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Playing Rapha’s puppet

e Tidal stripping mostly occurs at pericentric passages.

e Simulation snapshots at each apocentre, once the bound remnant has stabilised.
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Tidal tracks 101
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Two phases: tidal shock and re-virialization

e Tidal shock at pericentric passage: mass removal and tidal heating

e Re-virialization (collisionless relaxation) during the rest of the orbit, to a new equilibrium

4



Semi-analytical models:
the tidal heating scenario

Hypotheses:
The tidal shock is impulsive: instantaneous velocity kick to all particles. Av — AE
A shell of material at radius r is stripped whenever its mean energy gets positive. =~ AM
The radius of the bound shells is updated according to the virial theorem. Ar — Ap
Success: Problem:
Provides good estimates for mass loss. e Fails at reproducing density profiles.
" Errani & Navarro (2021) - - -
i This work
e.g., Taylor & Babul 2001 % Benson & Du 2022 \g e
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Semi-analytical models:
the tidal heating scenario

Hypotheses:
e The tidal shock is impulsive: instantaneous velocity kick to all particles. Av — AE
e A shell of material at radius r is stripped whenever its mean energy gets positive. =~ AM
e The radius of the bound shells is updated according to the virial theorem. Ar — Ap
Success: Problem:
e Provides good estimates for mass loss. e Fails at reproducing density profiles.

Possible explanation:

e Tidal heating is not the relevant process driving the evolution of the bound remnant.



A
Tides are not impulsive

e In the centre, orbital frequencies are large — tides are not impulsive. Murali & Weinberg 1997
e The bound remnant responds adiabatically to the tidal field. Gnedin 1999

e [Alternative: the central density is high — the remnant responds linearly. |
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Tidal shock

= Tidal potential
Response

If no material gets stripped, the bound remnant is not expected to evolve.



Response to tidal stripping
oY

- Shock - Perturber
== Stripping Response

e Long after the tidal shock, it does not contribute to the response anymore.

e Only tidal stripping has a long-term effect on the bound remnant.




Response to tidal stripping
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Model for mass removal

Errani+ 2021
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Model for relaxation
—p

Hypotheses: Stripped fraction

e Surviving particles initially unaffected by
the tidal shock: they remain on the same
orbits.

e 'The orbits are later perturbed by the

Tidal shock

absence of the tidally stripped fraction:

relaxation to a new equilibrium.

Amorisco 2021
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Recent work based on similar hypotheses:

Amorisco 2021. Relaxation is performed Eﬁ

using isolated N-body simulations.
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Linear Response Theory

How does a stellar system respond to an external perturbation?

External perturber Y, — Yy + w*
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Linear Response Theory

How does a stellar system respond to an external perturbation?

Linearised CBE
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Linear Response Theory

How does a stellar system respond to an external perturbation?
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Problem:
choice of variables




Projection on a basis ...

¢(p)

Basis elements
The basis solves the Poisson equation
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.
Application to our model

0
e Background potential y: truncated cusp, 1L — Peusp
1 — e—r/rS [ Pstripped
r) = — — Premnant
o rir 0.1
e Relaxing system F(E): surviving fraction !
(once the stripped fraction is removed) 0.01}
e External perturber y°: stripped fraction
(negative density) 0.00 6.1 r/rg
0
0.1,
e Perturber p°: projection onto the basis.
. . 001}
The quality of the reconstruction depends ;
on the number of basis elements, especially
at the centre. 0.001¢
P01 0o o
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s
Response of the surviving halo
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A
Response of the surviving halo
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' — Vink €Volution during relaxation
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.
Rotation curves VS stripped fraction

Errani+ 2021
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A
Tidal tracks

Errani+ 2021

T
\

logg 7/7mx0 0.8 . i

Amorisco 2021

0.0 _ X i g
jl—_ z=io 0'4?;%'%).36 07 ,’,
-0.2 - + c=20 »# /,
X Hernq 0'68,%— 0.58 | e | | | ! ! ! ! T /r 0
-——- E+421 / mx mx
O - A 06 04 05 06 070809 1
> 4 °
X —-0.6
§ %0.89
8 -0.8 $0.93
1ol #0.97
-2 e Ev = 0.99
-2.0 -15 -1.0 ~05 0.0
10g(Fmax/T2 ax)

21




Tidal tracks

Errani+ 2021
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A few more points

Central behaviour? Anisotropy in the remnant?

Adiabatic invariants?

F(J)




Central density: comparison with simulations

Amorisco 2021
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A
High-resolution computation
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Anisotropy (preliminary)
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e Tangential anisotropy develops in the subhalo.
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B
Conclusions

ACCOUNTING FORRELAXATION

seems necessary to reproduce the tidal tracks.

THE MATRIXMETHOD

seems to do a good job at computing relaxation at lower numerical cost.

TIDAL STRIPPING

does not seem able to dissolve a cusp.

TANGENTIAL ANISOTROPY

seems to develop progressively.
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Thanks for your attention
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