A semi-analytical approach to SUBHALOS

[based on 1610.02233, 2201.09788, 2007.10392 (2203.16440, 2203.16491)]

Gaétan Facchinetti (ULB) with Julien Lavalle and Martin Stref

INTRODUCTION

Credit: Tom Gauld (for NEW SCIENTIST)

INTRODUCTION

Credit: Tom Gauld (for NEW SCIENTIST)

Halos are clumpy

Dark matter host halo (smooth)

Dark matter CLUMPS/Subhalos (CDM paradigm)

Why is looking for subhalos interesting?

Nature of DM: Cold DM?
Warm DM? Self Interacting DM? ...

Looked for with several strategies (DM annihilation, lensing, ...)

[GF+22, GF+20, Ibarra+19, Hütten+19, Calore+19, Hütten+16, Ando+19, ...]

How to describe the subhalo population?

[GF, Stref and Lavalle 2022, Stref+17,
Benson+12, Bartels+15,
Hiroshima+18, Hiroshima+22,
Zavala+14,
Van den Bosch+05,
Peñarrubia+05, ...]

with cosmological simulations

Cannot reproduce THE Milky-Way/a « real » host Cannot probe 10^{-12} M_{\odot} \lesssim m \lesssim 10^4 M_{\odot}.

with analytical models

Number of CDM subhalos in the MW > 10⁶ Use a statistical description of the subhalos

A recipe from

[Stref and Lavalle 2017]

[GF, Stref and Lavalle 2022]

The **AVERAGE** dark matter density is constrained by observations

$$\langle \rho_{\chi} = \rho_{\text{smooth}} + \sum_{i=1}^{N_{\text{sub}}} \rho_i \rangle$$

- Start from a cosmological distribution
- Cosmological mass function $\frac{dN_{\text{sub}}}{dm}(m \mid M_{\text{host}}, z) \sim m^{-\alpha}\Theta(m m_{\text{min}})$
- Cosmological concentration distribution $p_c(c) = \log \mathcal{N}(\bar{c}(m), \sigma_c)$ [Sánchez-Conde+14]
- Initial position $p_{\overrightarrow{R}}(\overrightarrow{R}) = \frac{\rho_{\text{host}}(R)}{M_{\text{host}}}$

Start from a cosmological distribution

$$\left. \frac{\partial^2 n}{\partial m \partial c} \right|_i = \frac{\mathrm{d}N_{\mathrm{sub}}}{\mathrm{d}m} (m \mid M_{\mathrm{host}}, z) p_{\overrightarrow{R}}(\overrightarrow{R}) p_c(c \mid m)$$

Include tidal effects in the host

Subhalos loose mass/shrink/ may be disrupted from three main sources

[Binney+08, Weinberg94, Gnedin+99, Stref+17] [Tormen+98, Hayashi+03, Diemand+08,]

- Include tidal effects in the host
- Smooth tides (from the host potential)

$$r_t = R \left\{ \frac{M_{\text{int}}(R)}{3M(R)f[M(R)]} \right\}^{1/3}$$

- Include tidal effects in the host
- Disk shocking (from the disk potential)

$$\left\langle \frac{\delta E}{m_{\chi}} \right\rangle = \frac{2}{3} \frac{g_{\rm d}^2}{V_z^2} A(\eta) r^2$$

Include tidal effects in the host

Individual stellar shocks (from the granularity of the disk)

More details in a few slides

Evaluate the evolved distribution

$$\left| \frac{\partial^2 n}{\partial m_t \partial c} \right|_{\mathbf{f}} = \int \frac{\partial^2 n}{\partial m \partial c} \left|_{\mathbf{i}} \Theta\left(\frac{r_{\mathbf{t}}(m, c, \overrightarrow{R}, z)}{r_{\mathbf{s}}(m, c, z)} - \epsilon_t\right) \delta(m_{\mathbf{t}} - m_{\mathbf{t}}^*(m, c, \overrightarrow{R}, z)) dm \right|_{\mathbf{i}}$$

 $\epsilon_{\rm t}$: (input parameter) Efficiency of subhalo disruption [Van den Bosch+18, Errani+20: subhalos are resilient to tides]

Number density of subhalos in the Milky Way (today) [kpc⁻³]

Distance from GC (MW) [kpc]

Part 1:

THE COSMOLOGICAL MASS FUNCTION FROM MERGER TREES

Part 2:

STELLAR ENCOUNTERS
IN THE MILKY WAY

Part 3:

APPLICATIONS
AND MORE

Part 1:

THE COSMOLOGICAL MASS FUNCTION FROM MERGER TREES

[GF, Lavalle (in prep)]

[image from Lacey+93]

The original mass function introduced in the recipe

Initial cosmological mass function

$$\frac{\mathrm{d}N_{\mathrm{sub}}}{\mathrm{d}m}(m\mid M_{\mathrm{host}},z) \sim m^{-\alpha}\Theta(m-m_{\mathrm{min}})$$

Calibration of mass fraction in subhalos on DM only simulations. How to avoid that?

The subhalo mass function from an analytical recipe

Everything starts from the matter power spectrum

Matter power spectrum:

$$P_{\rm m}(k,z) = \frac{8\pi^2 k}{25} \left[\frac{D_1(z)}{\Omega_{\rm m,0} H_0^2} T(k) \right]^2 \mathcal{A}_S \left(\frac{k}{k_0} \right)^{n_s - 1}$$

Associated smoothed variance:

$$S(R) = \sigma_R^2 = \frac{1}{2\pi^2} \int_0^{1/R} P_{\rm m}(k, z = 0) k^2 dk$$

$$\delta_R(\mathbf{x}) = \int \mathrm{d}\mathbf{y} \frac{\delta \rho}{\overline{\rho}} W_R(\|\mathbf{x} - \mathbf{y}\|) \quad \text{(smoothed density contrast)}$$

$$\text{large } R \leftarrow \text{small } R \rightarrow$$

$$\delta_R(\mathbf{x}) = \int \mathrm{d}\mathbf{y} \frac{\delta \rho}{\overline{\rho}} W_R(|\mathbf{x} - \mathbf{y}|) \quad \text{(smoothed density contrast)}$$

$$\text{large } R \leftarrow \text{small } R \rightarrow$$

$$\delta_R(\mathbf{x}) = \int \mathrm{d}\mathbf{y} \frac{\delta\rho}{\overline{\rho}} W_R(|\mathbf{x} - \mathbf{y}|) \quad \text{(smoothed density contrast)}$$

$$\text{large } R \leftarrow \text{small } R \rightarrow$$

$$\delta_R(\mathbf{x}) = \int d\mathbf{y} \frac{\delta \rho}{\overline{\rho}} W_R(|\mathbf{x} - \mathbf{y}|) \quad \text{(smoothed density contrast)}$$

Example of one trajectory

Example of one trajectory

$$\delta_R(\mathbf{x}) = \int d\mathbf{y} \frac{\delta \rho}{\overline{\rho}} W_R(|\mathbf{x} - \mathbf{y}|) \quad \text{(smoothed density contrast)}$$

$$\omega(z_2)$$

 R_2

small $R \rightarrow$

Example of one trajectory

large $R \leftarrow$

$$\delta_{R}(\mathbf{x}) = \int d\mathbf{y} \frac{\delta \rho}{\overline{\rho}} W_{R}(|\mathbf{x} - \mathbf{y}|) \quad \text{(smoothed density contrast)}$$

$$\omega(z_{1})$$

$$\log R \leftarrow R_{1} \quad \text{small } R \rightarrow$$

Example of one trajectory

Generate merger trees from the two barrier probability

$$f(\omega_2, S(R_2) \mid \omega_1, S(R_1)) = \frac{\Delta \omega}{\sqrt{2\pi} \Delta S^{3/2}} \exp\left(-\frac{(\Delta \omega)^2}{2\Delta S}\right)$$

Generate merger trees from the two barrier probability

$$f(\omega_2, S(R_2) \mid \omega_1, S(R_1)) = \frac{\Delta \omega}{\sqrt{2\pi} \Delta S^{3/2}} \exp\left(-\frac{(\Delta \omega)^2}{2\Delta S}\right)$$

Generate merger trees from the two barrier probability

$$f(\omega_2, S(R_2) \mid \omega_1, S(R_1)) = \frac{\Delta \omega}{\sqrt{2\pi} \Delta S^{3/2}} \exp\left(-\frac{(\Delta \omega)^2}{2\Delta S}\right)$$

$$\frac{m}{M} \frac{\mathrm{d}N_1}{\mathrm{d}\ln m}$$

We fit the subhalo mass function at z=0

- Run the Cole+00 algorithm gives the mass function at large mass
- Fit with the function

$$f(m, M) = \frac{1}{m} \left[\sum_{i=1,2} \gamma_i \left(\frac{m}{M} \right)^{-\alpha_i} \right] \exp \left\{ -\beta \left(\frac{m}{M} \right)^{\zeta} \right\}$$

$\frac{m}{M} \frac{\mathrm{d}N_1}{\mathrm{d}\ln m}$

We fit the subhalo mass function at z=0

But....

mass function at small mass inferred only from the behaviour at large mass

[GF+(in prep.)]

$$\frac{m}{M} \frac{\mathrm{d}N_1}{\mathrm{d}\ln m}$$

[GF+(in prep.)]

We fit the subhalo mass function at z=0

Introduce a specific fitting procedure

Constrain the fit with the condition:

$$\frac{1}{M} \int_0^M m \frac{\mathrm{d}N_1}{\mathrm{d}m} \mathrm{d}m = 1$$

The host halo is entirely made of subhalos (fractal picture)

$$\frac{m}{M} \frac{\mathrm{d}N_1}{\mathrm{d}\ln m}$$

We fit the subhalo mass function at z=0

The constraint fixes the low-mass behavior

$$\frac{\mathrm{d}N_1}{\mathrm{d}m} \sim \gamma m^{-\alpha} \quad \text{with} \quad \alpha \sim 1.95$$

[GF+(in prep.)]

Comparison with the literature:

We fit the subhalo mass function at z=0

The constraint fixes the low-mass behavior

$$\frac{\mathrm{d}N_1}{\mathrm{d}m} \sim \gamma m^{-\alpha} \quad \text{with} \quad \alpha \sim 1.95$$

$$\frac{m}{M} \frac{\mathrm{d}N_1}{\mathrm{d}\ln m}$$

[GF+(in prep.)]

We fit the subhalo mass function at z=0

We get the total number of subhalos

$$N_1(M) = \int_0^M f(m, M)\Theta(m - m_{\min}) dm$$

Cosmological simulations no longer needed. Easily adapted to different cosmologies.

Future/ongoing projects

Play the same game for z > 0

Goal: adapt the model to higher redshifts (in particular relevant for 21cm)

(Look at enhancements of the power spectrum on small scales)

Part 1:

THE COSMOLOGICAL MASS FUNCTION FROM MERGER TREES

Part 2:

STELLAR ENCOUNTERS
IN THE MILKY WAY

Part 3:

APPLICATIONS
AND MORE

Part 2:
STELLAR ENCOUNTERS
IN THE MILKY WAY

[GF, Stref, Lavalle 2022 arXiv:2201.09788]

First question:

What happens to the particles in a subhalo crossing a single star?

To answer this question

We compute the kinetic energy kick received by each particle

$$\delta E = E_{\text{after}} - E_{\text{before}}$$

We compare it to the gravitational potential at the position of the particles

$$\delta E > |\Phi(r)|$$
?

To answer this question

Thus, we need to compute the corresponding velocity kick

$$\delta E = \frac{1}{2} (\delta \mathbf{v})^2 + \mathbf{v} \cdot \delta \mathbf{v}$$

v: initial velocity w.r.t. to the center of mass of the subhalo

We improve on the usual computation of $(\delta \mathbf{v})^2$

Original analytical computation:

Spitzer58, Gerhard+83 (for the encounter of two extended objects)

Work based on it:

Carr+99, Green+07, ...

See also results from simulations: Angus+07, Schneider+10, Ishiyama+10, Delos+19, ...

We improve on the usual computation of $(\delta \mathbf{v})^2$

- Analytical formulation crucial to gauge the effect on a subhalo population
- Problem of the original analytical computation:

cannot describe what happens for penetrative encounters

We improve on the usual computation of $(\delta v)^2$

When one object is point-like (here the star) the result is analytical (In the impulse approximation)

$$(\delta \mathbf{v})^{2}(\mathbf{r}) = \left(\frac{2G_{N}m_{\star}}{v_{r}b}\right)^{2} \left[I^{2} + \frac{b^{2}(1-2I) - 2I\mathbf{r} \cdot \mathbf{b}}{(\mathbf{r} + \mathbf{b})^{2} - (\mathbf{r} \cdot \hat{\mathbf{e}}_{v_{r}})^{2}}\right]$$

$$I(b, r_{t}) = \frac{b^{2}v_{r}}{m_{t}} \int_{0}^{\infty} \frac{m\left(\langle\sqrt{b^{2} + v_{r}^{2}t^{2}}\right)}{\left(b^{2} + v_{r}^{2}t^{2}\right)^{3/2}} dt$$

We average the result over angles

$$(\delta \mathbf{v})^2(\mathbf{r} = (r, \theta, \varphi)) \rightarrow \langle (\delta \mathbf{v})^2 \rangle (r)$$

We average the result over angles

$$(\delta \mathbf{v})^2(\mathbf{r} = (r, \theta, \varphi)) \rightarrow \langle (\delta \mathbf{v})^2 \rangle (r)$$

However ... infinities appear!
In the straightforward computation
... due to the diverging potential
of the star

We average the result over angles

Solution: use a good ansatz (Our new proposal)

$$\left\langle (\delta \mathbf{v})^2 \right\rangle_{\sim}(r) = \left(\frac{2G_{\mathrm{N}}m_{\star}}{bv_{\mathrm{r}}} \right)^2 \left[I^2(b, r_t) + 3\frac{1 - 2I(b, r_t)}{3 + 2(r/b)^2} \right]$$

Energy kick of a typical particle

The new ansatz performs better

(for penetrative encounters)

The new ansatz performs better

(for penetrative encounters)

The total velocity kick is the result of a random walk

(in « velocity space »)

Total energy/velocity kick

$$\Delta \mathbf{v} = \sum_{i=1}^{\mathcal{N}} \delta \mathbf{v}_i \qquad \Delta E = \frac{1}{2} (\Delta \mathbf{v})^2 + \mathbf{v} \cdot \Delta \mathbf{v}$$

The number of encountered stars:

$$\frac{\mathrm{d}\mathcal{N}}{\mathrm{d}b\mathrm{d}m_{\star}} = \mathcal{N}p_b(b)p_{m_{\star}}(m_{\star}) \qquad p_b(b) \propto b$$

$$\mathcal{N} \sim 10^3 \text{ at } R = 8 \text{ kpc}$$

From [McMillan17 & Chabrier03] (spatial and mass distribution of stars)

The total velocity kick is the result of a random walk

(in « velocity space »)

Large N-limit velocity kick PDF

From the central limit theorem $\mathcal{N} \to \infty$

$$p_{\Delta \mathbf{v}}(\Delta \mathbf{v}) = \frac{1}{\pi \mathcal{N}(\delta \mathbf{v})^2} \exp\left(-\frac{(\Delta \mathbf{v})^2}{\mathcal{N}(\delta \mathbf{v})^2}\right)$$

Average velocity kick squared per encounter

$$\overline{(\delta \mathbf{v})^2} = \int_{b_{\min} \sim 0}^{b_{\max}} \mathrm{d}b \int \mathrm{d}m_{\star} p_b(b) p_{m_{\star}}(m_{\star}) \langle (\delta \mathbf{v})^2 \rangle$$
 (from the ansatz)

The end?

For the inner particles

$$p_b(b) \propto b$$
and
$$\langle (\delta \mathbf{v})^2 \rangle \propto b^{-4}$$

For the inner particles

$$p_b(b) \propto b$$
 and
$$\left\langle (\delta \mathbf{v})^2 \right\rangle \propto b^{-4}$$

Small impact parameters: almost never happen

But

contribute a lot to the integral of $(\delta \mathbf{v})^2$

For the inner particles

$$p_b(b) \propto b$$
 and $\left< (\delta \mathbf{v})^2 \right> \propto b^{-4}$

Small impact parameters: almost never happen

But

contribute a lot to the integral of $(\delta \mathbf{v})^2$

Problem!

$$(\delta \mathbf{v})^2$$

too large

if
$$\mathcal{N} \neq \infty$$

Solution to the problem:

Find the typical minimal impact parameter for each crossing

$$b_0 \sim \frac{b_{\text{max}}}{\mathcal{N}}$$
 $b_0 (8 \text{ kpc}) \sim 0.5 \times 10^{-4} \text{ pc}$ $b_0 (1 \text{ kpc}) \sim 0.8 \times 10^{-5} \text{ pc}$

Cut off the integrals at b₀

$$\overline{(\delta \mathbf{v})^2} = \int_{b_{\min} \sim 0 \to b_0}^{b_{\max}} db \int dm_{\star} p_b(b) p_{m_{\star}}(m_{\star}) \langle (\delta \mathbf{v})^2 \rangle$$

Third question:

What is the impact of the stellar disc on the total subhalo population?

The effect of stellar encounters is dominant at low masses

Combination of effects:

```
    sm. only
    sm. + stars
    sm. + disk
    sm. + stars + disk
```

(m_t)² x Mass function [Msol.kpc⁻³]

Resilient subhalos

Fragile subhalos

[GF, Stref and Lavalle +22]

Stellar encounters have an important effect on the subhalo number density

Distance from the Galactic center [kpc]

16

Future/ongoing projects

- Compare more precisely to numerical simulations?
- Better evaluate the tidal radius (and the relaxation) analytically
- (Use a similar theoretical framework for astrometric microlensing analyses)

Future/ongoing projects

Example: « Tidal stripping from cuts in phase space »

Start from the initial profile and phase-space distribution function

$$f_0(\mathcal{E}), \, \rho_0, \Psi_0$$

Approximate the final mass from energy considerations

$$f_0(\mathcal{E}) \to f_0(\mathcal{E}' - \Delta \mathcal{E}) \quad \mathcal{E} > \Delta \mathcal{E} ?$$

Compute the new profile using Eddington's inversion coupled to Poisson's equation $f_1(\mathcal{E}), \, \rho_1, \, \Psi_1$

Give an ansatz for the phasespace distribution function after relaxation

See also Simon's talk

Part 1:

THE COSMOLOGICAL MASS FUNCTION FROM MERGER TREES

Part 2:

STELLAR ENCOUNTERS
IN THE MILKY WAY

Part 3:

APPLICATIONS
AND MORE

Part 3:

APPLICATIONS
AND MORE

1) DETECTION OF DARK MATTER POINT SOURCES IN GAMMA RAYS

See [GF, Stref and Lavalle 2020, arXiv:2007.10392]

Can dark matter subhalos be amongst the Fermi-LAT point sources?

[Fermi-LAT collaboration 19]

11525

unassociated point sources in Fermi-LAT 4th catalog (4FGL)

[Fermi-LAT collaboration 19]

With our subhalo model + foreground/background model:

Can some of these sources be DM halos? Could we detect them before the diffuse Galactic component?

With our model we compute probabilities for the J-factors

Probability to find a point-like subhalo with a J-factor above a threshold

$$\mathbb{P}\left(>J,\psi,\delta\Omega\right) = \frac{\delta\Omega}{N_{\text{sub}}} \iiint_{\textit{pt-like}} \mathrm{d}m_{\text{t}} \mathrm{d}c \mathrm{d}s \left[\frac{\partial^{2}n(m_{\text{t}},c,s)}{\partial m_{\text{t}}\partial c}\right]_{\text{f}} \Theta(J_{i}(m_{\text{t}},c,s)-J)$$

Average number of visible subhalos:

$$\langle N_{\text{vis}} \rangle = N_{\text{sub}} \mathbb{P}_J \left(> J_{\min}, \psi, \delta \Omega \right)$$

We add a background and perform a likelihood analysis

Background model compatible with the baryonic distribution contributing to tidal stripping of the subhalos

to find the sensitivity to the diffuse halo and to subhalos (for Fermi-LAT and CTA)

Most « visible » sources are around the galactic center

For CTA and Fermi-LAT
it is improbable to
detect a subhalo before
the diffuse emission
(better chances if the MW halo is cored)

2) HALO MINIMAL MASS FROM PARTICLE PHYSICS MODELS

[GF and Lavalle (in prep.)]

« Historically »
Focus: solving electroweak
hierarchy problem
top-down

No detection of new physics at LHC

Focus: production mechanism bottom-up (more generic)

[Cirelli+06, Abdallah+15, Abercrombie+15, Boveia+15, De Simone+16, Kraml+17, Arina+18, ...]

Sterile neutrinos Simplified models Weak **EFT** scale Extra-Superdimensions symmetry

We work with the following model

Generic coupling DM-SM through scalar, pseudoscalar, vector and axial-vector mediators

s-channel simplified model (for fermionc DM):

$$\mathcal{L} \ni -\overline{\chi}_{i}\delta_{\chi}(A_{k}^{ij}\phi_{k} + \iota\gamma^{5}B_{k}^{ij}\varphi_{k})\chi_{j} - \overline{\psi}_{i}(\mathcal{A}_{k}^{i}\phi_{k} + \iota\gamma^{5}\mathcal{B}_{k}^{i}\varphi_{k})\psi_{i}$$
$$+\overline{\chi}_{i}\gamma^{\mu}\delta_{\chi}(X_{k}^{ij} - \gamma^{5}Y_{k}^{ij})V_{k}^{\mu}\chi_{j} + \overline{\psi}_{i}\gamma^{\mu}\left(\mathcal{X}_{k}^{i} - \gamma^{5}Y_{k}^{i}\right)V_{k}^{\mu}\psi_{i}$$

Sterile neutrinos Simplified models Weak **EFT** scale Extradimensions Supersymmetry

Connect the particle properties to the minimal mass

(Solve moments of the Boltzmann equation)

WIMPs / Freeze-out

to constrain the model from the abundance

$$\int \hat{L}[f_{\chi}] \frac{1}{E_{\chi}} \frac{d^{3}\mathbf{p}}{(2\pi)^{3}} = \int \hat{C}[f_{\chi}] \frac{1}{E_{\chi}} \frac{d^{3}\mathbf{p}}{(2\pi)^{3}}$$

Kinetic decoupling

to evaluate the damping of matter fluctuations

$$\int \hat{L}[f_{\chi}] \frac{|\mathbf{p}|^2}{E_{\chi}} \frac{d^3 \mathbf{p}}{(2\pi)^3} = \int \hat{C}[f_{\chi}] \frac{|\mathbf{p}|^2}{E_{\chi}} \frac{d^3 \mathbf{p}}{(2\pi)^3}$$

Connect the particle properties to the minimal mass

Constrained coupling constant

Minimal halo mass

We connect the particle properties to the subhalo population

Mediator mass

log₁₀(Number of subhalos in the Milky-Way)

Dark matter mass

3) CLASSIFICATION OF TARGETS FOR VELOCITY DEPENDANT DARK MATTER ANNIHILATION

with T. Lacroix, J. Pérez-Romero, M. Stref, J. Lavalle, D. Maurin, M. A. Sánchez-Conde See [arXiv:2203.16440, 2203.16491]

Comparison of targets for Sommerfeld-enhanced annihilation cross-sections

Conclusions

- We have built a self consistent analytical model for the subhalo population
- We have improved this model with a better/new prescription for the cosmological mass function and tidal stripping by stellar encounters
- We have used this model for predictions and to connect astrophysics to particle physics models

Conclusions

We look forward to new projects and collaborations to improve/test this model and use it for different applications in astrophysics and cosmology

Back-up slides

Hierarchical formation leads to a fractal distribution

Cosmological simulations cannot probe very small scales

Chemical decoupling

Kinetic decoupling

Initial distribution: (without dynamics) Initial mass distribution (cosmological mass function) $(\rho_{\rm S}, r_{\rm S}) \leftrightarrow (m, c)$ $p_{\text{sub}}^{\text{init}}(m, c, R) = p_{\mathbf{R}}(R) \frac{1}{N_{\text{sub}}} \frac{dN_{\text{sub}}}{dm} p_c(c \mid m)$ Spatial distribution Distribution in concentration (follows potential of the host) [Bullock+01,Sánchez-Conde+14] [McMillan+17]

+ Constraints from dynamical effects

 $p_{\text{sub}}^{\text{init}}(m, c, R) \rightarrow p_{\text{sub}}^{\text{late}}(m, c, R)$

Minimal halo mass

Pseudo-scalar

- + Sommerfeld effects x large decay width
- large coupling
- **★** early kinetic dec.
- acoustic > free-stream

[Facchinetti+(in prep.)]

Scalar mediator

$$\mathcal{L} \ni -\frac{1}{2}\lambda \overline{\chi}\phi\chi - \lambda \overline{e}\phi e$$

$$p_{\text{sub}}^{\text{init}}(\{m_i\}_i, \{c_i\}_i, \{\mathbf{R}_i\}_i) \simeq \left[p_{\text{sub}}^{\text{init}}(m, c, R)\right]^{N_{\text{sub}}}$$

$$p_{\text{sub}}^{\text{init}}(m, c, R) = \frac{1}{N_{\text{sub}}} \frac{dN_{\text{sub}}}{dm} p_c(c \mid m) p_{\mathbf{R}}(R)$$

$$p_{\text{sub}}^{\text{late}}(m, c, R) = \frac{1}{K_t} \frac{1}{N_{\text{sub}}} \frac{dN_{\text{sub}}}{dm} p_c(c \mid m) p_{\mathbf{R}}(R) \Theta[r_t/r_s - \epsilon_t]$$

New number of subhalos

$$N_{\rm sub} \rightarrow K_{\rm t} N_{\rm sub}$$

[Binney+08, Weinberg94, Gnedin+99, Stref+17]

$$r_t = R \left\{ \frac{M_{\text{int}}(R)}{3M(R)f[M(R)]} \right\}^{1/3}$$

Global tides

$$\left\langle \frac{\delta E}{m_{\chi}} \right\rangle = \frac{2}{3} \frac{g_{\rm d}^2}{V_z^2} A(\eta) r^2$$

Galactic disk

Disk shocking

$$P_{
m m}(k,z)=rac{8\pi^2k}{25}\left[rac{D_1(z)}{\Omega_{
m m,0}H_0^2}T(k)
ight]^2\mathscr{A}_S\left(rac{k}{k_0}
ight)^{n_s-1}$$
 (power spectrum of density fluctuations)

$$S(R)=\sigma_R^2=rac{1}{2\pi^2}\int_0^{1/R}P_{
m m}(k,z=0)k^2{
m d}k$$
 (smoothed variance)

[Bond+91]

(smoothed density contrast)

Fraction of mass in halos between M and M+dM

$$f(M) \left| \frac{\mathrm{d}S}{\mathrm{d}M} \right| \, \mathrm{d}M = \frac{\delta_{\mathrm{c}}}{\sqrt{2\pi} S^{3/2}} \exp\left(-\frac{\delta_{\mathrm{c}}}{2S}\right) \left| \frac{\mathrm{d}S}{\mathrm{d}M} \right| \, \mathrm{d}M$$

Let us finish part I with a small computation (preliminary)

Assume self-similarity

$$\frac{\partial N_p(m,M)}{\partial m} = \int_0^M \frac{\partial N_1(m,m')}{\partial m} \frac{\partial N_{p-1}(m',M)}{\partial m'} dm' \qquad \frac{1}{M} \int_0^M \frac{\partial N_p(m,M)}{\partial m} m dm = 1$$

Define the total mass function

$$\frac{\partial N_{\text{tot}}(m, M)}{\partial m} = \sum_{p=0}^{\infty} \frac{\partial N_p(m, M)}{\partial m}$$

$$\frac{\partial N_{\text{tot}}(m, M)}{\partial m} = \frac{\partial N_1(m, M)}{\partial m} + \int_0^M \frac{\partial N_1(m, m')}{\partial m} \frac{\partial N_{\text{tot}}(m', M)}{\partial m'} dm'$$

Start with

$$\frac{\partial N_{\text{tot}}(m, M)}{\partial m} = \frac{\partial N_1(m, M)}{\partial m} + \int_0^M \frac{\partial N_1(m, m')}{\partial m} \frac{\partial N_{\text{tot}}(m', M)}{\partial m'} dm' \qquad \frac{1}{M} \int_0^M \frac{\partial N_p(m, M)}{\partial m} m dm = 1$$

Change of variables Assuming universality

Assuming universality
$$\frac{\partial N_p(m,M)}{\partial m} = \frac{1}{m} g_p \left(-\ln\left(\frac{m}{M}\right)\right)$$

$$g_{\text{tot}}(x) = g_1(x) + \int_0^x g_1(y)g_{\text{tot}}(y - x) dy$$

$$\int_0^\infty g_p(x)e^{-x} dx = 1$$

Laplace transform

$$\hat{g}_p(s) \equiv \int_{[0,\infty[} g_p(x)e^{-sx} dx$$

$$\hat{g}_{\text{tot}}(s) = \frac{\hat{g}_1(s)}{1 - \hat{g}_1(s)} \qquad \hat{g}_1(1) = 1$$

Start with

$$\hat{g}_{\text{tot}}(s) = \frac{\hat{g}_1(s)}{1 - \hat{g}_1(s)} \qquad \hat{g}_1(1) = 1$$

Pole in s=1

Use residue theorem (assuming we can)

$$g_{\text{tot}}(x) = \sum_{i=0}^{n_{\text{res}}} c_i e^{s_i x} \quad c_i \equiv \text{Res}(\hat{g}_{\text{tot}}, s_i)$$

With the residue in s=1

$$c_0 = \frac{1}{\hat{g}_1'(1)} \qquad s_0 = 1$$

$g_{\text{tot}}(x) = \frac{1}{\hat{g}_{1}'(1)} e^{x} + \sum_{i>0} c_{i} e^{s_{i}x}$

$$\frac{\partial N_{tot}(m, M)}{\partial m} = \frac{M}{\hat{g}_{1}'(1)} m^{-2} + \sum_{i>0} \frac{c_{i}}{m} \left(\frac{m}{M}\right)^{-s_{i}}$$

-2 is a critical exponent

$$\frac{\partial N_{tot}(m, M)}{\partial m} \propto m^{-2} \quad \text{if} \quad \text{Re}(s_i) \ll 1 \,\,\forall i > 0$$

