Modified gravity simulations

On the road to build reliable emulators for modified gravity models

Christian Arnold

05.05.22, Marseille

ICC, Durham University

European Research Council Established by the European Commission

1

We want 'normal' gravity in our local environment \Rightarrow screening mechanism as a classification method:

We want 'normal' gravity in our local environment \Rightarrow screening mechanism as a classification method:

• Chameleon: f(R), Symmetron, JBD (Jordan-Brans-Dicke)

We want 'normal' gravity in our local environment \Rightarrow screening mechanism as a classification method:

- Chameleon: f(R), Symmetron, JBD (Jordan-Brans-Dicke)
- Vainshtain: DGP, nDGP, Galileon

We want 'normal' gravity in our local environment \Rightarrow screening mechanism as a classification method:

- Chameleon: f(R), Symmetron, JBD (Jordan-Brans-Dicke)
- Vainshtain: DGP, nDGP, Galileon
- K-mouflage, γ -gravity, δ -gravity, . . .

We want 'normal' gravity in our local environment \Rightarrow screening mechanism as a classification method:

- Chameleon: f(R), Symmetron, JBD (Jordan-Brans-Dicke)
- Vainshtain: DGP. nDGP. Galileon
- K-mouflage, γ -gravity, δ -gravity, ...

2

Modified gravity models: Effect on the matter power spectrum

Modified gravity models: Effect on the matter power spectrum

Modified gravity models: Effect on the matter power spectrum

Modified Gravity Simulation Codes

Classic codes	Fast / approximate codes	Emulators
ECOSMOG f(R), nDGP, Galileon	MG-GLAM f(R), nDGP,	FORGE f(R)
^{ISIS} f(R), Symmetron	MG-HALOFIT/CAMB $f(R)$	REACT f(R), nDGP
MG-GADGET $f(R)(+\nu)$	^{MG-COLA} f(R), DGP, Symmetron, JBD	bridge nDGP
AREPO f(R), nDGP (+ ν)	MG-EVOLUTION f(R), nDGP	

• Screening mechanisms make the equations to solve very non-linear

 $\nabla^2 f_R = \frac{1}{3} \left[\delta R(f_R) - 8\pi G \delta \rho \right]$

- Screening mechanisms make the equations to solve very non-linear
- but: most traditional gravity solvers (oct-tree, particle mesh, ...) require linearity in the equations

$$\nabla^2 f_R = \frac{1}{3} \left[\delta R(f_R) - 8\pi G \delta \rho \right]$$

- Screening mechanisms make the equations to solve very non-linear
- but: most traditional gravity solvers (oct-tree, particle mesh, ...) require linearity in the equations
- use iterative solvers on grids

$$\nabla^2 f_R = \frac{1}{3} \left[\delta R(f_R) - 8\pi G \delta \rho \right]$$

- Screening mechanisms make the equations to solve very non-linear
- but: most traditional gravity solvers (oct-tree, particle mesh, ...) require linearity in the equations
- use iterative solvers on grids
- gain resolution and efficiency by AMR and multigrid methods

$$\nabla^2 f_R = \frac{1}{3} \left[\delta R(f_R) - 8\pi G \delta \rho \right]$$

- Screening mechanisms make the equations to solve very non-linear
- but: most traditional gravity solvers (oct-tree, particle mesh, ...) require linearity in the equations
- use iterative solvers on grids
- gain resolution and efficiency by AMR and multigrid methods
- can simulate hydrodynamics or even galaxy formation (e.g. SHIBONE) and neutrinos

$$\nabla^2 f_R = \frac{1}{3} \left[\delta R(f_R) - 8\pi G \delta \rho \right]$$

- Screening mechanisms make the equations to solve very non-linear
- but: most traditional gravity solvers (oct-tree, particle mesh, ...) require linearity in the equations
- use iterative solvers on grids
- gain resolution and efficiency by AMR and multigrid methods
- can simulate hydrodynamics or even galaxy formation (e.g. SHIBONE) and neutrinos
- slow and computationally expensive if many runs are required

$$\nabla^2 f_R = \frac{1}{3} \left[\delta R(f_R) - 8\pi G \delta \rho \right]$$

Modified Gravity Simulation Codes

Classic codes	Fast / approximate codes	Emulators
ECOSMOG f(R), nDGP, Galileon	MG-GLAM f(R), nDGP,	FORGE f(R)
^{ISIS} f(R), Symmetron	MG-HALOFIT/CAMB $f(R)$	react f(R), nDGP
MG-GADGET $f(R) (+\nu)$	MG-COLA f(R), DGP, Symmetron, JBD	bridge nDGP
AREPO f(R), nDGP (+ ν)	MG-EVOLUTION f(R), nDGP	

• Neglect smaller scale effects (PM) or use halo model (e.g. HALOFIT)

- Neglect smaller scale effects (PM) or use halo model (e.g. HALOFIT)
- parametrised approach: can simulate many different MG-models

- Neglect smaller scale effects (PM) or use halo model (e.g. HALOFIT)
- parametrised approach: can simulate many different MG-models
- factors of 100s to 1000s faster than classic codes

- Neglect smaller scale effects (PM) or use halo model (e.g. HALOFIT)
- parametrised approach: can simulate many different MG-models
- factors of 100s to 1000s faster than classic codes
- unsuitable for e.g. halo profiles

- Neglect smaller scale effects (PM) or use halo model (e.g. HALOFIT)
- parametrised approach: can simulate many different MG-models
- factors of 100s to 1000s faster than classic codes
- unsuitable for e.g. halo profiles
- but great for HMF or power spectra

- Neglect smaller scale effects (PM) or use halo model (e.g. HALOFIT)
- parametrised approach: can simulate many different MG-models
- factors of 100s to 1000s faster than classic codes
- unsuitable for e.g. halo profiles
- but great for HMF or power spectra

Hassani&Lombriser(2020)

Modified Gravity Simulation Codes

Classic codes	Fast / approximate codes	Emulators
ECOSMOG f(R), nDGP, Galileon	MG-GLAM f(R), nDGP,	FORGE f(R)
^{ISIS} f(R), Symmetron	$_{\rm MG-HALOFIT/CAMB}$ f(R)	^{REACT} f(R), nDGP
MG-GADGET $f(R)(+\nu)$	^{MG-COLA} f(R), DGP, Symmetron, JBD	bridge nDGP
AREPO f(R), nDGP (+ ν)	MG-EVOLUTION f(R), nDGP	

• Tailored to a certain observable

- Tailored to a certain observable
- Fill the parameter space between simulation results

- Tailored to a certain observable
- Fill the parameter space between simulation results
- Much faster than approximate codes: running CAMB/HALOFIT still takes O(1)s, FORGE takes O(1)ms

- Tailored to a certain observable
- Fill the parameter space between simulation results
- Much faster than approximate codes: running CAMB/HALOFIT still takes O(1)s, FORGE takes O(1)ms
- much faster for MCMCs

- Tailored to a certain observable
- Fill the parameter space between simulation results
- Much faster than approximate codes: running CAMB/HALOFIT still takes O(1)s, FORGE takes O(1)ms
- much faster for MCMCs

BRIDGE (preliminary)

Modified Gravity Simulation Codes

Classic codes	Fast / approximate codes	Emulators
ECOSMOG f(R), nDGP, Galileon	MG-GLAM f(R), nDGP,	FORGE f(R)
^{ISIS} f(R), Symmetron	MG-HALOFIT/CAMB $f(R)$	REACT f(R), nDGP
MG-GADGET $f(R)(+\nu)$	MG-COLA f(R), DGP, Symmetron, JBD	bridge nDGP
AREPO $f(R)$, nDGP $(+\nu)$	MG-EVOLUTION f(R), nDGP	
Add another term to the action of GR:

$$S = \int \mathrm{d}^4 x \sqrt{-g} \left[\frac{R + f(R)}{16\pi G} + \mathcal{L}_m \right]$$

Add another term to the action of GR:

$$S = \int d^4 x \sqrt{-g} \left[\frac{R + f(R)}{16\pi G} + \mathcal{L}_m \right]$$
$$f_R = \frac{df(R)}{dR}$$

Newtonian limit:

 $\nabla^2 \Phi = \frac{4}{3} \times 4\pi G \delta \rho - \frac{1}{6} \delta R \qquad \nabla^2 f_R = \frac{1}{3} \left(\delta R - 8\pi G \delta \rho \right)$

Add another term to the action of GR:

$$S = \int d^4x \sqrt{-g} \left[\frac{R + f(R)}{16\pi G} + \mathcal{L}_m \right]$$
$$f_R = \frac{df(R)}{dR}$$

Newtonian limit:

 $\nabla^2 \Phi = \frac{4}{3} \times 4\pi G \delta \rho - \frac{1}{6} \delta R \qquad \nabla^2 f_R = \frac{1}{3} \left(\delta R - 8\pi G \delta \rho \right)$

$$f(R) = -m^2 \frac{c_1 \left(\frac{R}{m^2}\right)^n}{c_2 \left(\frac{R}{m^2}\right)^n + 1} \qquad m^2 \equiv H_0^2 \Omega_m$$

Add another term to the action of GR:

$$S = \int d^4 x \sqrt{-g} \left[\frac{R + f(R)}{16\pi G} + \mathcal{L}_m \right]$$
$$f_R = \frac{df(R)}{dR}$$

Newtonian limit:

 $\nabla^2 \Phi = \frac{4}{3} \times 4\pi G \delta \rho - \frac{1}{6} \delta R \qquad \nabla^2 f_R = \frac{1}{3} \left(\delta R - 8\pi G \delta \rho \right)$

$$f(R) = -m^2 \frac{c_1 \left(\frac{R}{m^2}\right)^n}{c_2 \left(\frac{R}{m^2}\right)^n + 1} \qquad m^2 \equiv H_0^2 \Omega_m$$

Add another term to the action of GR:

$$S = \int d^4 x \sqrt{-g} \left[\frac{R + f(R)}{16\pi G} + \mathcal{L}_m \right]$$
$$f_R = \frac{df(R)}{dR}$$

Newtonian limit:

 $\nabla^2 \Phi = \frac{4}{3} \times 4\pi G \delta \rho - \frac{1}{6} \delta R \qquad \nabla^2 f_R = \frac{1}{3} \left(\delta R - 8\pi G \delta \rho \right)$

$$f(R) = -m^2 \frac{c_1 \left(\frac{R}{m^2}\right)^n}{c_2 \left(\frac{R}{m^2}\right)^n + 1} \qquad m^2 \equiv H_0^2 \Omega_m$$

Add another term to the action of GR:

$$S = \int d^4 x \sqrt{-g} \left[\frac{R + f(R)}{16\pi G} + \mathcal{L}_m \right]$$
$$f_R = \frac{df(R)}{dR}$$

Newtonian limit:

 $\nabla^2 \Phi = \frac{4}{3} \times 4\pi G \delta \rho - \frac{1}{6} \delta R \qquad \nabla^2 f_R = \frac{1}{3} \left(\delta R - 8\pi G \delta \rho \right)$

$$f(R) = -m^2 \frac{c_1 \left(\frac{R}{m^2}\right)^n}{c_2 \left(\frac{R}{m^2}\right)^n + 1} \qquad m^2 \equiv H_0^2 \Omega_m$$

Add another term to the action of GR:

$$S = \int d^4 x \sqrt{-g} \left[\frac{R + f(R)}{16\pi G} + \mathcal{L}_m \right]$$
$$f_R = \frac{df(R)}{dR}$$

Newtonian limit:

 $\nabla^2 \Phi = \frac{4}{3} \times 4\pi G \delta \rho - \frac{1}{6} \delta R \qquad \nabla^2 f_R = \frac{1}{3} \left(\delta R - 8\pi G \delta \rho \right)$

$$f(R) = -m^2 \frac{c_1 \left(\frac{R}{m^2}\right)^n}{c_2 \left(\frac{R}{m^2}\right)^n + 1} \qquad m^2 \equiv H_0^2 \Omega_m$$

• Vary Ω_m , $\Omega_{\Lambda} = 1 - \Omega_m$, h, σ_8 and $\bar{f}_{\rm R0}$ while keeping the other parameters fixed

- Vary Ω_m , $\Omega_{\Lambda} = 1 \Omega_m$, h, σ_8 and $\bar{f}_{\rm R0}$ while keeping the other parameters fixed
- Use a Latin Hypercube to sample the parameter space with 50 'nodes' and in total 200 MG simulations

- Vary Ω_m , $\Omega_{\Lambda} = 1 \Omega_m$, h, σ_8 and $\bar{f}_{\rm R0}$ while keeping the other parameters fixed
- Use a Latin Hypercube to sample the parameter space with 50 'nodes' and in total 200 MG simulations
- 2 DMO simulation pairs (= 4) per node run with AREPO; minimise large scale variance in each pair on average

- Vary Ω_m , $\Omega_{\Lambda} = 1 \Omega_m$, h, σ_8 and $\bar{f}_{\rm R0}$ while keeping the other parameters fixed
- Use a Latin Hypercube to sample the parameter space with 50 'nodes' and in total 200 MG simulations
- 2 DMO simulation pairs (= 4) per node run with AREPO; minimise large scale variance in each pair on average
- High-res pair with 1024³ DM particles in 500 ${
 m Mpc}/h$ box

- Vary Ω_m , $\Omega_{\Lambda} = 1 \Omega_m$, h, σ_8 and $\bar{f}_{\rm R0}$ while keeping the other parameters fixed
- Use a Latin Hypercube to sample the parameter space with 50 'nodes' and in total 200 MG simulations
- 2 DMO simulation pairs (= 4) per node run with AREPO; minimise large scale variance in each pair on average
- High-res pair with 1024³ DM particles in 500 ${
 m Mpc}/h$ box
- Low-res pair with 512³ DM particles in 1500 ${
 m Mpc}/h$ box

- Vary Ω_m , $\Omega_{\Lambda} = 1 \Omega_m$, h, σ_8 and $\bar{f}_{\rm R0}$ while keeping the other parameters fixed
- Use a Latin Hypercube to sample the parameter space with 50 'nodes' and in total 200 MG simulations
- 2 DMO simulation pairs (= 4) per node run with AREPO; minimise large scale variance in each pair on average
- High-res pair with 1024³ DM particles in 500 ${
 m Mpc}/h$ box
- Low-res pair with 512³ DM particles in 1500 ${
 m Mpc}/h$ box

3D matter power spectrum emulator

3D matter power spectrum emulator

3D matter power spectrum emulator

Emulator cross validation

Emulator cross validation

Making a prediction for independent simulations and comparing to other emulators

 BRIDGE - nDGP emulator (Cesar Hernandez-Aguayo, Carol Cuesta-Lazaro)

	Bitbucket Your work	Repositories	Projects	More ~	Create +	
$\langle \rangle$	FORGE_Emulator	Christian Arns FORGE_	id / MG- Emula	Emulator		
0	Source	Here's where	you'll find	this reposit	ory's source file	es. To give your user
¢	Commits	Ît master		Files v	Eiter files	0
រូ	Branches			1100	1 1101 1105	_
ຳວ	Pull requests	I /				
φ	Pipelines	Name				
φ	Deployments	CrossV:	alidation_C	Output		
•	Jira issues	Emulate	orState			
Φ	Security	FoR_M	atterPower	Spec_Train	ingData	
₽	Downloads	Predict	ion_Output			
0	Repository settings	.gitigno	re			
		CrossV	alidation_E	xample.py		
		FORGE	_emulator.	ру		
		GPR_E	nulator.py			
		Parame	terTable.tx	at		
			E.txt			
		- Fi TrainAn	dPredict F	Example.pv		
		-				

- BRIDGE nDGP emulator (Cesar Hernandez-Aguayo, Carol Cuesta-Lazaro)
- MCMCs with HALOFIT are dead slow -HALOFIT emulator

	Bitbucket Y	our work	Repos	itories	Projects	More	Ŷ	Create v		
	FORGE_Emulator		Chris FO	stian Arr	old / MC	-Emulato	or			
0	Source		Here	's where	e you'll fin	d this rep	osito	ry's source file	es. To give you	ur user
¢	Commits		Îr	maste	er v	Files	~	Filter files	c	2
រូ	Branches		0.							
ຳ	Pull requests			1						
¢	Pipelines		Nam	Ie						
φ	Deployments			Cross\	/alidation_	Output				
	Jira issues			Emulat	orState					
Φ	Security			FoR_N	latterPow	erSpec_Ti	rainii	ngData		
₿	Downloads			Predic	tion_Outp	ut				
٥	Repository settings		Ð	.gitign	ore					
			₽	Cross\	/alidation_	Example.	ру			
			Ð	FORGE	_emulato	r.py				
			₽	GPR_E	mulator.p	y				
			₽	Param	eterTable.	ixt				
			Ð	READ	/E.txt					
			Ð	TrainA	ndPredict	_Example	.py			

- BRIDGE nDGP emulator (Cesar Hernandez-Aguayo, Carol Cuesta-Lazaro)
- MCMCs with HALOFIT are dead slow -HALOFIT emulator
- Machine Learning based emulators with PyTorch (better for 'strange' behaviour of models)

	Bitbucket	Your work	Repos	itories	Projects	More	×	Create	-	
¢>	FORGE_Emulator		Chris FO	tian Arn RGE_	old / MG Emula	-Emulat	or			
0	Source		Here	's where	you'll find	l this rep	osito	ry's source	files. To give	your use
¢	Commits		Ît	maste	r •	Files	~	Filter files		Q
Ŀ	Branches		0 -							
î٦	Pull requests			/						
φ	Pipelines		Nam	•						
ዋ	Deployments			CrossV	alidation_	Output				
\$	Jira issues			Emulat	orState					
Φ	Security			FoR_M	atterPowe	rSpec_T	rainin	igData		
₽	Downloads			Predict	ion_Outpi	ıt				
o	Repository setting	IS	Ð	.gitigno	ire					
			₽	CrossV	alidation_	Example	py			
			Ð	FORGE	_emulator	.py				
			Ð	GPR_E	mulator.py	,				
			Ð	Parame	terTable.t	xt				
			Ð	READN	IE.txt					
			Ð	TrainAr	ndPredict_	Example,	a.py			

- BRIDGE nDGP emulator (Cesar Hernandez-Aguayo, Carol Cuesta-Lazaro)
- MCMCs with HALOFIT are dead slow -HALOFIT emulator
- Machine Learning based emulators with PyTorch (better for 'strange' behaviour of models)
- HMF emulators

	Bitbucket Your work	Repositories Projects More ~ Create ~						
:/>	FORGE_Emulator	Christian Arnold / MG-Emulator FORGE_Emulator						
0	Source	Here's where you'll find this repository's source files. To give your u	iser					
¢	Commits	1t master y Files y Elterfiles O						
ţ	Branches	57 million - Price mes - C						
'n	Pull requests	I (
φ	Pipelines	Name						
P	Deployments	CrossValidation_Output						
¢	Jira issues	EmulatorState						
Φ	Security	FoR_MatterPowerSpec_TrainingData						
₽	Downloads	Prediction_Output						
ø	Repository settings	gitignore						
		CrossValidation_Example.py						
		FORGE_emulator.py						
		GPR_Emulator.py						
		ParameterTable.txt						
		README.txt						
		TrainAndPredict_Example.py						

- BRIDGE nDGP emulator (Cesar Hernandez-Aguayo, Carol Cuesta-Lazaro)
- MCMCs with HALOFIT are dead slow -HALOFIT emulator
- Machine Learning based emulators with PyTorch (better for 'strange' behaviour of models)
- HMF emulators
- Lensing power spectrum emulators (Joachim Harnois Deraps)

- BRIDGE nDGP emulator (Cesar Hernandez-Aguayo, Carol Cuesta-Lazaro)
- MCMCs with HALOFIT are dead slow -HALOFIT emulator
- Machine Learning based emulators with PyTorch (better for 'strange' behaviour of models)
- HMF emulators
- Lensing power spectrum emulators (Joachim Harnois Deraps)
- Larger simulation suites for training: MG-GLAM

Fast full N-body simulations of generic modified gravity: conformal coupling models

Cheng-Zong Ruan,^a César Hernández-Aguayo,^{b,c} Baojiu Li,^a Christian Arnold,^a Carlton M. Baugh,^a Anatoly Klypin,^d and Francisco Prada^e

^aInstitute for Computational Cosmology, Department of Physics, Durham University, South Road, Durham DH1 3LE, UK

• Based on GLAM (Kyplin&Prada 2018)

Fast full N-body simulations of generic modified gravity: conformal coupling models

Cheng-Zong Ruan,^a César Hernández-Aguayo,^{b,c} Baojiu Li,^a Christian Arnold,^a Carlton M. Baugh,^a Anatoly Klypin,^d and Francisco Prada^e

- Based on GLAM (Kyplin&Prada 2018)
- Particle Mesh (fixed grid) code

Fast full N-body simulations of generic modified gravity: conformal coupling models

Cheng-Zong Ruan,^a César Hernández-Aguayo,^{k,c} Baojiu Li,^a Christian Arnold,^a Carlton M. Baugh,^a Anatoly Klypin,^d and Francisco Prada^e

- Based on GLAM (Kyplin&Prada 2018)
- Particle Mesh (fixed grid) code
- Sacrifice resolution for speed

Fast full N-body simulations of generic modified gravity: conformal coupling models Cheng-Zong Ruan,^a César Hernández-Aguayo,^{he} Baojiu Li,^a

Cheng-Zong Ruan,^a César Hernández-Aguayo,^{b.c} Baojiu Li,^a Christian Arnold,^a Carlton M. Baugh,^a Anatoly Klypin,^d and Francisco Prada^e

- Based on GLAM (Kyplin&Prada 2018)
- Particle Mesh (fixed grid) code
- Sacrifice resolution for speed
- OpenMP parallelised (needs a cluster with reasonably large nodes)

Fast full N-body simulations of generic modified gravity: conformal coupling models Cheng-Zong Ruan,^a César Hernández-Aguayo,^{b,c} Baojiu Li,^a

Cheng-Zong Ruan,^a César Hernández-Aguayo,^{a,c} Baojiu Li,^a Christian Arnold,^a Carlton M. Baugh,^a Anatoly Klypin,^d and Francisco Prada^c

- Based on GLAM (Kyplin&Prada 2018)
- Particle Mesh (fixed grid) code
- Sacrifice resolution for speed
- OpenMP parallelised (needs a cluster with reasonably large nodes)
- 100 times faster than AREPO and 300 times faster than ECOSMOG for f(R) gravity

Fast full N-body simulations of generic modified gravity: conformal coupling models Cheng-Zong Ruan,^a César Hernández-Aguayo,^{b,c} Baojju Li,^a

Cheng-Zong Ruan,^a Cesar Hernandez-Aguayo,^{ac} Baojiu Li,^a Christian Arnold,^a Carlton M. Baugh,^a Anatoly Klypin,^d and Francisco Prada^e

- Based on GLAM (Kyplin&Prada 2018)
- Particle Mesh (fixed grid) code
- Sacrifice resolution for speed
- OpenMP parallelised (needs a cluster with reasonably large nodes)
- 100 times faster than AREPO and 300 times faster than ECOSMOG for f(R) gravity
- f(R) run with 2048³ particles in a 1 Gpc/h box with a 4096³ grid takes ≈ 27 h on one cosma8 node (128 cores)

MG-GLAM - accuracy

 $\label{eq:compare} \begin{array}{l} \mbox{Compare} \approx 500 \mbox{Mpc}/h \mbox{ boxes with } 1024^3 \mbox{ particles of } \mbox{MG-GLAM} \\ \mbox{(2048^3 grid) and } \mbox{AREPO} \end{array}$

MG-GLAM - power spectrum

• Fully non-linear simulation codes can provide high resolution images of MG-universes but are very slow

- Fully non-linear simulation codes can provide high resolution images of MG-universes but are very slow
- Data analysis requires fast predictions for a certain parameter set

- Fully non-linear simulation codes can provide high resolution images of MG-universes but are very slow
- Data analysis requires fast predictions for a certain parameter set
- Emulators can supply this but ideally need big simulation set to train on
- Fully non-linear simulation codes can provide high resolution images of MG-universes but are very slow
- Data analysis requires fast predictions for a certain parameter set
- Emulators can supply this but ideally need big simulation set to train on
- Fast simulation methods can now offer the speed and accuracy for this also for MG-models