

LyAl-Net: A high-efficiency Lyman- α forest simulation with neural network

CHOTIPAN BOONKONGKIRD (NAI) Sorbonne Université

Boonkongkird et al. 2022 (work is still in progress)

Supervisor : GUILHEM LAVAUX

What is Lyman-Alpha Forest?

QSO

Redshifted

Neutral Hydrogen clouds

Boonkongkird et al. 2022 (work is still in progress)

Observed QSO Spectra

Overview

Motivations

- Matter overdensities map (Ravoux et al. 2020)
- Neutrino masses
 (Palanque-Delabrouille et al. 2019)
- Forward Modelling (Porqueres et al. 2020)

Matter overdensities from eBOSS

A tomographic map of the large-scale matter distribution using the eBOSS Stripe 82 Ly-α forest (Ravoux et al. 2020)

Overview

Motivations

- Matter overdensities map (Ravoux et al. 2020)
- Neutrino masses (Palanque-Delabrouille et al. 2019)
- Forward Modelling (Porqueres et al. 2020)

- simulation
- computational costs
- Tons of mocks needed

Boonkongkird et al. 2022 (work is still in progress)

Problems

• Extremely expensive N-body

• The volume of Hydrodynamic simulations limited by the

• Horizon simulation takes millions of CPU hours

Horizon AGN Simulation

Dancing in the dark: galactic properties trace spin swings along the cosmic web (Dubois et al. 2014)

Overview

Motivations

- Matter overdensities map (Ravoux et al. 2020)
- Neutrino masses (Palanque-Delabrouille et al. 2019)
- Forward Modelling (Porqueres et al. 2020)

- simulation
- computational costs
- Tons of mocks needed

Boonkongkird et al. 2022 (work is still in progress)

Problems

• Extremely expensive N-body

• The volume of Hydrodynamic simulations limited by the

• Horizon simulation takes millions of CPU hours

Possible Solution

- Using a Neural Network as an emulator
- Cheaper, faster, can be run on a small machine

Challenges

- Architecture choice, *U-net*
- Feature engineering
- Physical Interpretability
- Model generalisation for other gas physics

Objective

Simulate the Lyman Alpha Absorption from Dark Matter density & velocity

Ζ

LyAI-Net Methodology Overview

LyAI-Net Data Pre-Processing

Boonkongkird et al. 2022 (work is still in progress)

~7.9 Mpc/*h* (81 pixels)

Randomly Rotated

~7.9 Mpc/*h* (81 pixels)

LyAI-Net **Training Process**

Lyman-alpha Absorption: Quality Assessment

Lyman-alpha Absorption: Quality Assessment

Two-point correlation function

Measure the excess probability to find two point objects

$$\xi(|\mathbf{r}|) = \langle \delta_A(\mathbf{r}')\delta_B(\mathbf{r}'+\mathbf{r})\rangle$$

Two-point correlation in Fourier space

$$P(|\mathbf{k}|) = \int d^3 \mathbf{r} \xi(r) e^{i\mathbf{k}\cdot\mathbf{r}}$$

Lyman-alpha Absorption: Quality Assessment

Two-point correlation function

Measure the excess probability to find two point objects

$$\xi(|\mathbf{r}|) = \langle \delta_A(\mathbf{r}')\delta_B(\mathbf{r}'+\mathbf{r})\rangle$$

Two-point correlation in Fourier space

$$P(|\mathbf{k}|) = \int d^3 \mathbf{r} \xi(r) e^{i\mathbf{k}\cdot\mathbf{r}}$$

What about other simulations with different cosmology and AGN physics?

LyAI-Net with TNG100 - Naïve Application

- Agrees well in the main region of the distribution
- struggles with the high temperature
- Bias due to a different Baryonic physics; e.g.background UV, AGN feedbacks

LyAI-Net with TNG100 - Naïve Application

- Agrees well in the main region of the distribution
- struggles with the high temperature
- Bias due to a different Baryonic physics; e.g.background UV, AGN feedbacks

Boonkongkird et al. 2022 (work is still in progress)

Lack of high temperature predictions

LyAI-Net with TNG100 - Naïve Application

- Agrees well in the main region of the distribution
- struggles with the high temperature
- Bias due to a different Baryonic physics; e.g.background UV, AGN feedbacks

Boonkongkird et al. 2022 (work is still in progress)

Lack of high temperature predictions

Transfer Function

Measure the magnitude information

$$T(k) = \sqrt{\frac{P_k^{\text{Pred}}}{P_k^{\text{True}}}}$$

Cross Correlation Function

Measure the spatial information

$$r = \sqrt{\frac{P_k^{\text{True} \times \text{Pred}}}{P_k^{\text{True}} P_k^{\text{Pred}}}}$$

LyAI-Net -TNG100 vs Horizon-noAGN

The density-temperature distribution of gas of TNG100 at z=2.50

$$g_{10} T = \log_{10} T_0 + (\gamma - 1) \log_{10} \left(\frac{\rho_b}{\bar{\rho_b}} \right)$$

The density-temperature distribution of gas of Horizon-noAGN at z=2.53

LyAI-Net -TNG100 vs Horizon-noAGN

The density-temperature distribution of gas of TNG100 at z=2.50

$$g_{10} T = \log_{10} T_0 + (\gamma - 1) \log_{10} \left(\frac{\rho_b}{\bar{\rho_b}} \right)$$

The density-temperature distribution of gas of Horizon-noAGN at z=2.53

Transfer Learning with TNG100 - Overview

Transfer Learning with TNG100 - Overview

Boonkongkird et al. 2022 (work is still in progress)

If *x* changes, then *y* changes!

Transfer Learning with TNG100 - Overview

_
_

Conclusions

Short Term Goal

- Emulate different configurations of the physics

Long Term Goal

- Applying to Lyman alpha forest observation/data
- Likelihood free inference model, such as SELFI

Boonkongkird et al. 2022 (work is still in progress)

In-depth study the sensitivities of the absorption model to be within an observational errors

Appendix

TNG100 - Dark Matter vs Gas Velocities

_