RSD & weak lensing : LCDM is alive and well!

A. Blanchard, J.-Y. Héloret, S. Illić

Marseille, May 6th, 2022

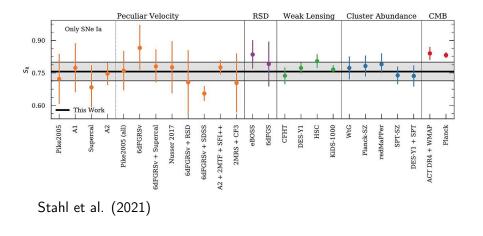
The amplitude of matter fluctuations tension, i.e. S_8 tension.

Definition :

$$S_8 = \sigma_8 \left(\frac{\Omega_m}{0.3}\right)^{1/2} \tag{1}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

The amplitude of matter fluctuations tension, i.e. S_8 tension.

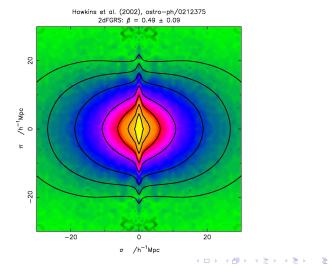

Definition :

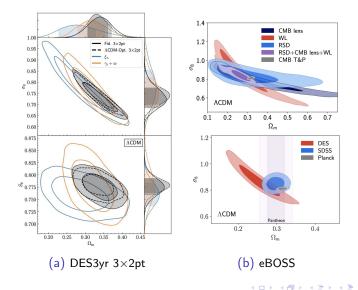
$$S_8 = \sigma_8 \left(\frac{\Omega_m}{0.3}\right)^{1/2} \tag{1}$$

<ロ> (四) (四) (三) (三) (三)

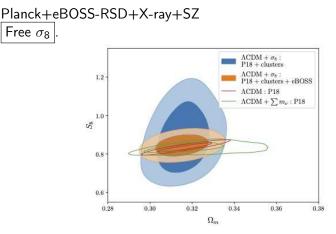
Well adapted for clusters and weak lensing.

The amplitude of matter fluctuations tension, i.e. S_8 tension.

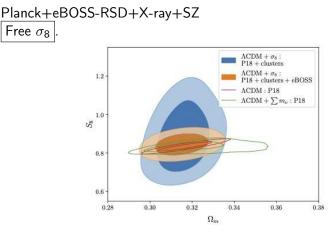



▲ロ > ▲母 > ▲目 > ▲目 > ▲目 > ● ▲ ●

• weak lensing


- weak lensing
- RSD (redshift space distorsion) $\rightarrow f\sigma_8$

- weak lensing
- RSD (redshift space distorsion) $\rightarrow f\sigma_8$


э

イロト イポト イヨト イヨト

э

Blanchard & Ilić, A&A, 656, A75 (2021)

イロト イポト イヨト イヨト

Blanchard & Ilić, A&A, 656, A75 (2021) Also implications for cluster mass calibration

Next step: Jean-Yves Héloret & Stéphane Illić

Recipe:

Next step: Jean-Yves Héloret & Stéphane Illić

Recipe:

• use only "local" data (i.e. $z \ll 1000$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Next step: Jean-Yves Héloret & Stéphane Illić

Recipe:

• use only "local" data (i.e. $z \ll 1000$

◆ロト ◆聞 ▶ ◆臣 ▶ ◆臣 ▶ ○ 臣 ○ のへで

• work in the ACDM framework.

Recipe:

• use only "local" data (i.e. $z \ll 1000$

◆ロト ◆聞 ▶ ◆臣 ▶ ◆臣 ▶ ○ 臣 ○ のへで

- work in the ACDM framework.
- RSD

Recipe:

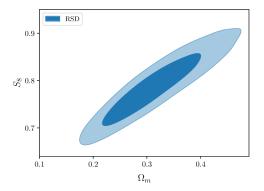
• use only "local" data (i.e. $z \ll 1000$

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・ うらつ

- work in the ACDM framework.
- RSD
- SNIa diagram Pantheon+,

Recipe:

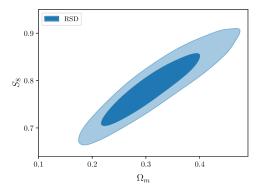
• use only "local" data (i.e. $z \ll 1000$


<ロ> (四) (四) (三) (三) (三) (三)

- work in the ACDM framework.
- RSD
- SNIa diagram Pantheon+,
- WL from DES 3yr

RSD from surveys

Survey	\mathbf{z}	$\mathrm{f}\sigma_8$	Refs
2MFT	0.001	0.51 + / -0.085	[19]
6 dFGS	0.067	0.423 + / -0.055	[20]
SDSS DR13	0.1	0.48 + / -0.16	[21]
2dFGRS	0.17	0.51 + / -0.06	[22]
GAMA	0.18	0.36 + / - 0.09	[23]
WiggleZ	0.22	0.42 + / -0.07	[24]
SDSS LRG60	0.25	0.35 + / - 0.06	[25]
BOSS LOW Z	0.32	0.48 + / - 0.1	[26]
GAMA	0.36	0.44 + / - 0.06	[23]
SDSS LRG 200	0.37	0.46 + / - 0.04	[25]
WiggleZ	0.41	0.45 + / -0.04	[24]
CMASS BOSS	0.57	0.453 + / -0.02	[27]
WiggleZ	0.6	0.43 + / -0.04	[24]
VIPERS	0.6	0.48 + / -0.12	[28]
SDSS IV	0.69	0.447 + / -0.039	[29]
VIPERS	0.76	0.44 + / -0.04	[30]
SDSS IV	0.77	0.432 + / -0.038	[31]
WiggleZ	0.78	0.38 + / -0.04	[24]
SDSS IV	0.85	0.52 + / -0.10	[32]
VIPERS	0.86	0.48 + / -0.10	[28]
SDSS IV	0.978	0.379 + / -0.176	[31]
SDSS IV	1.23	0.385 + / - 0.1	[31]
Fastsound	1.4	0.494 + / -0.123	[33]
SDSS IV	1.52	0.426 + /-0.077	[34]
SDSS IV	1.944	0.364 + / -0.106	[31]


RSD from surveys: constraints

・ロト ・聞と ・ヨト ・ヨト

æ

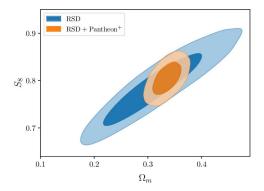
RSD from surveys: constraints

・ロト ・回ト ・目下

표 제 표

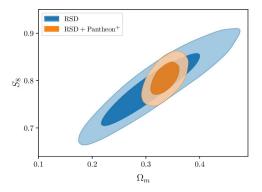
Not surprisingly strong degeneracy

RSD from surveys: constraints

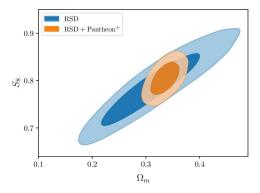


< □ > < 同 > < 三 >

Not surprisingly strong degeneracy Need to combine with other low - z data

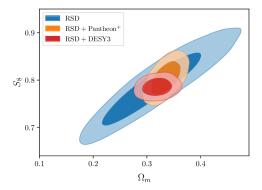

Pantheon+: SNIa Hubble diagram (Brout et al., 2022): $\Omega_M = 0.338 \pm 0.018$ for Λ CDM

Pantheon+: SNIa Hubble diagram (Brout et al., 2022): $\Omega_M = 0.338 \pm 0.018$ for Λ CDM

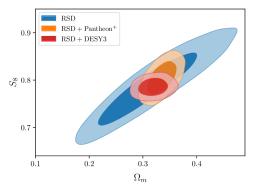

ヨート

Pantheon+: SNIa Hubble diagram (Brout et al., 2022): $\Omega_M = 0.338 \pm 0.018$ for Λ CDM

 $S_8 = 0.806 \pm 0.023$

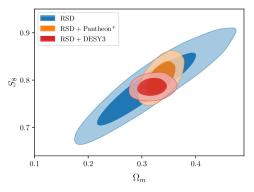

Pantheon+: SNIa Hubble diagram (Brout et al., 2022): $\Omega_M = 0.338 \pm 0.018$ for Λ CDM

A B > A B > A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A


3

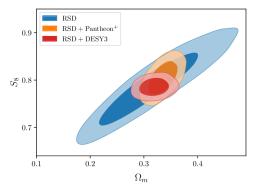
 $S_8 = 0.806 \pm 0.023$ (Planck $S_8 = 0.834 \pm 0.016$)

・ロト ・聞と ・ヨト ・ヨト


э

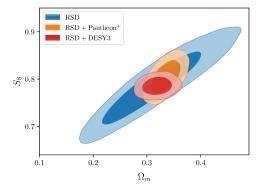
・ロト ・聞と ・ヨト ・ヨト

э

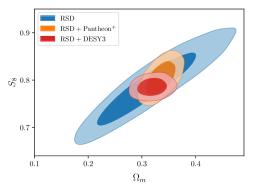

 $S_8 = 0.786 \pm 0.012$

・ロト ・ 日 ・ ・ 日 ・ ・

3 x 3

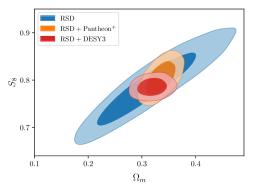

 $S_8 = 0.786 \pm 0.012$ $\Omega_M = 0.317 \pm 0.017$

・ロト ・四ト ・ヨト ・ヨト

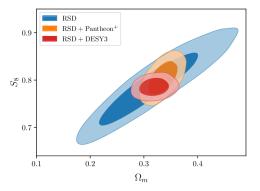

э

 $S_8 = 0.786 \pm 0.012$ (DES3yr $S_8 = 0.776 \pm 0.018$) $\Omega_M = 0.317 \pm 0.017$

・ロト ・ 日 ・ ・ 日 ・ ・

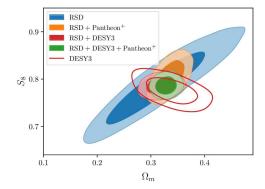

3 x 3

・ロト ・ 日 ・ ・ 日 ・ ・

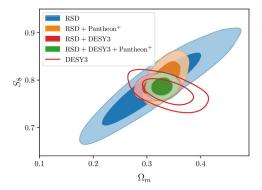

3 x 3

 $S_8 = 0.788 \pm 0.012$

・ロト ・ 日 ・ ・ 田 ト

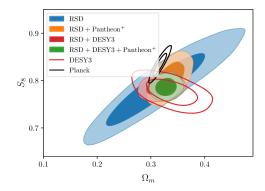

 $S_8 = 0.788 \pm 0.012$ $\Omega_M = 0.327 \pm 0.013$

・ロト ・ 日 ・ ・ 日 ・ ・


 $\exists \rightarrow$

 $S_8 = 0.788 \pm 0.012$ (DES3yr $S_8 = 0.776 \pm 0.018$) $\Omega_M = 0.327 \pm 0.013$

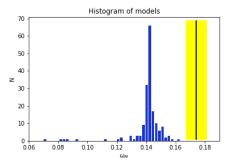
・ロト ・ 日 ・ ・ 日 ・ ・


3 x 3

・ロト ・聞と ・ヨト ・ヨト

э

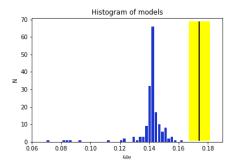
tension : 2.3 σ


・ロト ・日下 ・日下

A (new) challenge for extensions....

 $\Omega_{\textit{M}}=0.327\pm0.013$

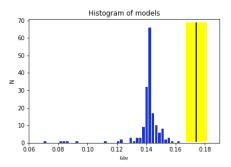
▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●


$\Omega_{\textit{M}}=0.327\pm0.013$

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ─

э

$\Omega_{\textit{M}}=0.327\pm0.013$



・ロト ・四ト ・ヨト ・ヨト

э

 $\omega_M = 0.1409 \pm 0.011$ with SH0ES: $\omega_M = 0.1743 \pm 0.0069$

 $\Omega_{\textit{M}}=0.327\pm0.013$

< ロ > < 得 > < き > < き > ・

э

 $\omega_M=0.1409\pm0.011$ with SH0ES: $\omega_M=0.1743\pm0.0069$ with 67 km/s/Mpc : $\omega_M=0.1447\pm0.0058$

• ΛCDM is a 40-years old theory that matches remarkably well data at cosmological scales.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日 ・

• ACDM is a 40-years old theory that matches remarkably well data at cosmological scales.

• Tensions are a serious concern anyway.

- ACDM is a 40-years old theory that matches remarkably well data at cosmological scales.
- Tensions are a serious concern anyway.
- *S*₈ tension seems not strong enough, i.e. no tension!

- ACDM is a 40-years old theory that matches remarkably well data at cosmological scales.
- Tensions are a serious concern anyway.
- *S*₈ tension seems not strong enough, i.e. no tension!
- \bullet Low redhsift universe seems to have $\Omega_M\sim 0.32$

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・ うらつ

- ACDM is a 40-years old theory that matches remarkably well data at cosmological scales.
- Tensions are a serious concern anyway.
- *S*₈ tension seems not strong enough, i.e. no tension!
- \bullet Low redhsift universe seems to have $\Omega_M\sim 0.32$
- This would mean for $H_0 \sim 73$ in serious conflict with Planck.

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・ うらつ

- ACDM is a 40-years old theory that matches remarkably well data at cosmological scales.
- Tensions are a serious concern anyway.
- *S*₈ tension seems not strong enough, i.e. no tension!
- \bullet Low redhsift universe seems to have $\Omega_M\sim 0.32$
- This would mean for $H_0 \sim 73$ in serious conflict with Planck.

Thank You

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○