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Cosmological signatures in the small-scale 𝑃(𝑘)
What happened after inflation?

Early matter domination boosts density variations.
[Early matter species clusters, carrying DM with it]

What is dark 
matter?

• Free streaming
(CDM vs WDM)

• Poisson noise
(axion, PBH)

What drove 
inflation?

Dynamics of the 
inflaton field 

imprint on the 
primordial 

power spectrum.
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Cosmological signatures in the small-scale 𝑃(𝑘)

In these cases, we are interested in the largest-amplitude density variations

…and hence in the first halos 3/28
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The first halos
The first (and smallest) halos 

collapse from smooth density peaks

𝜌 ∝ 𝑟−3/2 central cusp

4/28



Density profiles of the first halos
It is well known that halos that form close to the cutoff scale in 𝑃(𝑘)

develop steeper inner density profiles.

Ishiyama 2014

Cutoff → first halos Cutoff

No cutoff → halos that 
grew from smaller halos

No cutoff
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Impact of
steeper cusps

Boosted subhalo survival:
Steeper cusps have a more resilient 
phase-space structure, so they are 
less susceptible to tidal stripping 
and heating.
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Cusp slope:
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Impact of steeper cusps
Boosted observational signatures, e.g.

Annihilation Lensing

Ishiyama 2014 Erickcek & Law 2011

Steeper 
cusps

Different SHMFs
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Do steep cusps survive?
Larger halos have shallower slopes 
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Einasto profiles universal at 𝑧 = 0?

Close to 
cutoff scale
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𝑧 = 30

Difficult to simulate over long time periods: halos grow too rapidly

𝑧 = 0

No sign of steeper cusps at small scales

8/28



Cusps shallow due to mergers?

Shallowing in idealized merger simulations
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The common view is that 
mergers disrupt steep cusps
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Cusps shallow due to mergers?

But CDM halo density profiles (NFW/Einasto) set by
accretion history more than merger history.

Density profile Mass accretion history

Ludlow et al 2013
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𝜌 ∝ 𝑟−3/2 cusp stabilizes 
immediately after formation

Simulating an individual object at high resolution
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How a cusp shallows

Delos & White (forthcoming)

Buildup of material 
produces shallow Einasto

profile at larger radii

Central 𝜌 ∝ 𝑟−3/2

cusp persists!
(𝑎 is defined arbitrarily)

Apparent shallowing of 𝜌 ∝ 𝑟−3/2 cusps is not due to disruption after all?
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Rapid accretion

Models that connect 
accretion histories to 
density profiles
(e.g. Ludlow et al 2013) 
predict that

if

This behavior is 
approximately borne out.

Delos & White (forthcoming)

Naturally yields shallow profiles
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Mergers

Mergers can disturb 
central cusps:

A massive subhalo sinks 
due to dynamical friction 
and can thus disrupt the 
structure at small radii.

However, the disruption is 
minimal.

Delos & White (forthcoming)

Merging halos ‘A’ and ‘B’ deposited material deep inside this halo…

…which caused some disruption of the 𝜌 ∝ 𝑟−3/2 cusp.

Density profile Position within initial conditions

dotted = earlier 𝜌(𝑟)

𝑟

14/28



No significant cusp disruption

Twelve high-resolution halos from three power spectra:
no significant cusp disruption (within resolution limits)
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No significant cusp disruption

Twelve high-resolution halos from three power spectra:
no significant cusp disruption (within resolution limits)

Sharply peaked power spectra

For the sharply peaked power spectrum ‘H’, accretion is slow 

→ 𝜌 ∝ 𝑟−3/2 cusps remain a large portion of the halo over a long time
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Some cosmological 
scenarios yield boosted 
small-scale power spectra 
with similar forms!

𝜌 ∝ 𝑟−3/2 cusps may be 
particularly relevant to 
these cases.
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Inner asymptote set at formation time
∴ only sensitive to neighborhood of density peak

i.e., 𝛿 ≡ 𝛿𝜌/ ҧ𝜌 and ∇2𝛿 at peak (+ tidal field)

Density peak

Collapsed halo

What sets the coefficient of the 𝜌 ∝ 𝑟−3/2 cusp?
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Predicting the coefficient of the 𝜌 ∝ 𝑟−3/2 cusp

Halo has: Comoving length scale 𝑞Density at collapse ∝ 𝑎𝑐
−3 ∝ 𝛿3

Physical length scale at collapse ∝ 𝑎𝑐𝑞 ∝ 𝛿−1𝑞 Tidal correction 𝑓ecPeak has local properties
• Height 𝛿 = 𝛿𝜌/𝜌
• Derivatives 𝜕𝑖𝜕𝑗𝛿

[w.r.t. comoving coordinates] The connection:

Accurate for wildly disparate 𝒫(𝑘) (i.e., cosmologies):

Scaled to characteristic 
length 𝑅∗ and amplitude 𝜎0
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Predicting the coefficient of the 𝜌 ∝ 𝑟−3/2 cusp

Halo has: Comoving length scale 𝑞Density at collapse ∝ 𝑎𝑐
−3 ∝ 𝛿3

Physical length scale at collapse ∝ 𝑎𝑐𝑞 ∝ 𝛿−1𝑞 Tidal correction 𝑓ecPeak has local properties
• Height 𝛿 = 𝛿𝜌/𝜌
• Derivatives 𝜕𝑖𝜕𝑗𝛿

[w.r.t. comoving coordinates] The connection:

Scaled units in 
terms of 𝜎0 and 𝑅∗

Different
𝒫(𝑘)
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A single fitting parameter (the proportionality constant) →model accurate for all power spectra 19/28
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Statistics of peaks

Connection between 
cusps and peaks is clear. 
How do we relate this to 
the power spectrum?

EMD

Mergers?
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Halo evolution

Questions remain:

Precise impact of mergers?

Can we predict using an 
accretion history model?

Also, subhalo evolution: tidal forces and impulsive encounters
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Stellar encounters

Apply Δ Ԧ𝑣 induced by a series of stellar 
encounters

Accurate predictive model:

Delos 2019b

𝑁-body NFW microhalo encountering a series of stars

0
.0

6
 p

c

1305 encounters
in total
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Density profile after stellar encounters

Delos 2019b

We start with an NFW profile.

Let’s parametrize the density profile 
after an encounter:

This parametrization is universal!

Delos 2019b

(for most encounter parameters)

𝛼 = 0.78 fixed

Thus, it’s easy to handle successive encounters
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Modeling stellar encounters

Delos 2019b

For most stellar encounters, a single parameter determines the halo’s response:
the characteristic relative energy injection 𝑞 per particle

Change in halo scale radius Change in halo scale density

Each point is a different stellar encounter simulation. The connection to 𝑞 is extremely tight →model is precise.
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Limitations of the stellar encounter model

The model assumes:

• NFW initial profiles

• the encounter is impulsive
(accurate for CDM microhalos)

• impact parameter ≫ scale radius

Penetrative encounters with

can alter the form of the density profile 
and even disrupt the central cusp:

Delos 2019b

However:
For CDM microhalos, any penetrative encounter 
with a star already effectively destroys the halo

(since 𝑞 ∼ 𝑏−4)
∴ a precise model of the outcome is not needed.
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Impact of stellar encounters

Example calculation:
• Generate a halo distribution 

with random Galactic orbits
• Choose the stellar phase space 

distribution
• Sample stellar encounters along 

each orbit & apply model

Delos & Linden 2021

Microhalos in the solar neighborhood due to early matter domination

Accretion 
history 
model

Tidal evolution 
model

Stellar encounters

Random nature of stellar encounters spreads out the mass distribution
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Application: Breaking a dark degeneracy
Early matter domination (domination by an unstable matter species prior to BBN)

broadens the range of viable dark matter parameters.

EMD boosts density variations [early matter clusters]

Early, highly dense microhalos
Improved indirect-detection bounds

Isotropic 𝛾 ray 
background 

(Fermi),

DM free-
streaming
(relative 

to reheat)

Reheat temp. 
(end of EMD)

Fermi 2015 (dSphs)

Delos, Linden, Erickcek 2019

[Decay of early matter species sources radiation that dilutes the DM → need smaller 𝜎𝑣 to produce more DM.]
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Summary

Key cosmological questions are 
connected to the small-scale 

(linear) matter 𝑃(𝑘)…

…which manifests itself 
in the properties of the 
first and smallest halos.

The first halos develop persistent steep 𝜌 ∝ 𝑟−3/2 cusps

𝐴 = 𝜌𝑟3/2 can be predicted 
using statistics of peaks

We can predict the outcome of any 
sequence of stellar encounters

Boosted subhalo survival 
& observational signals

28/28


