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Dark matter host halo (smooth)

Halos are
clumpy

Dark matter CLUMPS/Subhalos
(CDM paradigm)



F+22. G
Calore+19,

-+20,

Hutte

Why is looking for
subhalos interesting?

o Nature of DM: Cold DM?

Warm DM? Self Interacting DM? ...

Looked for with several strategies
DM annthilation, lensing, ...

barra+19, Hutten+19,

n+16, Ando+19, ...



|GF, Stref and Lavalle 2022, Stref+17,
Benson+12, Bartels+15,

How to describe -
the subhalo population? ey

Van den Bosch+05, S .
Pefiarrubia+05, ... N,

@» with cosmological simulations

Cannot reproduce THE Milky-Way/a « real » host
Cannot probe 102 Mo = m s 104 M.

@» with analytical models

Number of CDM subhalos in the MW > 106
Use a statistical description of the subhalos




Building an analytical model
for a subhalo population

A recipe from
[Stref and Lavalle 2017]
|GF, Stref and Lavalle 2022]




The AVERAGE dark matter density
IS constrained by observations

Nsub
<p)( = Psmooth T Z pi>

=1




Building an analytical model
for a subhalo population

o Start from a cosmological distribution

dN, sub _
(m ‘ Mhosta Z) ~ m (x®(m _ mmin)
dm

@» Cosmological mass function

@ Cosmological concentration distribution p .(¢) = log -/ (c(m), c,)
|Sanchez-Conde+14]

@ Intial position  pr(R) =

[McMillan17]



Building an analytical model
for a subhalo population

o Start from a cosmological distribution

0°n - dNgy

M. . 2p=(R
— ™ (m | My, 2)pr(R)p.(c | m)

l




Building an analytical model
for a subhalo population

e Include tidal effects in the host

Subhalos loose mass/shrink/
may be disrupted from three
maln Sources

Binney+08, Weinberg94, Gnedin+99, Stref+17]
Tormen+98, Hayashi+03, Diemand+08, ....]




Building an analytical model
for a subhalo population

o Include tidal effects in the host

Smooth tides
(from the host potential)

{ M., (R) } 1/3
r,= R
SM(R)fIM(R)]

[Binney+08, Stref+17]




Building an analytical model
for a subhalo population

o Include tidal effects in the host

Disk shocking
(from the disk potential)

OF 2 g2
— ) =AM
m, 3 V:

[Binney+08, Weinberg94, Gnedin+99, Stref+17]




Building an analytical model
for a subhalo population

e Include tidal effects in the host

Individual stellar shocks
(from the granularity of the disk)

More detalils in a few slides

|GF, Stref and Lavalle 2022]




Building an analytical model
for a subhalo population

o Evaluate the evolved distribution

r.\m, cC, ﬁ, —
® ( { 9 et) s(m,— m*(m,c, R, z)dm

rS(ma Ca Z)

e, : (input parameter) Efficiency of subhalo disruption
[Van den Bosch+18, Errani+20: subhalos are resilient to tides]
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|GF, Stref and Lavalle 2022]

1016 i

— Unevolved number density

101 4

104 4

Resilient subhalos

(more physical)

—_— €t — 10_2
— €t — 10_1

— Etzl

— sm. + disk

Fragile subhalos

(following simulations)

Distance from GC (MW) [kpc]
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Part 1:

THE COSMOLOGICAL
MASS FUNCTION
FROM MERGER TREES

[GF, Lavalle (in prep)]

e‘ v ,

limage from Lacey+93]




The original mass function
introduced in the recipe

€ Initial cosmological mass function

dNSUb —q
(m ‘ Mhosv Z) S ®(m - mmin)
dm

Calibration of mass fraction In
subhalos on DM only simulations.
How to avoid that?



The subhalo mass function
from an analytical recipe



From the excursion set theory
to merger trees
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1000 K

Everything starts from the
matter power spectrum

spectrum P(k) [(h-! Mpc)3]

100 |

Matter power spectrum:

2 n—I1
72k | D k\
P (k7) = — 1) k)| o, —
25 | Q,,0H? kq

® SDSS galaxies

i % Cluster abundance
: » Weak lensing

A Lyman Alpha Forest

Current power
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0.01 0.1 1
Wavenumber k [h/Mpc]

0.001

Assoclated smoothed variance:

1 1/R
S(R) = 05 = —J P_(k,z = 0)k“dk

2
2= ), [Tegmark+04]
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From the excursion set theory

to merger trees
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From the excursion set theory

to merger trees

= =
1% S
=
= =
|-
S 7p
()
=
=
W
-
ap)
o
)
ap)
<
+—)
O
O
&
D
~
>
_
e
) ——
N =
+—)
-
cm; S D
> el
o l S
J
o)
29 e L
o O
—
S
><
Ll



From the excursion set theory

to merger trees
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From the excursion set theory

to merger trees
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From the excursion set theory
to merger trees

op
Op(X) = dyFWR( |X—Y¥|) (smoothed density contrast)

collapse
barrier

-
.
-

large R « small R —

Example of one trajectory



From the excursion set theory
to merger trees

op
Op(X) = dyFWR( |X—Y¥|) (smoothed density contrast)

. *
.
ol

large R « R, small R —

Example of one trajectory



From the excursion set theory
to merger trees

op
Op(X) = dyFWR( |X—Y¥|) (smoothed density contrast)

. *
.
ol

large R « small R —

X

Example of one trajectory



From the excursion set theory
to merger trees

Generate merger trees
from the two barrier probability

(0, SR | @1, S(R,)) = ——=2 oy
@, S(Ry) | 01, 5(Ry)) = @Agyz 2P 2AS



From the excursion set theory
to merger trees

Generate merger trees
from the two barrier probability
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From the excursion set theory
to merger trees

Generate merger trees
from the two barrier probability

(0, SR | @1, S(R,)) = ——=2 oy
@, S(Ry) | 01, 5(Ry)) = @Agyz 2P 2AS



_— We fit the subhalo

M dInm

mass function at z=0

©c O O O O
== = = =
O, O o O O
o o© oo O O
== = = =
U = W N =

1071 E

€ Runthe Cole+00 algorithm

10 /// gives the mass function at large mass

0] o T L € ) Fit with the function
—10 _I8 _I6 _I4 _.2 0 f( M) B i Z (ﬁ)—ai - _ﬂ <ﬂ)é
logg [m/M] m, - ~ Vi Y, P Y,

[GF+(in prep.)]




I We fit the subhalo
mass function at z=0

M dlnm

But....

mass function at small mass
inferred only from the behaviour
at large mass

[GF+(in prep.)]




m_dN, We it the

M dInm

mass function at z=0

© © O © O
== = = =
O, O o O O
o o© oo O O
== = = =
U = W N =

1071 g

Introduce a specific

f —
- ? fitting procedure
E Constrain the fit with the condition:
10_3_5 —— Merger Tree M =10'* Mg 1 IM le
- | | , , L) — | m dm =1
~10 -8 6 4 ~9 0 M 0 dm
logm [m/M]

The host halo Is entirely made of

| subhalos (fractal picture)
[GF+(in prep.)]



_— We fit the subhalo

M dlnm

mass function at z=0

o O O O O
e T o TR o T o T
o, 00 O O O
o o o o O
e e e T
U = W N =

1071 E

The constraint fixes the

. /?L - low-mass behavior

-3 _
10 ] —— Merger Tree M = 10" Mg,

in - - » - ! with a ~ 1.95

[GF+(in prep.)]




We fit the subhalo

Comparison with the literature:

(This work)
M — 109 M@

— 10-1 4

¢1(m,M)—¢p1(m,Mo)

— (Jiang+14)
— (Giocoli+08)

— Fit (const.)
-- Fit (unconst.)

o Merger Tree

¢1 (vaO)

[GF+(in prep.)]

mass function at z=0

The constraint fixes the
low-mass behavior

with a ~ 1.95




_— We fit the subhalo

M dlnm

mass function at z=0

o O O O O
e T o TR o T o T
o, 00 O O O
o o o o O
e e e T
U = W N =

1071 E

—
: \ /’ o We get the total number
_ of subhalos
| M
10779 | — Merger Trec M =10"2 My N{(M) = J fim, M)O(m — m,,. . )dm
—10 —38 —I6 — —|\2 — 0 0
logyo [m/M]|

Cosmological simulations no longer needed.
[GF+(in prep.)] Fasily adapted to different cosmologies.




Future/ongoing projects

¢ Play the same gameforz>0

Goal: adapt the model to higher redshifts
(in particular relevant for 21cm)

(Look at enhancements
@ of the power spectrum
on small scales)
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[Darth Vador+(a long time ago)]



FIrst question:

What happens to the particles
in a subhalo crossing a single star?




To answer this question

We compute the kinetic energy kick
received by each particle

ob = Eafter o Ebefore

We compare it
@€ to the gravitational potential
at the position of the particles

oF > | D(r)|?




To answer this question

Thus, we need to compute
the corresponding velocity kick

v: Initial velocity w.rt. to the
center of mass of the subhalo




We improve on the usual
computation of (6v)-

Original analytical
computation:

Spitzer58, Gerhard+83 (for the encounter of
two extended objects)

¢ D Work based on it:
Carr+99 Green+07, ...

See also results from simulations:
Angus+07, Schneider+10, Ishiyama+10, Delos+19, ...



We improve on the usual
computation of (6v)-

Analytical formulation
@ crucial to gauge the effect
on a subhalo population

Problem of the original
analytical computation:

cannot describe what happens
for penetrative encounters




We improve on the usual

computation of (6v)°

When one object is point-like (here the star)
the result is analytical (inthe impulse approximation)

2 21 . |
(6V)*(r) = <2GNm*) llz_l_ b=(1 —2I) = 2Ir b]

vb (r+b)2—(r-é,)>

(b, 1) = dz

2 Oom<<\/b2+vr2t2)
VrJ‘

m Jo (b2 + vr2t2)3/2



We average the result
over angles

(6v)(r = (1,6, ) = ((6V)° ) (1)




We average the result
over angles

(6v)(r = (1,6, ) = ((6V)° ) (1)

€ However ... infinities appear!
In the straightforward computation

.. due to the diverging potential
of the star




We average the result
over angles

@ Solution: use a good ansatz
(Our new proposal)

2Gym, 1 —21I(b, 1)

2
2 o 2
(OV)) (n) = ( bv, ) [1 SO 3 + 2(r/b)>

Energy kick of a typical particle




(6v)°

(dimensionless)

The new ansatz

performs better
(for penetrative encounters)

2
(OV)
(dimensionless)
]
— <(5V)2>N — <(5V)2>GF
107" 1
1077 -
107 1
1077 -
1077 -
0-1 100 10t 102 100 10 10°




(6v)°

(dimensionless)

Our ansatz

The new ansatz

performs better
(for penetrative encounters)

2
(OV)
(dimensionless)
!
- <(5V)2>N - <(5V)2>GF
107" 1
1077 -
107 1
1077 A
1077 -
0-1 100 10t 102 100 10 10°




o Subhalo
0

g

Galactic stellar disc

Second question:

What is the impact of
multiple encounters
on one subhalo?

93



The total velocity kick is

the result of a random walk
(in « velocity space »)

¢ Total energy/velocity kick

N
1
Av = Z OV, AE = E(AV)Z + v Av
i=1

€ ) The number of encountered stars:

dy
dbdm,

= Wpyb)py (m,)  py(b) x b

N ~10° at R = 8 kpc

From [McMillan17 & Chabrier03] (spatial and mass distribution of stars)



The total velocity kick is

the result of a random walk
(in « velocity space »)

€ ) Large N-limit velocity kick PDF
From the central limit theorem 4 — o

(AV) = — 1 ex (Av)
P = v P\ Gove

€ Average velocity kick squared
per encounter

bmax
G = b |dmpybp,, om0 (007
Dmin™~0 (from the ansatz)




The end?

56



For the inner
particles




Small impact
parameters:
almost never happen

For the inner
particles

But

contribute a lot
to the integral of (6v)*



For the inner Small impact

particles parameters: Problem!
almost never happen

(6v)°
too large
if /' # o0

But

contribute a lot
to the integral of (6v)*



Solution to the problem:

Find the typical minimal impact

parameter for each crossing ~
v\*
b b max by(8 kpc) ~ 0.5 x 107 pc *Z*
o ~ 20
’ N by(1 kpc) ~ 0.8 x 107 pc -

@ Cut off the integrals at b

bmax
(5V)? =J dbJdm*pb(b)pm*(m*)<(5v)2>
b.i,~0—by




v = 334km.s™!

—1
AE [km - s™"] Mgy = 1.6 X 1079 M,
After one disk crossing R = 8kpc
GF, Stref and Lavalle +22] cosf = 1/2
Naive Central-Limit result:
________________________ o T==—=———__——- subhalo disrupted
— == { | True result:
— " — bmin =0 { | subhalo slightly shrinks
= — bmin = 00(0.2) |
/_,-/'// — Monte-Carlo
-- |®| | — Central-Limit
102 | - ll()l_1 | - --1(1)0

r/rs  Distance from the center of the subhalo




Third question:

What is the impact of
the stellar disc on
the total subhalo population?

Subhalo
.

Galactic stellar disc “'

62



|GF Stref and Lavalle +22]

The effect of | R=Tkpe

105 -

3 =1 -—‘—-_-—-—.—.—._._.—._.—.::-s.\
stellar encounters w1 e

Resilient subhalos

iS dO mina nt Fragile subhalos
at low masses

Combination of effects:

—: sm. only

(m¢)2x Mass function
‘Msol.kpc3]

- Ssm. -+ stars

— sm. + disk

-- sm. + stars + disk

— . T 1 T T T T —
10~ 1071 1078 107° 1072 10t 104 107 1010

Tidal (physical) mass m¢ [Msol]



Stellar encounters
have an important

effect on the
subhalo
number density

Number density

o =19 |GF Stref and Lavalle +22]

kpc3] :
kpC ] 1 — Unevolved number density
1016 _ —- sm. only
: =+ Sm. -+ stars
— sm. + disk ]
-- sm. + stars + disk
1015 S
1014 4 .
: ,/‘f'y""" =
i
/ -
i ¥ x A=
1013 _: I ., .”t
11 ; 1 X ¢
: .I J : ,,
b _I J o '
! i’ £/
1012 . ’, 7 :. /
E , 1 .:/ —_— € = 10_2
1. Y |
11 o — € =1
1011 ! | | 1 .x’I 1 1 1 1 1
0 2 4 § 8 10 12 14 16 C

Distance from the Galactic center [kpc]



Future/ongoing projects

Compare more precisely to
numerical simulations?

Better evaluate the tidal radius
(and the relaxation) analytically

(Use a similar theoretical
framework for astrometric
microlensing analyses)




Future/ongoing projects
Example: « Tidal stripping from cuts in phase space »

Start from the initial profile and Compute the new profile
phase-space distribution function using Eddington’s inversion

Jo(8), po, ¥y coupled to Poisson’s equation
fi(g)a p]a ‘Pl
Approximate the final mass from
energy considerations

(&) = f(E'— AE) &> AE?

Glve an ansatz for the phase-
space distribution function

o after relaxation
See also Simon’s talk
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Subhalos,

Part 3:

APPLICATIONS
AND MORE



1) DETECTION OF DARK MATTER
POINT SOURCES IN GAMMA RAYS

See [GF, Stref and Lavalle 2020, arXiv:200710392]



Can dark matter
subhalos be amongst
the Fermi-LAT point
sources?

[Fermi-LAT collaboration 19]

unassociated point sources
- 1 5 2 5 in Fermi-LAT 4t catalog (4FGL)

[Fermi-LAT collaboration 19]

With our subhalo model + foreground/background model:

@» C(Can some of these sources be DM halos?
Could we detect them before the diffuse Galactic component?




With our model
we compute probabilities
for the J-factors

Probability to find a point-like subhalo
with a J-factor above a threshold

azn(mt, C,S)

0
P ( > J,y, 552) — N J]]pt o dmdcds o9 O (m,c,s)—J)

{

@ Average number of visible subhalos:

<Nvis> — Nsub”:DJ( > Jmin’ Y, 5Q)




We add a background
and perform a likelihood analysis

@» Background model compatible with
the baryonic distribution contributing to
tidal stripping of the subhalos

Likelihood analysis and mock data
@9 {0 find the sensitivity to the diffuse halo
and to subhalos (for Fermi-LAT and CTA)




log,(Nvis(l, 0) /(82 /s1))

Most « visible » sources
are around
the galactic center

NFW Core

For CTA and Fermi-LAT
it is improbable to
Tyt e 7o detect a subhalo before

s 14 —or pome - | LNE diffuse emission

T e ome e (better chances If the MW halo IS COred)
m, | GeV ] m, | GeV |




2) HALO MINIMAL MASS

FROM PARTICLE PHYSICS MODELS
|GF and Lavalle (in prep.)]



« Historically »
Focus: solving electroweak

ALPs

Fuzzy DM dard .
y reutinos hierarchy problem
Steril -
acp , reutrins top-down
Axions Light
bosons :
Neutrinos Simplified
models No detection of new
physics at LHC
Weak
. scale EFT
DM particle
models o Focus: production mechanism
Super- dimensi :
- m bottom-up (more generic)

[Cirelli+06, Abdallah+15, Abercrombie+15, Boveia+15,
De Simone+16, Kraml+17, Arina+18, ...]



We work with
the following model

Sterile

neutrinos

Simplified Generic coupling DM-SM through
MOGEEs scalar, pseudoscalar,
vector and axial-vector mediators

s-channel simplified model (for fermionc DM):

Extra-
Super- dimensions
symmetry




Connect the particle properties

to the minimal mass
eutins (Solve moments of the Boltzmann equation)

Simplifed WIMPs / Freeze-out

models -
to constrain the model from the abundance
3

Jli[f]l dp —J@[f]l N/
“E,2n} ] VE,Qa) ><

btra- @» Kinetic decoupling

Super- dimensions

symmetry to evaluate the damping of matter fluctuations
Jz[f] Pl dp =Jé[f] LI b
U E, (2n)3 " E, 2n)3 A

(2 P



Connect the particle properties

to the minimal mass

in/MQ]

logg [Mm

102 103 104

10!

m, |GeV]
Minimal halo mass

109

1071

Constrained coupling constant

104

™
-
—

102
0
100




We connect the particle properties

to the subhalo population

104

G
© N
<5 3
o S =
|
mSy
= © ‘=
OhM
1A OO
on D
o -

Mediator mass

Dark matter mass



3) CLASSIFICATION OF TARGETS
FOR VELOCITY DEPENDANT
DARK MATTER ANNIHILATION

with T. Lacroix, ). Perez-Rome
See

ro, M. Stref J. Lavalle, D. Ma

urin, M. A. Sanchez-Conde

arxiv:220316440, 220316497

|



Comparison of targets for
Sommerfeld-enhanced
annihilation cross-sections

1031 1019
Ret.II (uf. dSph) Ret.II (uf. dSph)
Draco (cl. dSph) 1018 Draco (cl. dSph)
1028 - —— IC10 (dIrr) —— IC10 (dIrr)
~ Fornax (cluster) T 1017 - Fornax (cluster)
@ el SAAYYLLYLYLYYTYTYY O\ w0 __TWk
Yo Lo
= 1025 s-wave = 10'°- p-wave
o : Q ‘
Y, Comparison 101 Comparison
O gy [ S
O, 107 1o TR O, 1014-
N NN SR SN\ A\ V Y
0N N 22
™~ ool T AN ~ 1013+
—— Full caleulation N 10124 — Full calculation
----- No subhalos T ----- No subhalos
1016 1 1 I 1 I 1011 1 1
104+ 107 10 107 10 10' 107 107 107° 1072




Conclusions

@ We have built a self consistent analytical
model for the subhalo population

@» Ve have improved this model with a
better/new prescription for the
cosmological mass function and tidal
stripping by stellar encounters

@» We have used this model for predictions and to
connect astrophysics to particle physics models

gaetan.facchinetti@ulb.be



Conclusions

We look forward to new projects
and collaborations to improve/
test this model and use it for
different applications in
astrophysics and cosmology

gaetan.facchinetti@ulb.be
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Brightness traces the DM "density ina halo '

(obtained with cosmological simulations)

N Springel+08]

.

i

B "
oy .
. .
200 kpe 20 kpe
o ® .
| \. )
40 4 2
} e | } ml r - —

Hierarchical formation leads to a fractal distribution

[:] SINOOtN acCre

® 3rdorder
. 2nd order

.

' Oth order

[Jiang+14]
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»

:. [ Illu's‘tfis t,:o"éb:oratit.)n]_ |

[Springel+06]

- [Hubble eXtreme Deep Field]
. e ' . 3 ¢ o

stsci.edu/prepdsicdff

http:ffarchive,

~
1 000 — 1 | T T T I | T T T T | T T T T T T T T =
2 [ : _
L LT T | —
T, Foovemrnannn,. a
I R T

- e S —

~ : r< Tso
$ 0.100— ; -
S’ _— I —
E e . _
AAE — ' : ............. _—
= [ : -

P | 100 kpe

.| £ | r<
< 0.010E | =
= Ag-A-l | -
- | —
. Ag-A-2 | \ —
— Ag-A-3 | _
— Ag-A4 | _
0.001 I | 1 1 1 : | 1 1 1 1 | 1 1 1 1 1 1 1 1 |
107° 10° 10° 107

[Springel+08] My [Mo]

Cosmological simulations cannot probe very small scales




Chemical decoupling Kinetic decoupling

10 a=10"%* cm?s™!
, —= a=10"2% cm?s!
- 107~ a—=10 28(3111381
o
O
= 107% -
av
= L N Tt S —
5 107° - —
1= A s btttk
v S1078  yea R
10—10 +1 X7 T b e
10_12 I T r] T T B B B
109 102 103

[Facchinetti+(in prep.)]

Decoupling are characterized by a divergence

from the equilibrium quantity



"Initial distribution:
(without dynamics)

(pg 1y < (m, C)
N\

. 1 dN
psubt(ma C, R) — pR(R) sub
N, sub dm

(follows potential of the host)
\_ [McMillan+17]

Initial mass distribution

(cosmological mass function)

pc|m)

Spatial distribution Distribution in concentration

[Bullock+01,Sanchez-Conde+14]
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"Initial distribution:
(without dynamics)

(pg 1y < (m, C)
N\

. 1 dN.
plglt(m, . R) = p (R) sub
sub R Nsub dm

Spatial distribution

(follows potential of the host)
\_ [McMillan+17]

Initial mass distribution

(cosmological mass function)

pc|m)

Distribution in concentration

[Bullock+01,Sanchez-Conde+14]

-~

C Constraints from dynamical effects
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Pseudo-scalar

+ Sommerfeld effects
X large decay width

e [arge coupling
% early kinetic dec.

O 06006 06 00
® 006 060 00O

[Facchinetti+(in prep.)]

Minimal halo mass

®  © & & & o o o

® ¢ & & o ¢ ¢ o

®* © & & & & o o o o

® & & & & & o o o o

® © & & G O o o o

®* 6 & & & & o > o o

Annihilation on pole

Small couplings
BUT
Small minimal mass

Large number of subhalos

Enhanced annihilation for
indirect detection
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Scalar mediator

[Facchinetti+(in prep.)]

10° - ‘h - ‘h
Lobs &'— i Clust 14- i
T ++ usters +'ﬂ"
by 102 A 4+ - +.-|1-,++
= AT
A 1 | K
7 107! A 7
20
k=
,2, 10_4 = - - 1
< o [
S 1077 ~ ° - ©
§b&4 - 0
, s 10710 - -
Coupl = 0.1 —— Majorana : xxX — XX >
My = 10 GeV -=== Dirac : XX — XX . 10-13 |
10° 4 Mm = 0.01 GeV —-— Dirac : XX — XX Vrel = 10° kms™?! vrel = 10° kms™!
] ' — 1 T ] ' L L L L L ' T T T T T T
101 102 103 0~* 107° 10°* 0" 107 107* 10!
~1 | .
[Facchinetti+(in prep.)] Urel [kms™] Minin [Me) Momin [Mo]

1
L 2~ iy — Kepe

Self-interaction




5 c 1ni Nsu
P;ﬁg({ml}p {Ci}i9 {Rl}l) = [psubt(m’ € R)] :

\

dN,

_ 1 D p.(c|m)pgr(R)
Nsub dm

\

dN,

1 1 b
m, c, R =——iccm R)O|r/r.— ¢
psub( ) Kt Nsub dm p( ‘ )pR( ) [t S t]

late

New number of subhalos N

sub KtN sub




[Binney+08, Weinberg94, Gnedin+99, Stref+17]

{ M. (R) } 1/3
r, = R
SM(R)fIM(R)]

Galactic disk

Global tides Disk shocking

Two sources of tidal stripping are considered
and impact on the probability distribution
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[Bond+91]

(power spectrum
of density fluctuations )

(smoothed density contrast)
op
540 = [ dv LWl x = y1)

p Region enclosed in a halo of size R,
 First upcrossing
5. '
Dy (z) _ _
Fraction of mass in halos between M and M+dM
N LN Pt 5,
M) M N @53/2 =P <_2_S>
large R « R, small R —

From the excursion set theory to merger trees



(This work)
M =10° Mg
- M — 1012 M@

— (Jiang+14)

— Fit (const.)

-- Fit (unconst.) |

— USMF (This work)
-- ESMF (This work)
ESMF (Hiroshima+18)

— M =5.9x10" Mg
— M =1.8x10" Mg,

10-3 - — (Giocoli+08) = e Merger Tree
S| 0.5-
&l ]
N E ] ® ®
Tl 0.0- hogeere eI
=|s :
\i: —0.5 1

7 , — , 10° | | | | | |
10 _8 6 4 9 10~° 102 10* 10* 107 101 1013
[Facchinetti+(in prep.)] logyo [m/M] [Facchinetti+(in prep.)] m/M

New calibration method
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Let us finish part | with a small computation (preliminary)

Assume self-similarity

ON,(m, M) (™ oN,(m,m’) ON,_(m’, M) Y ON,(m, M)
— = J ————————dm’ ————mdm =1

0 om om 0 om

om

Define the total mass function
ONo(m, M) ON,(m, M)

om o, om

m

/

ON, (m, M) 0 ON,(m, M) . J’ M ON,(m,m’) ON (m’, M)d

om om 0 om om

/
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Start with
ONyo(m, M) 0N (m, M) . JM ON,(m, m’) N, (m’, M)d

/
/

om om 0 om om

Change of variables
Assuming universality

e L (o (3)
om ; mgp . M

Laplace transform

X

Ziot(X) = g1(x) + J 21(V)&io(y — x)dy
0

g,(5) = J g,(x)e " dx
[0,00](
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Start with

A _ g1(s)
S0l =T

Use residue theorem
(assuming we can)

nres

gtot(x) — Z Ciesix C; = RGS(§t0t, Si)

g(1)=1
Pole in s=1

With the residue in s=1
]

Co = T
: g1(1)

S():l

-2 is a critical exponent
oN, (m, M)

om

Iif Re(s)<1Vi>0

Re(s)
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M = 101? Mg — order 1

—— order 2

103 - order 3

order 4

. order 5

% 102 - —— total
/\
E
=

101 -
\ i
10~ 10~° 10~2 101 10Y

[Facchinetti+(in prep.)]

Merger Trees Monte Carlo results
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