativistic limit. However, to derive relations between the
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Figure 1: Symbolic representation of the K
(n)(q1, · · · ,qn; a) halo amplitude.
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the non-relativistic limit, the dark matter fluid dynamics is invariant under the following change
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while the Newtonian potential transforms as
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This is a symmetry regardless of the time dependence of d and follows from the Galilean
invariance of the equations in the non-relativistic limit. However, to derive relations between the
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where 'k(⌘) is related to the initial field 'k(0) by the linear growth, 'k(⌘) = D(⌘)'k(0), with
D(0) = 1. For simplicity, and because this is what happens in most cosmological situations,
in the following we will assume that the external fields are in the growing mode, in which case
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(⌘) ⌘ (1, 1)T . One can straightforwardly generalize our discussion to include the decaying

mode as well.
Assuming deterministic evolution, the full matter density contrast �(⌘,x), or any of its tracers

�t(⌘,x), are a functional of the linear matter density field '(⌘,x),

�(x, ⌘) = F ['(x, ⌘)] , (1.6)

�t(x, ⌘) = Ft['(x, ⌘)] . (1.7)

Focusing on the tracer �t (which can be galaxies, halos, etc.) and going to Fourier space, we can
use perturbation theory to expand the matter density contrast, the velocity divergence and the
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Figure 1: Symbolic representation of the K
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The kernels in the expansion (1.8), K(n)(q1, · · · ,qn; ⌘), can be interpreted as transition amplitudes
between linear and nonlinear (tracer field) states, represented in Fig. 1. In writing eq. (1.11) we
have assumed perturbation theory on all scales. However, the perturbative expansion is well known
to break down at short scales. This is usually taken into account by suitable counterterms. We
ignore these terms for the time being and will discuss them in Sec. 5.

The symmetry of the integration domain and of the multi-dimensional integration measure in
(1.11) translates in the requirement that the amplitude is symmetric under exchange of any pair
of external momenta, i.e.,

K
(n)(q1, · · · ,qi, · · · ,qj · · · ,qn; ⌘) = K

(n)(q1, · · · ,qj , · · · ,qi · · · ,qn; ⌘) . (1.13)

1.1 Galilean Invariance

We will use the invariance under time-dependent translations following from Galilean transforma-
tions and the Equivalence Principle, to derive relations between the kernels at di↵erent orders. In
the non-relativistic limit, the dark matter fluid dynamics is invariant under the following change
of coordinates [? ? ],

⌘ ! ⌘̃ = ⌘ , x ! x̃ = x+ d(⌘) , (1.14)

followed by an appropriate transformation of the density and velocity fields,

�(x, ⌘) ! �̃(x̃, ⌘̃) = �(x, ⌘) v(x, ⌘) ! ṽ(x̃, ⌘̃) = v(x, ⌘) +H @⌘d(⌘) , (1.15)

while the Newtonian potential transforms as
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This is a symmetry regardless of the time dependence of d and follows from the Galilean
invariance of the equations in the non-relativistic limit. However, to derive relations between the
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K(n)

For tracers

for biased tracers, the condition from mass and momentum conservation given by eq. (2.41) should
be lifted, while keeping the ones from EGI and the Equivalence Principle.

The explicit calculations of the kernels in this case can be also found in App. C. Up to third
order, mass and momentum conservation give four independent constraints. So, compared to the
matter case, which is described by three independent coe�cients (one for n = 2 and two for n = 3),
the kernels for general tracers have a total of 7 independent coe�cients, which can be chosen to
be n

c(1)0 , c(2)0 , c(2)1 , c(3)0 , c(3)1 , c(3)5 , c(3)10

o
. (4.1)

The kernels are given by,

K1(q1) = c(1)0 , (4.2)

K2(q1,q2) = c(2)0 + 2 c(1)0 �(q1,q2) + c(2)1 �(q1,q2) , (4.3)

K3(q1,q2,q3) =
1

3
c(3)0 + c(3)1 �(q1,q2) + 2c(2)0 �(q1,q2)

+ c(3)5 �(q1,q2)�(q12,q3) + 2 c(1)0 �(q1,q2)�(q12,q3)

+ 2(h c(1)0 � c(3)10 )�(q1,q2)�(q12,q3) + 2(c(2)1 + 2 c(3)10 � h c(1)0 )�(q1,q2)�(q12,q3)

+ c(3)10 �(q1,q2)↵a(q12,q3) + cyclic , (4.4)

where the coe�cient h has been defined in eq. (3.15). Notice that it enters the matter kernels and
depends only on the underlying cosmology and not on the type of tracer. For instance, in the EdS
case, it is given by (see eq. (3.24))

hEdS(⌘) =
3

7
. (4.5)

The fact that it appears explicitly in the tracer kernels opens the possibility, at least in principle,
to extract cosmological information in a model independent way.

4.2 Relation with other bias expansions

Here we compare the present approach to other bias expansions (see [64, 22] for a review on bias).
For instance, we can compare our general kernel expansion up to third order in Eqs. (4.2), (4.3)
and (4.4), with the bias expansion given in [40]. Up to third order in PT, the density contrast for
a given biased tracer in configuration space is expressed as the sum of 7 independent operators,

�t = b1 � +
b2
2
�2 +

b3
3!

�3 + bG2 G2(�) + bG3 G3(�) + b�G2 � G2(�) + bGN GN ('2,'1) , (4.6)

where we have omitted the time dependence and we have defined the two Galilean-invariant com-
binations

G2(�) ⌘ (rij�)
2 �

�
r2�

�2
,

G3(�) ⌘
�
r2�

�3
+ 2rij�rjk�rki�� 3 (rij�)

2r2� ,
(4.7)

where � is the Poisson potential normalized in such a way thatr2� = �, and the Galilean-invariant
“non-local” combination

GN ('2,'1) ⌘ rij'2rij'1 �r2'2r2'1 , (4.8)
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Figure 1: Symbolic representation of the K
(n)(q1, · · · ,qn; a) halo amplitude.
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The kernels in the expansion (1.8), K(n)(q1, · · · ,qn; ⌘), can be interpreted as transition amplitudes
between linear and nonlinear (tracer field) states, represented in Fig. 1. In writing eq. (1.11) we
have assumed perturbation theory on all scales. However, the perturbative expansion is well known
to break down at short scales. This is usually taken into account by suitable counterterms. We
ignore these terms for the time being and will discuss them in Sec. 5.

The symmetry of the integration domain and of the multi-dimensional integration measure in
(1.11) translates in the requirement that the amplitude is symmetric under exchange of any pair
of external momenta, i.e.,
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1.1 Galilean Invariance

We will use the invariance under time-dependent translations following from Galilean transforma-
tions and the Equivalence Principle, to derive relations between the kernels at di↵erent orders. In
the non-relativistic limit, the dark matter fluid dynamics is invariant under the following change
of coordinates [? ? ],

⌘ ! ⌘̃ = ⌘ , x ! x̃ = x+ d(⌘) , (1.14)
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where 'k(⌘) is related to the initial field 'k(0) by the linear growth, 'k(⌘) = D(⌘)'k(0), with
D(0) = 1. For simplicity, and because this is what happens in most cosmological situations,
in the following we will assume that the external fields are in the growing mode, in which case
u
�

f+
(⌘) ⌘ (1, 1)T . One can straightforwardly generalize our discussion to include the decaying

mode as well.
Assuming deterministic evolution, the full matter density contrast �(⌘,x), or any of its tracers

�t(⌘,x), are a functional of the linear matter density field '(⌘,x),

�(x, ⌘) = F ['(x, ⌘)] , (1.6)

�t(x, ⌘) = Ft['(x, ⌘)] . (1.7)

Focusing on the tracer �t (which can be galaxies, halos, etc.) and going to Fourier space, we can
use perturbation theory to expand the matter density contrast, the velocity divergence and the
tracer density contrast in terms of the linear fields as
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The kernels in the expansion (1.8), K(n)(q1, · · · ,qn; ⌘), can be interpreted as transition amplitudes
between linear and nonlinear (tracer field) states, represented in Fig. 1. In writing eq. (1.11) we
have assumed perturbation theory on all scales. However, the perturbative expansion is well known
to break down at short scales. This is usually taken into account by suitable counterterms. We
ignore these terms for the time being and will discuss them in Sec. 5.

The symmetry of the integration domain and of the multi-dimensional integration measure in
(1.11) translates in the requirement that the amplitude is symmetric under exchange of any pair
of external momenta, i.e.,

K
(n)(q1, · · · ,qi, · · · ,qj · · · ,qn; ⌘) = K

(n)(q1, · · · ,qj , · · · ,qi · · · ,qn; ⌘) . (1.13)

1.1 Galilean Invariance

We will use the invariance under time-dependent translations following from Galilean transforma-
tions and the Equivalence Principle, to derive relations between the kernels at di↵erent orders. In
the non-relativistic limit, the dark matter fluid dynamics is invariant under the following change
of coordinates [? ? ],

⌘ ! ⌘̃ = ⌘ , x ! x̃ = x+ d(⌘) , (1.14)

followed by an appropriate transformation of the density and velocity fields,

�(x, ⌘) ! �̃(x̃, ⌘̃) = �(x, ⌘) v(x, ⌘) ! ṽ(x̃, ⌘̃) = v(x, ⌘) +H @⌘d(⌘) , (1.15)

while the Newtonian potential transforms as

� ! ��
⇥
H@⌘(H@⌘d) +H2

@⌘d
⇤
· x . (1.16)

This is a symmetry regardless of the time dependence of d and follows from the Galilean
invariance of the equations in the non-relativistic limit. However, to derive relations between the
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K(n)

For tracers

for biased tracers, the condition from mass and momentum conservation given by eq. (2.41) should
be lifted, while keeping the ones from EGI and the Equivalence Principle.

The explicit calculations of the kernels in this case can be also found in App. C. Up to third
order, mass and momentum conservation give four independent constraints. So, compared to the
matter case, which is described by three independent coe�cients (one for n = 2 and two for n = 3),
the kernels for general tracers have a total of 7 independent coe�cients, which can be chosen to
be n

c(1)0 , c(2)0 , c(2)1 , c(3)0 , c(3)1 , c(3)5 , c(3)10

o
. (4.1)

The kernels are given by,

K1(q1) = c(1)0 , (4.2)

K2(q1,q2) = c(2)0 + 2 c(1)0 �(q1,q2) + c(2)1 �(q1,q2) , (4.3)

K3(q1,q2,q3) =
1

3
c(3)0 + c(3)1 �(q1,q2) + 2c(2)0 �(q1,q2)

+ c(3)5 �(q1,q2)�(q12,q3) + 2 c(1)0 �(q1,q2)�(q12,q3)

+ 2(h c(1)0 � c(3)10 )�(q1,q2)�(q12,q3) + 2(c(2)1 + 2 c(3)10 � h c(1)0 )�(q1,q2)�(q12,q3)

+ c(3)10 �(q1,q2)↵a(q12,q3) + cyclic , (4.4)

where the coe�cient h has been defined in eq. (3.15). Notice that it enters the matter kernels and
depends only on the underlying cosmology and not on the type of tracer. For instance, in the EdS
case, it is given by (see eq. (3.24))

hEdS(⌘) =
3

7
. (4.5)

The fact that it appears explicitly in the tracer kernels opens the possibility, at least in principle,
to extract cosmological information in a model independent way.

4.2 Relation with other bias expansions

Here we compare the present approach to other bias expansions (see [64, 22] for a review on bias).
For instance, we can compare our general kernel expansion up to third order in Eqs. (4.2), (4.3)
and (4.4), with the bias expansion given in [40]. Up to third order in PT, the density contrast for
a given biased tracer in configuration space is expressed as the sum of 7 independent operators,
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2
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�3 + bG2 G2(�) + bG3 G3(�) + b�G2 � G2(�) + bGN GN ('2,'1) , (4.6)

where we have omitted the time dependence and we have defined the two Galilean-invariant com-
binations
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2 �

�
r2�

�2
,

G3(�) ⌘
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�3
+ 2rij�rjk�rki�� 3 (rij�)

2r2� ,
(4.7)

where � is the Poisson potential normalized in such a way thatr2� = �, and the Galilean-invariant
“non-local” combination

GN ('2,'1) ⌘ rij'2rij'1 �r2'2r2'1 , (4.8)
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depends only on the underlying cosmology and not on the type of tracer. For instance, in the EdS
case, it is given by (see eq. (3.24))

hEdS(⌘) =
3

7
. (4.5)

The fact that it appears explicitly in the tracer kernels opens the possibility, at least in principle,
to extract cosmological information in a model independent way.

4.2 Relation with other bias expansions

Here we compare the present approach to other bias expansions (see [64, 22] for a review on bias).
For instance, we can compare our general kernel expansion up to third order in Eqs. (4.2), (4.3)
and (4.4), with the bias expansion given in [40]. Up to third order in PT, the density contrast for
a given biased tracer in configuration space is expressed as the sum of 7 independent operators,

�t = b1 � +
b2
2
�2 +

b3
3!

�3 + bG2 G2(�) + bG3 G3(�) + b�G2 � G2(�) + bGN GN ('2,'1) , (4.6)

where we have omitted the time dependence and we have defined the two Galilean-invariant com-
binations

G2(�) ⌘ (rij�)
2 �

�
r2�

�2
,

G3(�) ⌘
�
r2�

�3
+ 2rij�rjk�rki�� 3 (rij�)

2r2� ,
(4.7)

where � is the Poisson potential normalized in such a way thatr2� = �, and the Galilean-invariant
“non-local” combination

GN ('2,'1) ⌘ rij'2rij'1 �r2'2r2'1 , (4.8)
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We denote by D+(⌘) and D�(⌘) the growth factor in the growing and decaying mode, respectively.
For the growth rate, an analogous definition of f+ and f� follows from eq. (1.2).
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where 'k(⌘) is related to the initial field 'k(0) by the linear growth, 'k(⌘) = D(⌘)'k(0), with
D(0) = 1. For simplicity, and because this is what happens in most cosmological situations,
in the following we will assume that the external fields are in the growing mode, in which case
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f+
(⌘) ⌘ (1, 1)T . One can straightforwardly generalize our discussion to include the decaying

mode as well.
Assuming deterministic evolution, the full matter density contrast �(⌘,x), or any of its tracers

�t(⌘,x), are a functional of the linear matter density field '(⌘,x),

�(x, ⌘) = F ['(x, ⌘)] , (1.6)

�t(x, ⌘) = Ft['(x, ⌘)] . (1.7)

Focusing on the tracer �t (which can be galaxies, halos, etc.) and going to Fourier space, we can
use perturbation theory to expand the matter density contrast, the velocity divergence and the
tracer density contrast in terms of the linear fields as
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Figure 1: Symbolic representation of the K
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The kernels in the expansion (1.8), K(n)(q1, · · · ,qn; ⌘), can be interpreted as transition amplitudes
between linear and nonlinear (tracer field) states, represented in Fig. 1. In writing eq. (1.11) we
have assumed perturbation theory on all scales. However, the perturbative expansion is well known
to break down at short scales. This is usually taken into account by suitable counterterms. We
ignore these terms for the time being and will discuss them in Sec. 5.

The symmetry of the integration domain and of the multi-dimensional integration measure in
(1.11) translates in the requirement that the amplitude is symmetric under exchange of any pair
of external momenta, i.e.,

K
(n)(q1, · · · ,qi, · · · ,qj · · · ,qn; ⌘) = K

(n)(q1, · · · ,qj , · · · ,qi · · · ,qn; ⌘) . (1.13)

1.1 Galilean Invariance

We will use the invariance under time-dependent translations following from Galilean transforma-
tions and the Equivalence Principle, to derive relations between the kernels at di↵erent orders. In
the non-relativistic limit, the dark matter fluid dynamics is invariant under the following change
of coordinates [? ? ],

⌘ ! ⌘̃ = ⌘ , x ! x̃ = x+ d(⌘) , (1.14)

followed by an appropriate transformation of the density and velocity fields,

�(x, ⌘) ! �̃(x̃, ⌘̃) = �(x, ⌘) v(x, ⌘) ! ṽ(x̃, ⌘̃) = v(x, ⌘) +H @⌘d(⌘) , (1.15)

while the Newtonian potential transforms as

� ! ��
⇥
H@⌘(H@⌘d) +H2

@⌘d
⇤
· x . (1.16)

This is a symmetry regardless of the time dependence of d and follows from the Galilean
invariance of the equations in the non-relativistic limit. However, to derive relations between the
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LSS bootstrap for tracers
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where 'k(⌘) is related to the initial field 'k(0) by the linear growth, 'k(⌘) = D(⌘)'k(0), with
D(0) = 1. For simplicity, and because this is what happens in most cosmological situations,
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use perturbation theory to expand the matter density contrast, the velocity divergence and the
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Figure 1: Symbolic representation of the K
(n)(q1, · · · ,qn; a) halo amplitude.
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The kernels in the expansion (1.8), K(n)(q1, · · · ,qn; ⌘), can be interpreted as transition amplitudes
between linear and nonlinear (tracer field) states, represented in Fig. 1. In writing eq. (1.11) we
have assumed perturbation theory on all scales. However, the perturbative expansion is well known
to break down at short scales. This is usually taken into account by suitable counterterms. We
ignore these terms for the time being and will discuss them in Sec. 5.

The symmetry of the integration domain and of the multi-dimensional integration measure in
(1.11) translates in the requirement that the amplitude is symmetric under exchange of any pair
of external momenta, i.e.,

K
(n)(q1, · · · ,qi, · · · ,qj · · · ,qn; ⌘) = K

(n)(q1, · · · ,qj , · · · ,qi · · · ,qn; ⌘) . (1.13)

1.1 Galilean Invariance

We will use the invariance under time-dependent translations following from Galilean transforma-
tions and the Equivalence Principle, to derive relations between the kernels at di↵erent orders. In
the non-relativistic limit, the dark matter fluid dynamics is invariant under the following change
of coordinates [? ? ],

⌘ ! ⌘̃ = ⌘ , x ! x̃ = x+ d(⌘) , (1.14)

followed by an appropriate transformation of the density and velocity fields,

�(x, ⌘) ! �̃(x̃, ⌘̃) = �(x, ⌘) v(x, ⌘) ! ṽ(x̃, ⌘̃) = v(x, ⌘) +H @⌘d(⌘) , (1.15)

while the Newtonian potential transforms as
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H@⌘(H@⌘d) +H2
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· x . (1.16)

This is a symmetry regardless of the time dependence of d and follows from the Galilean
invariance of the equations in the non-relativistic limit. However, to derive relations between the
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K(n)

For tracers

for biased tracers, the condition from mass and momentum conservation given by eq. (2.41) should
be lifted, while keeping the ones from EGI and the Equivalence Principle.

The explicit calculations of the kernels in this case can be also found in App. C. Up to third
order, mass and momentum conservation give four independent constraints. So, compared to the
matter case, which is described by three independent coe�cients (one for n = 2 and two for n = 3),
the kernels for general tracers have a total of 7 independent coe�cients, which can be chosen to
be n

c(1)0 , c(2)0 , c(2)1 , c(3)0 , c(3)1 , c(3)5 , c(3)10

o
. (4.1)

The kernels are given by,

K1(q1) = c(1)0 , (4.2)

K2(q1,q2) = c(2)0 + 2 c(1)0 �(q1,q2) + c(2)1 �(q1,q2) , (4.3)

K3(q1,q2,q3) =
1

3
c(3)0 + c(3)1 �(q1,q2) + 2c(2)0 �(q1,q2)

+ c(3)5 �(q1,q2)�(q12,q3) + 2 c(1)0 �(q1,q2)�(q12,q3)

+ 2(h c(1)0 � c(3)10 )�(q1,q2)�(q12,q3) + 2(c(2)1 + 2 c(3)10 � h c(1)0 )�(q1,q2)�(q12,q3)

+ c(3)10 �(q1,q2)↵a(q12,q3) + cyclic , (4.4)

where the coe�cient h has been defined in eq. (3.15). Notice that it enters the matter kernels and
depends only on the underlying cosmology and not on the type of tracer. For instance, in the EdS
case, it is given by (see eq. (3.24))

hEdS(⌘) =
3

7
. (4.5)

The fact that it appears explicitly in the tracer kernels opens the possibility, at least in principle,
to extract cosmological information in a model independent way.

4.2 Relation with other bias expansions

Here we compare the present approach to other bias expansions (see [64, 22] for a review on bias).
For instance, we can compare our general kernel expansion up to third order in Eqs. (4.2), (4.3)
and (4.4), with the bias expansion given in [40]. Up to third order in PT, the density contrast for
a given biased tracer in configuration space is expressed as the sum of 7 independent operators,

�t = b1 � +
b2
2
�2 +

b3
3!

�3 + bG2 G2(�) + bG3 G3(�) + b�G2 � G2(�) + bGN GN ('2,'1) , (4.6)

where we have omitted the time dependence and we have defined the two Galilean-invariant com-
binations

G2(�) ⌘ (rij�)
2 �

�
r2�

�2
,

G3(�) ⌘
�
r2�

�3
+ 2rij�rjk�rki�� 3 (rij�)

2r2� ,
(4.7)

where � is the Poisson potential normalized in such a way thatr2� = �, and the Galilean-invariant
“non-local” combination

GN ('2,'1) ⌘ rij'2rij'1 �r2'2r2'1 , (4.8)
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with r2'1 ⌘ �� and r2'2 ⌘ �G2(�).
The number of independent bias coe�cients is the same as ours (cf. with eq. (4.1)):

Our basis: 1st order: c(1)0 , 2nd order: c(2)0 , c(2)0 , 3rd order: c(3)0 , c(3)1 , c(3)5 , c(3)10 ,

Ref. [40]: 1st order: b1 , 2nd order: b2, bG2 , 3rd order: b3, bG3 , b�G2 , bGN .

Indeed, by expanding the RHS of eq. (4.6) and equating the coe�cients of the independent oper-
ators, we can relate them as

c(1)0 = b1, c(2)0 = b2, c(3)0 = b3,

c(2)1 = b1 a
(2)
1 � 2 bG2 , c(3)1 = b2 a

(2)
1 � 2 b�G2 ,

c(3)5 = b1 a
(3)
5 � 2 bG2a

(2)
1 + 2 bG3 + 2 bGN , c(3)10 = b1 a

(3)
10 � bG3 ,

(4.9)

or, inversely,

b1 = c(1)0 , b2 = c(2)0 , b3 = c(3)0 ,

bG2 =
1

2

⇣
a(2)1 c(1)0 � c(2)1

⌘
, b�G2 =

1

2

⇣
a(2)1 c(2)0 � c(3)1

⌘
,

bG3 = a(3)10 c
(1)
0 � c(3)10 , bGN =

1

2

✓⇣
a(2)1

⌘2
c(1)0 � a(2)1 c(2)1 � a(3)5 c(1)0 + c(3)5

◆
� a(3)10 c

(1)
0 + c(3)10 .

(4.10)

Other basis expansions at this order have been given, for instance, in [33–39]. A comparison

shows that, for a fixed cosmology, that is, for fixed a(2,3)i coe�cients, our basis can be related in a
similar way as above to those in these references, (see also [47, 65] for explicit relations between
coe�cients).

For ⇤CDM cosmology, our bias expansion can also be compared to the one presented in [65].
Notice that the time-dependent function Y defined in that reference, which carries information
about the exact time dependence away from the EdS case, is related to our function h defined in
eq. (3.15). More precisely we have: Y = h/2 � 3/14. However, our definition in eq. (3.15) is not
restricted to ⇤CDM. It applies to any cosmological model sharing the same symmetries as ⇤CDM.
Moreover, our derivation clarifies the physical origin of the tracer-independent function h, that is,
EGI.

4.3 Relation with Fujita & Vlah

Before closing this section, we discuss in some detail the relation of the present approach to that
of [47], which is the closest one to ours. The starting point, also in that paper, is to write down
the most general kernels and then to reduce the number of independent coe�cients by imposing
symmetry-related constraints. In particular, the authors impose that the correlators satisfy the
equal-time consistency relations [48, 49]. On top of that, they also impose extra conditions on
the momentum dependence of the soft limit of the four-point function that do not derive directly
from the equal time consistency relations. At third order and for a generic tracer they find 7 bias
coe�cients and 2 ‘universal’ ones, which are independent on the tracer type and depend on the
underlying cosmology only. We have shown that EGI at LO fixes one of these universal coe�cients
and at NLO relates the other to the h(⌘) quantity defined in (3.15).
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We can compare with other basis, e.g.
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where the coe�cient h has been defined in eq. (3.15). Notice that it enters the matter kernels and
depends only on the underlying cosmology and not on the type of tracer. For instance, in the EdS
case, it is given by (see eq. (3.24))
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The fact that it appears explicitly in the tracer kernels opens the possibility, at least in principle,
to extract cosmological information in a model independent way.

4.2 Relation with other bias expansions

Here we compare the present approach to other bias expansions (see [64, 22] for a review on bias).
For instance, we can compare our general kernel expansion up to third order in Eqs. (4.2), (4.3)
and (4.4), with the bias expansion given in [40]. Up to third order in PT, the density contrast for
a given biased tracer in configuration space is expressed as the sum of 7 independent operators,
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where � is the Poisson potential normalized in such a way thatr2� = �, and the Galilean-invariant
“non-local” combination

GN ('2,'1) ⌘ rij'2rij'1 �r2'2r2'1 , (4.8)
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Global picture

1 Introduction

Over the next decade, large-scale structure (LSS) surveys will play an increasingly important

role in the measurement of cosmological parameters and as a probe of initial conditions. In order

to relate late-time observables to the physics of the early universe, several sources of secondary

non-linearities need to be understood (see fig. 1). Reducing the theory error is essential if the

full potential of future surveys is to be realized.1 Non-linearities in the gravitational evolution

can be characterized by numerical N-body simulations [3] and, on su�ciently large scales, by

perturbation theory [4, 5]. Less well understood are non-linearities in the biasing between the

clustering of galaxies and the underlying dark matter density.

Initial Conditions Large-Scale Structure
SPT, EFT-of-LSS
N-body simulations

dark matter

halos

galaxies

halo biasing

galaxy biasing

RSD

Figure 1. Non-linearities in the gravitational evolution, in the biasing and in redshift space distor-
tions (RSD) complicate the relationship between the primordial initial conditions and large-scale structure
observables.

The biasing problem is already visible in dark matter-only simulations, where it is reflected

in the biasing of dark matter halos. On large scales, linear biasing has been shown to be a good

approximation:

�h = b1� , (1.1)

where �h and � are the density contrasts of the halos and the dark matter, respectively, and

the bias parameter b1 is an unknown coe�cient (to be fit to data). However, linear biasing is

known to fail on small scales where non-linearities becomes important. One common procedure

for describing halos beyond the linear biasing model is local Eulerian biasing [6] which assumes

that the halo density contrast is a local function of the dark matter density, �h(x, ⌧) = F [�(x, ⌧)].

Formally, we might write this relation as a Taylor expansion

�h(x, ⌧) =
1X

n=0

b
(0)
n

n!
�
n(x, ⌧) . (1.2)

Local biasing is motivated both as a natural generalization of linear biasing and as a consequence

of a number of semi-analytic models of halo formation. It is also often employed in data anal-

ysis [7–12]. However, the meaning of (1.2) is far from clear, as we need to define �
n(x, ⌧) for

1
The number of useful modes in galaxy surveys scales as the cube of the maximum wavenumber, kmax, at which

the theoretical predictions can still be trusted. Even a relatively modest gain in kmax can therefore dramatically

impact the scientific potential of galaxy surveys (but see [1, 2]).
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Galaxies are measured in redshift space but we can relate the density 
in redshift space and real space by mass conservation
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����
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~x(~xs)

In GR one-loop power spectrum

9

Since the k-binning of the challenge spectra is very
wide (�k = 0.01 hMpc�1) compared to the fundamen-
tal mode of the box, the theoretical predictions had to be
properly averaged over each bin. The boundaries of the
bins were estimated using the simulation volume, known
to both teams. The East Coast Team checked that the
estimated boundaries allow one to accurately reproduce
the provided weighted means of the k-bins and found
that averaging the theory over the bin versus evaluat-
ing it in the mean can induce roughly O(0.5)� shifts in
cosmological parameters.

2. West Coast Team

The implementation of the West Coast Team is the
result of a long journey where each of ingredients of the
EFTofLSS that is necessary to apply it to data was one-
by-one subsequently developed, tested on simulations,
shown to be successful. Though not all those results are
directly used in the analysis, the West Coast Team, and
probably nobody, would simply have never applied the
model to the data without those intermediate successes.
We therefore find it nice to add, in each instance where
the EFTofLSS is applied to data, the following footnote
where we acknowledge at least a fraction of those impor-
tant developments4.

The model for the West Coast Team and the analysis
techniques are the same as the one used in [28, 30], to
which we refer for details. The one-loop redshift-space

4 The initial formulation of the EFTofLSS was performed in Eu-
lerian space in [63, 64], and then extended to Lagrangian space
in [69]. The dark matter power spectrum has been computed
at one-, two- and three-loop orders in [18, 64, 83–91]. Some ad-
ditional theoretical developments of the EFTofLSS that accom-
panied these calculations were a careful understanding of renor-
malization [64, 92, 93] (including rather-subtle aspects such as
lattice-running [64] and a better understanding of the velocity
field [83, 94]), of the several ways for extracting the value of the
counterterms from simulations [64, 95], and of the non-locality in
time of the EFTofLSS [19, 83, 85]. These theoretical explorations
also include an instructive study in 1+1 dimensions [95]. In or-
der to correctly describe the Baryon Acoustic Oscillation (BAO)
peak, an IR-resummation of the long displacement fields had
to be performed. This has led to the so-called IR-Resummed
EFTofLSS [18, 65–68]. A method to account for baryonic ef-
fects was presented in [21]. The dark-matter bispectrum has
been computed at one-loop in [96, 97], the one-loop trispectrum
in [98], and the displacement field in [99]. The lensing power
spectrum has been computed at two loops in [100]. Biased trac-
ers, such as halos and galaxies, have been studied in the context
of the EFTofLSS in [19, 72, 73, 101–103] (see also [14]), the halo
and matter power spectra and bispectra (including all cross cor-
relations) in [19, 101]. Redshift space distortions have been de-
veloped in [20, 22, 73]. Clustering dark energy has been included
in the formalism in [90, 104–106], primordial non-Gaussianities
in [22, 101, 107–110], and neutrinos in [111, 112]. Faster evalu-
ation schemes for evaluation for some of the loop integrals have
been developed in [77].

galaxy power spectrum reads:

Pg(k, µ) = Z1(µ)
2
P11(k)

+ 2

Z
d
3
q

(2⇡)3
Z2(q,k � q, µ)2P11(|k � q|)P11(q)

+ 6Z1(µ)P11(k)

Z
d
3
q

(2⇡)3
Z3(q,�q,k, µ)P11(q)

+ 2Z1(µ)P11(k)

✓
cct

k
2

k2m

+ cr,1µ
2
k
2

k2m

+ cr,2µ
4
k
2

k2m

◆

+
1

n̄g

✓
c✏,1 + c✏,2

k
2

k2m

+ c✏,3fµ
2
k
2

k2m

◆
. (20)

k
�1
m controls the bias derivative expansion and we set it

to be ' k
�1
nl , which is the scale controlling the expansion

of the dark matter derivative expansion. We set knl =
0.7hMpc�1. n̄g is the mean galaxy density.
In the next to the last line of Eq. (20), the term in

cct represents a linear combination of a higher deriva-
tive bias [19] that appears in Eq. (12) and the speed of

sound of dark matter [63, 64]: �(~k, t) � k
2
�lin(~k, t). The

terms in cr,1 and cr,2 represent the redshift-space coun-

terterms [20]: �redshift(~k, t) � k
2
µ
2
�(k, t), k

2
µ
4
�(k, t). In

the last line of Eq. (20), we have the stochastic coun-
terterms: c✏,1 and c✏,2 originate from Taylor expansion
of Eq. (12) [19], while c✏,3 originates from the redshift-
space expressions [20].
The redshift-space galaxy density kernels Z1, Z2 and

Z3 are given in Appendix A. These kernels depend on
the bias coe�cients that we define as explained below
Eq. (12). By choosing only the linearly-independent ones,
this gives rise to the so-called base of descendants. While
up to cubic order this base is equivalent to more standard
bases, already at quartic perturbative order new terms
appear.

The IR-resummation is performed in a numerically ef-
ficient way using the original method for configuration
and redshift space developed in [18, 66, 67], where all the
errors are parametrically controlled by the perturbative
order of the calculation (i.e. no uncontrolled approxima-
tions are present) 5.

We define the following combination of parameters:
c2 = (b2 + b4)/

p
2, c4 = (b2 � b4)/

p
2, c✏,mono =

c✏,2 + fc✏,3/3 and c✏,quad = 2fc✏,3/3. As we analyze
only the monopole and the quadrupole, we set cr,2 = 0

5 Especially within the observational community, a non-linear
treatment of the BAO based on the decomposition of the wiggle
and smooth part of the power spectrum has been popular for a
long time (see for example [113]). However, this Team does not
find this decomposition to be under parametric control (i.e. there
is no small parameter controlling its correctness). It is possible
to go from the original IR-Resummation to the simplified ones
based on the decomposition by performing a series of approxi-
mations (see Appendix of [67]). Of course, this does not mean
that the errors which are introduced are large or significant, as
can be a-posteriori checked on numerical simulations.
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EFT counterterms

Two types of counterterms: speed of sound and stochastic. Up to third order and (k/kNL)4:

The ✏(n)i are general random fields that are uncorrelated with the density perturbation and accounts
for non-linear stochasticity and shot-noise. The c2s are the sound speeds of the tracer considered,
see also cite EFT, while the parameters ⌘ describe further stochastic e↵ects at third order. b̃0,t
accounts for the small scale term degenerate with the linear bias. For more details on this, see [14].

Using eqs. (3.23), (3.24) and (3.25) in the redshift space expansion in eq. (3.18) we obtain the
third order UV corrections to the matter overdensity in redshift space

�(1)t,s (k; ⌘) =�(1),PTt,s (k, ⌘) ,

�(2)t,s (k; ⌘) =�(2),PTt,s (k, ⌘) + ✏(2)t (⌘) + fµ2
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k2
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,

�(3)t,s (k; ⌘) =�(3),PTt,s (k, ⌘) +
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+ fµ2
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(3.26)

3.2 Pgg(k, µ) in bootstrap language

We define the linear PS as
h'k'k0i ⌘ (2⇡)3�D(k+ k0)PL(k) , (3.27)

while the PS of a generic tracer is, in redshift space,

Pt,s(k; ⌘) = h�t,s(k; ⌘)�t,s(k
0; ⌘)i0 , (3.28)

where h. . . i0 indicates that we have divided by (2⇡)3�D(k+ k0). Using the perturbative expansion
in eq. (3.18) it is possible to calculate the 1-loop power spectrum

P 1�loop,PT
t,s (k; ⌘) = P11(k; ⌘) + P22(k; ⌘) + P13(k; ⌘) , (3.29)

where we have defined
P11(k; ⌘) ⌘ Z1(k)

2PL(k) , (3.30)

P22(k; ⌘) ⌘
1

2

Z
d3q

(2⇡)3
[Z2(k� q,q)]2 PL(q)PL(|k� q|) , (3.31)

and

P13(k; ⌘) ⌘ Z1(k)PL(k)

Z
d3q

(2⇡)3
Z3(k,q,�q)PL(q) . (3.32)

Notice the di↵erent numerical coe�cient in front of the integrals in eq. 3.31 and eq. 3.32 compared
to other results in literature cite some. This is due to the definition of the perturbative kernels in
eq. 3.19, see also eq. 3.4. From eq. 3.28 we can calculate the UV corrections to the 1-loop galaxy
PS in redshift space,

PUV
22 (k; ⌘) ⌘ h�(2),PTt,s (k)�(2),UV

t,s (k)i0 + hk $ k0
i
0 + h�(2),UV

t,s (k)�(2),UV
t,s (k)i0 , (3.33)

where we have defined

�(2),UV
t,s ⌘ ✏(2)t + fµ2

k
k2

k2NL

✏(3)✓ . (3.34)

9

Perturbation theory fails on small scales (and new physics appears)                   . Effects can be 
accounted for by an expansion in 
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k > kNL
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k/kNL

In redshift-space

and using eq. (3.18) and (3.19) we obtain

Z1(q1) =K1(q1) + fµ2
1G1(q1) , (3.20)

Z2(q1,q2) =K2(q1,q2) + fµ2
kG2(q1,q2)

+ fµkk


µ1

q1
G1(q1)

�
K1(q2) + fµ2

2G1(q2)
�
+ cyclic

�
, (3.21)

Z3(q1,q2,q3) =K3(q1,q2,q3) + fµ2
kG3(q1,q2,q3)

+ µkkf
nµ1

q1
G1(q1)

⇥
K2(q2,q3) + fµ2

23G2(q2,q3)
⇤

+
µ23

q23
G2(q2,q3)

⇥
K1(q1) + fµ2

1G1(q1)
⇤
+ cyclic

o

+ µ2
kk

2f2
nµ2

q2

µ3

q3
G1(q2)G1(q3)

⇥
K1(q1) + fµ2

1G1(q1)
⇤
+ cyclic

o
. (3.22)

These kernels satisfy a general version of the Nl�1LO equations that we can obtain by imposing
the EGI, which can be found in appendix (A).

3.1 UV counterterms

Here we provide a complete description of the main UV contributions to the power spectrum up
to the third perturbative order. Following the steps outlined in [14] for the calculation of the small
scale terms, in real space one obtains

�(1)(k, ⌘) = �(1),PT(k, ⌘) ,

✓(1)(k, ⌘) = ✓(1),PT(k, ⌘) ,

�(1)t (k, ⌘) = �(1),PTt (k, ⌘) ,

(3.23)

at second order

�(2)(k, ⌘) = �(2),PT(k, ⌘) +
k2

k2NL

✏(2)� (⌘) +O

✓
k4

k4NL

◆
,

✓(2)(k, ⌘) = ✓(2),PT(k, ⌘) +
k2

k2NL

✏(2)✓ (⌘) +O

✓
k4

k4NL

◆
,

�(2)t (k, ⌘) = �(2),PTt (k, ⌘) + ✏(2)t (⌘) + ✏(2)k

k2

k2NL

+O

✓
k4

k4NL

◆
,

(3.24)

and, finally, at third order

�(3)(k, ⌘) = �(3), PT (k, ⌘) +
k2

k2NL

h⇣
c2s,�(⌘) + ⌘(3)� (⌘)

⌘
'k(⌘) + ✏(3)� (⌘)

i
+O

✓
k4

k4NL

◆
,

✓(3)(k, ⌘) = ✓(3), PT (k, ⌘) +
k2

k2NL

h⇣
c2s,✓(⌘) + ⌘(3)✓ (⌘)

⌘
'k(⌘) + ✏(3)✓ (⌘)

i
+O

✓
k4

k4NL

◆
,

�(3)t (k, ⌘) = �(3), PT
t (k, ⌘) +


b̃0,t(⌘) + ⌘(3)t (⌘) + c2s,t(⌘)

k2

k2NL

�
'k(⌘) + ✏(3)t (⌘) + ✏(3)k

k2

k2NL

+O

✓
k4

k4NL

◆
.

(3.25)
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and using eq. (3.18) and (3.19) we obtain

Z1(q1) =K1(q1) + fµ2
1G1(q1) , (3.20)

Z2(q1,q2) =K2(q1,q2) + fµ2
kG2(q1,q2)

+ fµkk


µ1

q1
G1(q1)

�
K1(q2) + fµ2

2G1(q2)
�
+ cyclic

�
, (3.21)

Z3(q1,q2,q3) =K3(q1,q2,q3) + fµ2
kG3(q1,q2,q3)

+ µkkf
nµ1

q1
G1(q1)

⇥
K2(q2,q3) + fµ2

23G2(q2,q3)
⇤

+
µ23

q23
G2(q2,q3)

⇥
K1(q1) + fµ2

1G1(q1)
⇤
+ cyclic

o

+ µ2
kk

2f2
nµ2

q2

µ3

q3
G1(q2)G1(q3)

⇥
K1(q1) + fµ2

1G1(q1)
⇤
+ cyclic

o
. (3.22)

These kernels satisfy a general version of the Nl�1LO equations that we can obtain by imposing
the EGI, which can be found in appendix (A).

3.1 UV counterterms

Here we provide a complete description of the main UV contributions to the power spectrum up
to the third perturbative order. Following the steps outlined in [14] for the calculation of the small
scale terms, in real space one obtains

�(1)(k, ⌘) = �(1),PT(k, ⌘) ,

✓(1)(k, ⌘) = ✓(1),PT(k, ⌘) ,

�(1)t (k, ⌘) = �(1),PTt (k, ⌘) ,

(3.23)

at second order

�(2)(k, ⌘) = �(2),PT(k, ⌘) +
k2

k2NL

✏(2)� (⌘) +O

✓
k4

k4NL

◆
,

✓(2)(k, ⌘) = ✓(2),PT(k, ⌘) +
k2

k2NL

✏(2)✓ (⌘) +O

✓
k4

k4NL

◆
,

�(2)t (k, ⌘) = �(2),PTt (k, ⌘) + ✏(2)t (⌘) + ✏(2)k

k2

k2NL

+O

✓
k4

k4NL

◆
,

(3.24)

and, finally, at third order

�(3)(k, ⌘) = �(3), PT (k, ⌘) +
k2

k2NL

h⇣
c2s,�(⌘) + ⌘(3)� (⌘)

⌘
'k(⌘) + ✏(3)� (⌘)

i
+O

✓
k4

k4NL

◆
,

✓(3)(k, ⌘) = ✓(3), PT (k, ⌘) +
k2

k2NL

h⇣
c2s,✓(⌘) + ⌘(3)✓ (⌘)

⌘
'k(⌘) + ✏(3)✓ (⌘)

i
+O

✓
k4

k4NL

◆
,

�(3)t (k, ⌘) = �(3), PT
t (k, ⌘) +


b̃0,t(⌘) + ⌘(3)t (⌘) + c2s,t(⌘)

k2

k2NL

�
'k(⌘) + ✏(3)t (⌘) + ✏(3)k

k2

k2NL

+O

✓
k4

k4NL

◆
.

(3.25)
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and using eq. (3.18) and (3.19) we obtain

Z1(q1) =K1(q1) + fµ2
1G1(q1) , (3.20)

Z2(q1,q2) =K2(q1,q2) + fµ2
kG2(q1,q2)

+ fµkk


µ1

q1
G1(q1)

�
K1(q2) + fµ2

2G1(q2)
�
+ cyclic

�
, (3.21)

Z3(q1,q2,q3) =K3(q1,q2,q3) + fµ2
kG3(q1,q2,q3)

+ µkkf
nµ1

q1
G1(q1)

⇥
K2(q2,q3) + fµ2

23G2(q2,q3)
⇤

+
µ23

q23
G2(q2,q3)

⇥
K1(q1) + fµ2

1G1(q1)
⇤
+ cyclic

o

+ µ2
kk

2f2
nµ2

q2

µ3

q3
G1(q2)G1(q3)

⇥
K1(q1) + fµ2

1G1(q1)
⇤
+ cyclic

o
. (3.22)

These kernels satisfy a general version of the Nl�1LO equations that we can obtain by imposing
the EGI, which can be found in appendix (A).

3.1 UV counterterms

Here we provide a complete description of the main UV contributions to the power spectrum up
to the third perturbative order. Following the steps outlined in [14] for the calculation of the small
scale terms, in real space one obtains

�(1)(k, ⌘) = �(1),PT(k, ⌘) ,

✓(1)(k, ⌘) = ✓(1),PT(k, ⌘) ,

�(1)t (k, ⌘) = �(1),PTt (k, ⌘) ,

(3.23)

at second order

�(2)(k, ⌘) = �(2),PT(k, ⌘) +
k2

k2NL

✏(2)� (⌘) +O

✓
k4

k4NL

◆
,

✓(2)(k, ⌘) = ✓(2),PT(k, ⌘) +
k2

k2NL

✏(2)✓ (⌘) +O

✓
k4

k4NL

◆
,

�(2)t (k, ⌘) = �(2),PTt (k, ⌘) + ✏(2)t (⌘) + ✏(2)k

k2

k2NL

+O

✓
k4

k4NL

◆
,

(3.24)

and, finally, at third order

�(3)(k, ⌘) = �(3), PT (k, ⌘) +
k2

k2NL

h⇣
c2s,�(⌘) + ⌘(3)� (⌘)

⌘
'k(⌘) + ✏(3)� (⌘)

i
+O

✓
k4

k4NL

◆
,

✓(3)(k, ⌘) = ✓(3), PT (k, ⌘) +
k2

k2NL

h⇣
c2s,✓(⌘) + ⌘(3)✓ (⌘)

⌘
'k(⌘) + ✏(3)✓ (⌘)

i
+O

✓
k4

k4NL

◆
,

�(3)t (k, ⌘) = �(3), PT
t (k, ⌘) +


b̃0,t(⌘) + ⌘(3)t (⌘) + c2s,t(⌘)

k2

k2NL

�
'k(⌘) + ✏(3)t (⌘) + ✏(3)k

k2

k2NL

+O

✓
k4

k4NL

◆
.

(3.25)
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Conclusions  

Beyond GR:

• Galaxy clustering can be modelled by perturbation theory + finite number of effective parameters + 
bias expansion + redshift-space distorsions

• If same symmetries as GR (equivalence principle): same PT kernels, same bias and RSD expansion 
as GR. We can apply same procedure as in GR 

• Perturbation theory in the mildly nonlinear regime constructed, in terms of a few MG parameters

• If not same symmetries as GR (e.g. EP violations): new structure of the kernels expected. Can be 
used as signature of GR/symmetries violations.  

For GR:

• Future III: We focused on scale-independent models. Scale-dependent models more complicated to 
model but procedure can be extended similarly.

• Future II: systematic study of these deviations 

• Future I: Analyse simulations




