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What are Ultra Compact Mini Halos?

Dark Matter (DM) fluctuations  
at horizon entry

δH ∼ 10−5
Halo collapse at z ∼ 30 − 100
Hierarchical growth
Navarro-Frenk-White (NFW) profiles

(z ≫ zeq)
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What are Ultra Compact Mini Halos?

Dark Matter (DM) fluctuations  
at horizon entry

δH ∼ 10−5
Halo collapse at z ∼ 30 − 100
Hierarchical growth
Navarro-Frenk-White (NFW) profiles

δH ∼ 0.3 − 0.7 Primordial Black Holes (PBH)

But what happens in between?

(z ≫ zeq)
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Delos++ 1806.07389

δH ∼ 10−3• For                  , a different 
class of halos forms

• Ultra Compact Mini Halos (UCMH) 
Much earlier collapse, at z ∼ 103

• Profile is still under debate                            
If they evolve isolated, they are expected 
to have denser profiles than NFW

What are Ultra Compact Mini Halos?
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Why are UCMHs interesting?

If DM is made of Weakly Interacting Massive Particles (WIMPs),  
DM is expected to self-annihilate inside UCMHs
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Why are UCMHs interesting?

If DM is made of Weakly Interacting Massive Particles (WIMPs),  
DM is expected to self-annihilate inside UCMHs

The compactness and earlier formation of UCMHs  
boosts the DM annihilation signal

Non-observation of UCMHs allows to set constraints on the 
small-scale primordial spectrum
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Current constraints on the primordial spectrum

Green++ 2007.10722v3
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Current constraints on the primordial spectrum

Green++ 2007.10722v3

𝒫ℛ(k) = As ( k
k* )

ns−1

with ns ≃ 0.96, As ≃ 2.2 × 10−9

and k* = 0.05 Mpc−1
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Current constraints on the primordial spectrum

Green++ 2007.10722v3

𝒫ℛ(k) = As ( k
k* )

ns−1

with ns ≃ 0.96, As ≃ 2.2 × 10−9

and k* = 0.05 Mpc−1

Small-scale part largely unconstrained 

Enhancement of power predicted by many 
models (early matter era, phase 
transitions, fast rolling scalar fields, etc)
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Bringmann++ 1102.2484v3

UCMHs provide much stronger constraints at large k  
than those coming from PBH

Current constraints on the primordial spectrum
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•So far, most UCMH studies have focused on γ-ray searches 
Bringmann++ 1102.2484

Delos++ 1806.07389
Nakama++ 1712.08820

Current constraints on the primordial spectrum
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•So far, most UCMH studies have focused on γ-ray searches 

•Another possibility to constrain the DM annihilation signal from 
UCMHs is to use the Cosmic Microwave Background (CMB) 
anisotropy spectra 

Bringmann++ 1102.2484

Delos++ 1806.07389
Nakama++ 1712.08820

Natarajan++ 1503.03480
Kawasaki++ 2110.12620

Current constraints on the primordial spectrum
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The CMB in a nutshell

2-point correlation function  
of temp. fluctuations

with Θ(n̂) =
δT(n̂)

T

⟨Θ( ̂n)Θ( ̂n′ )⟩ = ∑
ℓ

2ℓ + 1
4π

CTT
ℓ Pℓ( ̂n ⋅ ̂n′ )
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The CMB in a nutshell

2-point correlation function  
of temp. fluctuations

with Θ(n̂) =
δT(n̂)

T

⟨Θ( ̂n)Θ( ̂n′ )⟩ = ∑
ℓ

2ℓ + 1
4π

CTT
ℓ Pℓ( ̂n ⋅ ̂n′ )

𝒟TT
ℓ ≡ ℓ(ℓ + 1)CTT

ℓ ∼ ∫ d log k Θ2
ℓ(τ0, k)𝒫ℛ(k)

Temp. transfer functions         
(Boltzmann-Einstein eqs.) 
(CLASS code) 

Primordial spectrum 
(Inflation)
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Line-of-sight solution

Θℓ(τ0, k) = ∫
τ0

τ
dτ ST(τ, k) jℓ(k(τ0 − τ))

Source function

ST(τ, k) ≡ g(Θ0 + Ψ)

SW

+ ∂τ(gvb/k)

Doppler

+ e−κ( ·Φ + ·Ψ)

ISW

Visibility function and optical depth

g(τ) ≡ − ·κ(τ)e−κ(τ), κ(τ) = ∫
τ0

τ
dτ aσTne

The CMB in a nutshell
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Line-of-sight solution

Θℓ(τ0, k) = ∫
τ0

τ
dτ ST(τ, k) jℓ(k(τ0 − τ))

Source function

ST(τ, k) ≡ g(Θ0 + Ψ)

SW

+ ∂τ(gvb/k)

Doppler

+ e−κ( ·Φ + ·Ψ)

ISW

Visibility function and optical depth

g(τ) ≡ − ·κ(τ)e−κ(τ), κ(τ) = ∫
τ0

τ
dτ aσTne

Energy injection from DM could affect     , 
which directly impacts CMB anisotropies

ne

The CMB in a nutshell
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Hydrogen recombination

e− + p+ ⟷ H + γ

Track free electron fraction xe = ne/nH and baryon temperature Tb

Goal of recombination codes (e.g. RECFAST,HYREC), included in CLASS
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Injected energy into the plasma per volume and time:

dE
dVdt

DM

(z) ≡ npairs ΓannEann f(z) = ⟨ρDM⟩2(1 + z)6pann

Homogeneous energy injection in the CMB
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Injected energy into the plasma per volume and time:

dE
dVdt

DM

(z) ≡ npairs ΓannEann f(z) = ⟨ρDM⟩2(1 + z)6pann

with pann = f(z)
⟨σv⟩
mDM

Depends on plasma properties and  
on the DM annihilation channel 
Dark Ages code  to compute e.m. cascade 

Particle physics

Homogeneous energy injection in the CMB

(Dark Ages + CLASS = ExoCLASS)
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DM annihilations have three effects: 
 ionization, excitation and heating

dxe

dz
=

dxe

dz
st

+ IXα
+ IXi

dTb

dz
=

dTb

dz
st

+ Kh

Giesen++ 1209.0247v2

Homogeneous energy injection in the CMB
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DM annihilations have three effects: 
 ionization, excitation and heating

dxe

dz
=

dxe

dz
st

+ IXα
+ IXi

dTb

dz
=

dTb

dz
st

+ Kh

with IXα
, IXi

, Kh ∝
dE

dVdt
DM

∝ pann

Giesen++ 1209.0247v2

Homogeneous energy injection in the CMB
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Most recent constraints from PlanckTTTEEE+lensing+BAO

pann < 3.2 × 10−28 cm3s−1GeV−1 (95 % C . L.)

Planck 1807.06209v3

Homogeneous energy injection in the CMB
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In presence of halos, injected energy is modified as

dE
dVdt

DM

(z) = B(z)⟨ρDM⟩2(1 + z)6pann

where                                                                is the cosmological boost factorB(z) ≡
⟨ρ2

DM⟩
⟨ρDM⟩2

= 1 + ⟨δ2
DM(z)⟩

Inhomogeneous energy injection in the CMB
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In presence of halos, injected energy is modified as

dE
dVdt

DM

(z) = B(z)⟨ρDM⟩2(1 + z)6pann

where                                                                is the cosmological boost factorB(z) ≡
⟨ρ2

DM⟩
⟨ρDM⟩2

= 1 + ⟨δ2
DM(z)⟩

         has already been computed for standard NFW halos,  
but its impact on the CMB is rather small

Inhomogeneous energy injection in the CMB

B(z)

Expected to be much more important for UCMHs,  
due to their earlier formation time



Recipe to get the constraints

1. Assume a spike in         at large k   𝒫ℛ
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Recipe to get the constraints

1. Assume a spike in         at large k   𝒫ℛ

 15

𝒫ℛ = As ( k
k* )

ns−1

+A0ksδ(k − ks)

2. Compute the boost factor         , 
which will depend on          as well 

as on the halo density profile  
𝒫ℛ

B(z)

3. Using CLASS, compute the DM 
annihilation signal in the CMB 

4. Derive constraints on             
(which will depend on  

A0 vs ks
pann ∝ ⟨σv⟩/mDM)
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B(z) − 1 =
1

ρ̄m,0 ∫
∞

Mmin

M
dn(M |z)

dM
Bh(zf(M), z)dM

Computing the boost factor

In the framework of the halo model
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B(z) − 1 =
1

ρ̄m,0 ∫
∞

Mmin

M
dn(M |z)

dM
Bh(zf(M), z)dM

Computing the boost factor

In the framework of the halo model

•  Halo mass function

dn(M |z)
dM

Depends on 𝒫ℛ

Mmin ∈ [10−6,10−9] M⊙, given by WIMP model

Nota bene:
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B(z) − 1 =
1

ρ̄m,0 ∫
∞

Mmin

M
dn(M |z)

dM
Bh(zf(M), z)dM

In the framework of the halo model

• 1-halo boost

Bh(zf , z) = 4π∫
r200

0

ρ2
h(r)

Mρ̄m(z)
r2dr Depends on the profile ρh(r) = ρs ψ(r/rs)

Computing the boost factor
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B(z) − 1 =
1

ρ̄m,0 ∫
∞

Mmin

M
dn(M |z)

dM
Bh(zf(M), z)dM

In the framework of the halo model

• 1-halo boost

Bh(zf , z) = 4π∫
r200

0

ρ2
h(r)

Mρ̄m(z)
r2dr Depends on the profile ρh(r) = ρs ψ(r/rs)

=
200

Ωm(z)
c3

3
μ2(c)
μ2

1(c)
with c = c(z, zf ) ≡ r200/rs

and μn(x) = ∫
x

0
ψn(x′ )x′ 2dx′ 

Computing the boost factor
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We adopt the extended Press-Schechter formalism for the halo mass function

dn(M | z)
dM

=
ρm,0

M
ν(M, z)
2S(M)

dS
dM

2
π

e−ν2(M,z)/2

with ω(z) ≡ δc
D(0)
D(z)

and ν(M, z) ≡
ω(z)
S(M)

Computing the boost factor
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We adopt the extended Press-Schechter formalism for the halo mass function

dn(M | z)
dM

=
ρm,0

M
ν(M, z)
2S(M)

dS
dM

2
π

e−ν2(M,z)/2

with ω(z) ≡ δc
D(0)
D(z)

and ν(M, z) ≡
ω(z)
S(M)

and the smoothed variance is given by

σ2
R = S(R) ∼ ∫

∞

0
k3T2(k)𝒫ℛ(k) |ŴR(k) |2 dk

How to account for a mixed population of halos?

with M = ρ̄m,0γR3

Computing the boost factor
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By Gaétan Facchinetti

With a sharp-k window function

S(M) = α(M) + βΘ(Ms − M)

with Ms = ρ̄m,0γk−3
s

Computing the boost factor
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By Gaétan Facchinetti

With a sharp-k window function

S(M) = α(M) + βΘ(Ms − M)

with Ms = ρ̄m,0γk−3
s

Idea: split the mass interval as

[Mmin, Ms] ∪ [Ms, ∞]

UCMH 
profile

 NFW 
profile

Computing the boost factor
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NFW profile

ρh(r) =
ρs

(r/rs)(1 + r/rs)2

Computing the boost factor
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NFW profile

ρh(r) =
ρs

(r/rs)(1 + r/rs)2

c(z, zf ) = KΩ1/3
m,0

(1 + zf )
(1 + z)

Concentration law from Maccio++ 0805.1926

Cte. calibrated to simulations

Based on assumption 
that cored density 
                      is constant

Computing the boost factor

ρ̃s ≡ μ1(c)ρs
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UCMH profile?

ρh(r) =
ρs

(r/rs)3/2(1 + r/rs)3/2

• Until recently,                          ,   based on self-similar secondary infall 

•  Using N-body simulations, Delos (2018) shows correct profile is Moore-like

ρh(r) ∝ r−9/4

Bertschinger (1985)

and ρs ≃ f2ρ̄m,0(1 + zf )3

with rs ≃ f1k−1
s (1 + zf )−1

Computing the boost factor
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UCMH profile?

ρh(r) =
ρs

(r/rs)3/2(1 + r/rs)3/2

• Until recently,                          ,   based on self-similar secondary infall 

•  Using N-body simulations, Delos (2018) shows correct profile is Moore-like

ρh(r) ∝ r−9/4

Bertschinger (1985)

and ρs ≃ f2ρ̄m,0(1 + zf )3

with rs ≃ f1k−1
s (1 + zf )−1

One can show that ρs =
200ρc(z)

3
c3

μ1(c)
UCMH concentration law

c
μ1/3

1 (c)
= (

3f2Ωm,0

200 )
1/3

(1 + zf)
(1 + z)

Nota bene:      is tricky to define, we use simple estimate 

Computing the boost factor

zf

c(z, zf )

ω2(zf ) = S(M)
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Computing the boost factor
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Impact on the thermal history of the universe
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Impact on the CMB anisotropy spectrum
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Preliminary constraints 

Test modified version of ExoCLASS against data from: 
Planck 2018 TTTEEE + lensing + BAO (BOSS DR12 + MGS +6dFGS) 
Assume: χχ̄ → bb̄, ⟨σv⟩ = 3 × 10−26 cm3/s, mDM = 1 TeV
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Preliminary constraints 

Test modified version of ExoCLASS against data from: 
Planck 2018 TTTEEE + lensing + BAO (BOSS DR12 + MGS +6dFGS) 
Assume: 

CMB constraints are 
comparable with those  
from γ-rays on ks > 104 Mpc−1

To do list: 
• Derive constraints for 

different DM masses, 
annihilation channels, etc 

• Study the impact on 21-cm

χχ̄ → bb̄, ⟨σv⟩ = 3 × 10−26 cm3/s, mDM = 1 TeV



 26

Conclusions

• Mini Halos constitute prime targets for DM indirect detection, 
owing to their earlier formation time and their compactness



 26

Conclusions

• Mini Halos constitute prime targets for DM indirect detection, 
owing to their earlier formation time and their compactness

•  Their non-observation provides strong constraints on the primordial 
spectrum at small scales, shedding light on Early Universe physics



 26

Conclusions

• Mini Halos constitute prime targets for DM indirect detection, 
owing to their earlier formation time and their compactness

•  Their non-observation provides strong constraints on the primordial 
spectrum at small scales, shedding light on Early Universe physics

•  The CMB provides a robust and powerful probe of DM annihilations within 
mini-halos, complementary to γ-ray searches



 26

Conclusions

• Mini Halos constitute prime targets for DM indirect detection, 
owing to their earlier formation time and their compactness

•  Their non-observation provides strong constraints on the primordial 
spectrum at small scales, shedding light on Early Universe physics

•  The CMB provides a robust and powerful probe of DM annihilations within 
mini-halos, complementary to γ-ray searches

•  We have carried a thorough calculation of the cosmological boost factor, 
accounting for the first time for a mixed population of halos and mini-halos 
with different density profiles, and derived constraints on the amplitude and 
location of a spike in the primordial spectrum
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Back-up
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More details about 1-halo boost calculation

NFW profile

For this profile, both μ1(c) and μ2(c) converge

μ1(c) = log(1 + c) −
c

1 + c

μ2(c) =
c3

3 [1 −
1

(1 + c)3 ]

μn(x) = ∫
x

0
ψn(x′ )x′ 2dx′ ψ(x) =

1
x(1 + x)2
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More details about 1-halo boost calculation

UCMH profile

ψ(x) =
1

x3/2(1 + x)3/2

For this profile, μ1(c) converges

μn(x) = ∫
x

0
ψn(x′ )x′ 2dx′ 

μ1(c) = 2asinh ( c) − 2
c

1 + c
But μ2(c) → ∞

In practice, DM annihilations flatten the core

ρmax =
mDM

⟨σv⟩ max {[t(z) − t(zf)], Δtvir} where Δtvir =
1
2

t(zf )

With this:

μ2(c) =
1
3

+
2c + 3

2(1 + c)2
+ log ( c

1 + c ) −
2D−1 + 3

2(1 + D−1)2
+ log(1 + D), with D ≡ ( ρmax

ρs )
2/3


