Neutrino masses and structure formation "Review" + the example of Lyman-alpha forest

Eric Armengaud Action Dark Energy - Marseille 06/05/2022

Standard Model neutrinos

v: Lightest + "least" interacting fermions in SM Interact by flavors Mass terms:

- Dirac (SM-like = Higgs coupling)
- Majorana (permitted, see-saw) -

Mass measured: oscillations

$$P_{\rm osc} = \sin^2(2\theta)\sin^2\left(\frac{\Delta m^2 L}{4E}\right)$$

Neutrino masses and mass ordering

Upcoming experiments to settle mass ordering - ORCA, JUNO, IceCube, HyperK, DUNE...

Neutrino masses and mass ordering

Upcoming experiments to settle mass ordering - ORCA, JUNO, IceCube, HyperK, DUNE...

Cosmology: measure $\Sigma m_v = m1 + m2 + m3$

Normal: $\Sigma m_{\nu} > 58 \text{ meV}$

Inverted: $\Sigma m_{\nu} > 100 \text{ meV}$

Absolute mass scale: KATRIN

 $T_2 \rightarrow {}^3HeT^+ + e^- + \bar{\nu}_e$

$$m_{\beta} = \left(\sum_{i} |U_{ei}|^2 m_i^2\right)^{1/2}$$

Tritium, neutrinoless double beta decay (DBD), and cosmology

- Different "absolute" neutrino mass scales

Cosmological neutrinos (CvB)

Very abundant cosmic fluid, well-known (in principle) Thermal relic (decoupling @ T~MeV)

Transition to non-relativistic regime (at least 2/3 Hot dark matter (HDM)

Relic energy density:

$$f_{\nu} = \frac{\Omega_{\nu}}{\Omega_m} \simeq 0.023 \left(\frac{\Sigma m_{\nu}}{0.3 \,\mathrm{eV}}\right) \left(\frac{0.14}{\omega_m}\right)$$

Back to the 80s...: DM = neutrinos ? Needed HDM, $m_{\nu} \sim 15 \text{ eV}$

3):
$$1 + z_{\rm nr} = 189 \left(\frac{m_{\nu}}{0.1 \,{\rm eV}}\right)$$

S. White 1986

Neutrino free-streaming

Relativistic fluid (not coupled to baryons):

$$\lambda_{\rm fs} \sim \frac{c}{H}$$

⇒ In comoving coordinates : maximum free-streaming scale @ NR

 $k_{\rm nr} \simeq 0.002 \left(\frac{\omega_m}{0.14}\right)^{1/2} \left(\frac{m_\nu}{0.1\,{\rm eV}}\right)^{1/2} \,{\rm Mpc}^{-1}$ transition:

$$k < k_{nr} : \delta_{v} \sim CDM$$

 $k >> k_{nr} : \delta_{v}$ highly damped

Non-relativistic regime: $\lambda_{\rm fs} \sim \frac{3 T_{\nu}^0}{m_{\nu}} \frac{a_0}{aH}$

neutrino

(c) Yoshikawa et al. 2021

 \longleftarrow 120 h^{-1} Mpc \longrightarrow

Massive neutrinos: impact on matter P(k)

- Do not contribute to **total** P(k): $P_m = P(c + b + \nu) = \langle \delta_c^2 \rangle \quad k < k_{nr}$ 1)
- Backreaction on the gravitational potential: 2)

$$\ddot{\delta}_{cdm} + \ddot{a}\dot{\delta}_{cdm} = 4\pi G a^2 \delta \rho,$$

$$\nu \text{ contributes}$$

$$\nu \text{ contributes}$$

$$\nu \text{ does not contributes}$$

$$\Rightarrow \quad \ddot{\delta}_{cdm} + \frac{2}{\tau}\dot{\delta}_{cdm} - \frac{6}{\tau^2}(1 - f_{\nu})\delta_{cdm} = 0.$$

$$\delta_{cdm} \sim a^{1 - 3f_{\nu}/5}$$

$$P_m(k \gg k_{\rm nr}) \sim P_m(f_\nu = 0) \times (1 - 8f_\nu)$$

Non-linear evolution / simulations

See Julian Adamek's talk

Velocity dispersion \Rightarrow Need more particles than for CDM

Many strategies proposed

- eg. map with-v simulations with no-v simulations, varying cosmo parameters to mimick P_{lin} in Rol ("spoon effect" is not specific to v)

- eg. linear response approximation

Current CMB + BAO mass bounds

 $\sum m_{\nu} < 0.26 \text{ eV}$ (95%, *Planck* TT,TE,EE+lowE). Planck data somewhat fay

Planck+BAO: $\Sigma m_{\nu} < 126 \text{ meV}$

Planck data somewhat favors "unphysical" neutrino mass

Many probes in the market

All with sensitivity to Σm_{ν}

Degeneracies with other cosmo pars Mitigate impacts of systematics

- NL effects (optimal k / ell range)
- baryons, bias, IA, others ...

CMB lensing Full-shape P(k) from clustering (incl. RSD) Galaxy WL statistics Void properties Lyman-alpha forest Cross-correlations

. . .

Many probes in the market

All with sensitivity to Σm_{ν}

Degeneracies with other cosmo pars Mitigate impacts of systematics

- NL effects (optimal k / ell range)
- baryons, bias, IA, others ...

CMB lensing

. . .

Full-shape P(k) from clustering (incl. RSD) Galaxy WL statistics Void properties Lyman-alpha forest Cross-correlations

Many probes in the market All with sensitivity to Σm_{ν} Degeneracies with other cosmo pars Mitigate impacts of systematics NL effects (optimal k / ell range)

baryons, bias, IA, others ...

CMB lensing Full-shape P(k) from clustering (incl. RSD)

Galaxy WL statistics Void properties Lyman-alpha forest Cross-correlations

. . .

1.15 $P_0(k)/P_{0,\,{
m fid}}(k)$ 1.101.051.00 0.95 $P_2(k)/P_{2,\,{
m fid}}(k)$ 1.15 1.05 1.00 0.95

Villaescusa-Navarro+ 2017

subtleties about bias...

Many probes in the market All with sensitivity to Σm_{v} Degeneracies with other cosmo pars Mitigate impacts of systematics NL effects (optimal k / ell range) baryons, bias, IA, others ... $\begin{array}{c} 1.0015\\ C_{44}(\ell)/C_{44}^{}, \mathrm{fid}(\ell)\\ 1.0005\\ 1.0000\end{array}$ 1.0015 CMB lensing Full-shape P(k) from clustering (incl. RSD) **Galaxy WL statistics** 1.0000 Void properties Lyman-alpha forest **Cross-correlations**

. . .

Many probes in the market

All with sensitivity to Σm_{ν}

Degeneracies with other cosmo pars Mitigate impacts of systematics

- NL effects (optimal k / ell range)
- baryons, bias, IA, others ...

CMB lensing Full-shape P(k) from clustering (incl. RSD) Galaxy WL statistics **Void properties**

Lyman-alpha forest **Cross-correlations**

. . .

Forecast ...

Data			C	$\sigma_{\Sigma m_{\nu}}$ [e	V] c	$\sigma_{N_{\nu,\mathrm{eff}}}$								
Planck				0.56	0).19			-(\S)	-(0)				
Planck + BAO					0.087).18		Setup	$\sigma(\Sigma m_{\nu})$ [meV]	$\sigma(\Sigma m_{\nu})$ [meV]	$\sigma(\Omega_k)$ $[\times 10^{-3}]$	$\sigma(w_0)$	$\sigma(i)$
Gal $(k_{\rm max} = 0.1 h {\rm Mpc^{-1}})$					0.030	().13		S4	73	111	0.79	1.14	2.4
Gal $(k_{max} = 0.2h \text{Mpc}^{-1})$					0.021).083		(+ DESI BAO)	29	76	0.48	0.13	0.4
The Court				0.041		11		LSST-clustering	69	91	3.33	0.42	1.2	
Ly- α forest					0.041		U.11 LSST-shear 41 12				120	2.99	0.19	0.8
Ly- α forest + Gal ($k_{\text{max}} = 0.2$)				= 0.2)	0.020		0.062		LSST-shear+clust	32	72	2.06	0.11	0.:
								CMR_S/	S4+LSST	(23)	28	0.49	0.10	0.5
\sim								Next Generation CMB Experiment		<u> </u>	24	0.49	-	-
Modified Gravity Dark Matter Condition			Initial Conditions	D	ark Energ	gy								
arameter	y	,	n./eV	f_NL	We	W.	FoM							
				9 2	P				\mathbf{Setup}	$\sigma(\Sigma m_{ u})$	$\sigma(\Sigma m_ u)$	$\sigma(\Omega_k)$.	$\sigma(w_0)$ ϵ	$\sigma(w_a)$
iclid Primary	0.010	- (0.027	5.5	0.015	0.150	430		(+CV- au)	[meV]	[meV]	$[\times 10^{-3}]$		
aclid All	0.009		0.020	2.0	0.013	0.048	1540		LSST-clustering	69	91	3.3	0.42	1.20
									LSST-shear	31	117	2.82	0.18	0.55
uclid+Planck	0.007	(0.019	2.0	0.007	0.035	4020	LiteBird 🍆	${ m LSST} ext{-shear} ext{-clust}$	24	72	1.99	0.11	0.31

S4+LSST

21

15

0.49

0.49

0.10

-

14

	Modified Gravity	D	urk Mat	ter	Initial Conditions	D	y				
Parameter	2		m,∕eV		f_{NL}	w_p	Wa	FoM			
Euclid Primary	0.010		0.027		5.5	0.015	0.150	430			
Euclid All	0.009		0.020		2.0	0.013	0.048	1 5 40			
Euclid+Planck	0.007		0.019		2.0	0.007	0.035	40 20			
Current	0.200		0.580		100	0.100	1.500	~10			
Improvement Factor	30		30		50	>10	>50	>300			

From C. Yèche, ADE 2019

0.26

-

The example of Lyman- α forest

Measured small-scale correlations in Ly- α forest: P1D

Currently, separation between lines-of-sight >> Mpc

eBOSS

==> measure **1D power spectrum of absorption fluctuations** ~ correlations within individual lines-of-sight

high-resolution

"Full-shape" modelling P1D

128

Σm_{ν} from P1D

Main "cosmo" information in P1D: $P_{\text{linear}} @ (zp, kp) = (3, 0.009 \text{ s/km})$

Lyman- α ongoing improvements: modelling

UV background ...

Lyman- α ongoing improvements: data

DESI & WEAVE-QSO : more statistics, higher resolution Large lines-of-sight density \Rightarrow measure P3D (improve IGM thermal params)?

First analysis of DESI-SV ongoing !

Conclusions

- Measuring Σm_{ν} would be an achievement for "precision cosmology"
 - Short-term ~2025 ? $\sigma(\Sigma m_v) \sim 20-30$ meV, ~3 σ detection ?
 - Later ? improved τ measurement $\Rightarrow ~4-5\sigma$?
- Several probes in the market for small-scale P(k)
 - Have to demonstrate control of their own systematics
- Other "beyond standard model" neutrino physics with cosmology: •
 - Sterile neutrinos: Neff, P(k) cut-off @ high k
 - New interactions (connection to dark sector): P(k), reionization...

