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Playing Rapha’s puppet

• Tidal stripping mostly occurs at pericentric passages.

• Simulation snapshots at each apocentre, once the bound remnant has stabilised.
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Tidal tracks 101
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Evolution of the subhalo’s density
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Two phases: tidal shock and re-virialization

• Tidal shock at pericentric passage: mass removal and tidal heating

• Re-virialization (collisionless relaxation) during the rest of the orbit, to a new equilibrium
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Semi-analytical models: 

the tidal heating scenario

     Success:

• Provides good estimates for mass loss.

e.g., Taylor & Babul 2001

     Problem:

• Fails at reproducing density profiles.

0.1

1

0.01 0.1 1
v m

a
x
/v

m
a
x
,0

rmax/rmax,0

Errani & Navarro (2021)
This work

Errani & Navarro (2021)
This work

0

20

40

60
G1S2

0

20

40

60
G1S3

0

20

40

60
G1S4

0

20

40

60
G1S5

0 1 2 3 4
0

20

40

60
G1S6

0

2

4

0

2

4

0

2

4

0

2

4

0 1 2 3 4
0

2

4

Benson & Du 2022

     Hypotheses:

• The tidal shock is impulsive: instantaneous velocity kick to all particles.                  

• A shell of material at radius  is stripped whenever its mean energy gets positive.       

• The radius of the bound shells is updated according to the virial theorem.               

Δv → ΔE
r ΔM

Δr → Δρ
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Semi-analytical models: 

the tidal heating scenario

     Hypotheses:

• The tidal shock is impulsive: instantaneous velocity kick to all particles.                  

• A shell of material at radius  is stripped whenever its mean energy gets positive.       

• The radius of the bound shells is updated according to the virial theorem.               

Δv → ΔE
r ΔM

Δr → Δρ

     Success:

• Provides good estimates for mass loss.

     Problem:

• Fails at reproducing density profiles.

     Possible explanation:

• Tidal heating is not the relevant process driving the evolution of the bound remnant.
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Tides are not impulsive

• In the centre, orbital frequencies are large  tides are not impulsive.

• The bound remnant responds adiabatically to the tidal field.

• [Alternative: the central density is high  the remnant responds linearly.]

→

→

Murali & Weinberg 1997 
Gnedin+ 1999

Intermediate state

Tidal shock

Final state
t

δψ

Tidal potential
Response

If no material gets stripped, the bound remnant is not expected to evolve.
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Response to tidal stripping

t

δψ
Shock
Stripping

Perturber
Response

• Long after the tidal shock, it does not contribute to the response anymore.

• Only tidal stripping has a long-term effect on the bound remnant.
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Response to tidal stripping

• Long after the tidal shock, it does not contribute to the response anymore.

• Only tidal stripping has a long-term effect on the bound remnant.

t

δψ
Shock
Stripping

Perturber
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Model for mass removal
• Which fraction of the cluster is 

removed at the tidal shock? Cut in 
energy .E
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• Truncated cusp, all particles 
removed above =-0.36


     (most bound: =-1; escaping: >0)
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E E
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Model for relaxation
     Hypotheses:

• Surviving particles initially unaffected by 

the tidal shock: they remain on the same 
orbits.


• The orbits are later perturbed by the 
absence of the tidally stripped fraction: 
relaxation to a new equilibrium.

Ti
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t

-ρ

Amorisco 2021

Recent work based on similar hypotheses: 
Amorisco 2021. Relaxation is performed 
using isolated -body simulations.N
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How does a stellar system respond to an external perturbation?

Linear Response Theory

S.
 C
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ti

ψ0 → ψ0 + ψ eExternal perturber 

F → F + fPerturbed DF

System's response ψ0 → ψ0 + ψ e + ψs[ f ]

Linearised collisionless Boltzmann equation
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How does a stellar system respond to an external perturbation?

ψs

Linear Response Theory

∂f
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Linearised CBE

Δψs = 4πGρs

Poisson

Amplifier
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How does a stellar system respond to an external perturbation?

ψs

Linear Response Theory
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= 0

Linearised CBE

Δψs = 4πGρs

Poisson

Easier in (θ, J)

Easier in (x, v)

Problem:

choice of variablesAmplifier
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Projection on a basis Kalnajs 1976

The basis solves the Poisson equation

b(t)

Response matrixM(t)

Galaxies are self-gravitating

• Self-gravitating amplification
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Application to our model

• Background potential : truncated cusp, 




• Relaxing system : surviving fraction 
(once the stripped fraction is removed) 


• External perturber : stripped fraction 
(negative density)

ψ0

ψ0(r) = −
1 − e−r/rs

r/rs

F(E)

ψ e

• Perturber : projection onto the basis.

The quality of the reconstruction depends 
on the number of basis elements, especially 
at the centre.
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Response of the surviving halo

• Response : the surviving halo quickly 
reaches a relaxed state. Mass is transferred 
from the centre to the outskirts.

ψ s

• The evolution of the  curve is mostly 
due to the initial tidal stripping, with a 
small effect of the subsequent relaxation.
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Response of the surviving halo

• Response : the surviving halo quickly 
reaches a relaxed state. Mass is transferred 
from the centre to the outskirts.

ψ s

• The evolution of the  curve is mostly 
due to the initial tidal stripping, with a 
small effect of the subsequent relaxation.
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 evolution during relaxationrmx − vmx
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Rotation curves VS stripped fraction
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Tidal tracks

≠1

≠0.8

≠0.6

≠0.4

≠0.2

0

≠2 ≠1 0 1

10
�

t

T
pe

ri
/4 NFW

lo
g 1

0
V

c
/
V

m
x0

log10 r/rmx0

≠2

≠1.5

≠1

≠0.5

0

lo
g 1

0
M

m
x/

M
m

x0

gr
id

re
so

lu
tio

n

tid
al

tr
ac

k

5
T

orb

10
T

orb

20
T

orb

30
T

orb
trunc. cusp

Errani+ 2021

!tr = 0.99
0.97

0.93 0.89 0.830.76
0.68 0.58

0.48 0.36
Amorisco 2021

0.4 0.5 0.6 0.7 0.8 0.9 1
rmx/rmx0

0.6

0.7

0.8

0.9

1

vmx/vmx0



22

Tidal tracks
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A few more points

Anisotropy in the remnant?Central behaviour?

Adiabatic invariants?

F(J)
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Central density: comparison with simulations
Errani+ 2021a

Amorisco 2021
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High-resolution computation
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Anisotropy (preliminary)
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• Tangential anisotropy develops in the subhalo.
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ACCOUNTING FOR RELAXATION

seems necessary to reproduce the tidal tracks.


THE MATRIX METHOD 

seems to do a good job at computing relaxation at lower numerical cost.


TIDAL STRIPPING

does not seem able to dissolve a cusp.


TANGENTIAL ANISOTROPY

seems to develop progressively.

Conclusions
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Thanks for your attention

0.6 0.7 0.8 0.9 1
rmx/rmx00.8

0.9

1
vmx/vmx0


