Simulations de supernovae gravitationnelles et de coalescence d'étoiles à neutrons

Jérôme Guilet (IRFU/DAp)

Core collapse: formation of a neutron star

Proposed explosion mechanisms

Neutrino-driven explosions : favored mechanism for standard SNe

Magnetorotational explosions : need fast rotating progenitors extreme events ?

Quark matter transition : uncertain physics, only very massive stars ?

Acoustic mechanism (Burrows+ 2006, 2007): not confirmed by later studies or other groups

Jittering jets (Soker+) : weak physical motivation for the driving of the jets

Neutrino-driven mechanism: a multi-physics problem

- Multi-dimensional hydrodynamics (instabilities, turbulence..)
- Magnetic field
- General relativity
- Neutrino-matter interactions sophisticated transport scheme accurate cross sections
- Ultra-high density equation of state

To simplify or not to simplify

General relativity

Compactness parameter : $\frac{GM}{rc^2}$

- Neutron star : $r \approx 12 \ km$, $\frac{GM}{rc^2} \sim 0.2$
- Protoneutron star : $r \approx 40 \ km$, $\frac{GM}{rc^2} \sim 0.05$

Approximations of general relastivistic effects:

- Full general relativity

e.g. Kuroda et al 2012

- CFC approximation (conformal flatness condition)

good approximation for SNe

e.g. CoCoNut code, Müller et al 2010, 2012

Pseudonewtonian potential

e.g. Marek et al 2006

approximate but incorporates the main effect of a more compact PNS

Ultra-high density equation of state

A supernova equation of state needs to cover a wide parameter space:

- High to ultra-high densities: $\approx 10^7 10^{15} g cm^{-3}$
- High temperatures: $kT \approx 10^5 10^7 eV$
- Electron fraction: $Y_e \approx 0.05 0.5$
- Account for nuclei (sometimes in the single nucleus approximation)

Common tabulated equations of state:

- Lattimer & Swesty 1992: compressible liquid drop model
 - e.g. LS220 with incompressibility K = 220 MeV
- Steiner et al 2013 : relativistic mean field model
 - e.g. SFHo
- & many others...

Neutrino interactions

TU Darmstadt

Neutrino R	Reactions in Supernovae
Beta processes:	• $e^- + p \rightleftharpoons n + v_e$ • $e^+ + n \rightleftharpoons p + \bar{v}_e$ • $e^- + A \rightleftharpoons v_e + A^*$
Neutrino scattering:	• $\nu + n, p \rightleftharpoons \nu + n, p$ • $\nu + A \rightleftharpoons \nu + A$ • $\nu + e^{\pm} \rightleftharpoons \nu + e^{\pm}$
Thermal pair processes:	• $N + N \rightleftharpoons N + N + \nu + \overline{\nu}$ • $e^+ + e^- \rightleftharpoons \nu + \overline{\nu}$
Neutrino-neutrino reactions:	• $v_x + v_e, \bar{v}_e \rightleftharpoons v_x + v_e, \bar{v}_e$ $(v_x = v_\mu, \bar{v}_\mu, v_\tau, \text{ or } \bar{v}_\tau)$ • $v_e + \bar{v}_e \rightleftharpoons v_{\mu,\tau} + \bar{v}_{\mu,\tau}$

Dominant heating and cooling reactions

Heating by neutrino absorption in the gain region:

 $n + \nu_{\rm e} \rightarrow p + e^{-}$ $p + \bar{\nu}_{\rm e} \rightarrow n + e^{+}$

Cooling by electron capture above the neutrinosphere:

 $p + e \rightarrow n + \nu_e$

Cooling by thermal processes: neutrinos leaking out the PNS at the neutrinosphere

Neutrino transport schemes

3 species approximation : - electron neutrino

- electron antineutrino
- 1 species for the 4 heavy lepton neutrinos (muon and tau)

Different approximations :

- Leakage scheme
 IDSA : isotropic diffusion source approximation
 Flux-limited diffusion
 Ray-by-ray approximation (e.g. Garching group)
 Moment method (M1)
- Full Boltzman transport

accurate but too expensive for 3D simulations

Criterion for neutrino-driven explosions

Explosion determined by a competition between

- neutrino heating
- ram pressure due to accretion

Critical neutrino luminosity

Proposed explosion criterion:

heating time < advection time

No explosion in 1D spherical symmetry

Missing ingredient : hydrodynamic instabilities

Neutrino-driven convection

Protoneutron star convection

Standing Accretion Shock Instability (SASI)

Hanke+2013

The Standing Accretion Shock Instability (SASI)

Large-scale shock oscillations : spherical harmonics I=1-2

SWASI : Shallow Water Analogue of a Shock Instability

Successful explosions in 3D simulations (finally)

One of the first 3D explosions obtained by the Garching group

Obtaining robust explosions was a long standing difficulty Now many groups commonly obtain 3D explosions

Neutrino signatures

Gravitational wave signature

Sensitivity to neutrino-matter interactions

Strange quark correction to the nucleon spin

-> reduces neutral current scattering of neutrinos by 10-20%

6 5

Sensitivity to neutrino-matter interactions

 10^{8}

3D without strangeness

2D without strangeness

3D with strangeness

2D with strangeness

Sensitivity to EOS stiffness

Softer EOS make explosions easier

Couch 2013, Suwa et al 2013, Pan et al 2018

Phase transition to quark-gluon plasma?

Strong explosion of high mass progenitor triggered by phase transition

Second peak of neutrino emission

Outstanding explosions: millisecond magnetars ?

10⁵¹ erg

10⁵² erg

- \rightarrow Typical supernova
- → Hypernova & GRB aka type Ic BL

Total luminosity :

- \rightarrow Typical supernova 10⁴⁹ erg
- \rightarrow Superluminous supernovae 10⁵¹ erg

Large kinetic energy reservoir if fast rotation

Strong magnetic field to extract this energy

e.g. Kasen+10, Dessart+12, Nicholl+13, Inserra+13

Magnetars: the most intense known magnetic fields

Different scenarios for magnetar formation

Compression of stellar magnetic field :

Amplification by a few $\sim 10^4$ during core collapse Very magnetised stars on surface (B >1 kG) : also need a 10^{10} - 10^{11} G in the iron core

Protoneutron star dynamos

Magnetorotational instability

Similar to accretion disks

Reboul-Salze+2021,2022, Guilet+2022

Convective dynamo

Similar to planetary & stellar dynamos

Raynaud+2020,2021

Tayler-Spruit dynamo

Similar to stellar radiative zones

Barrère+2022

Simulating different spatial scales

Proto-neutron star convection

Roberts+2012

Motions transport heat and leptons

=> faster cooling and deleptonization of the protoneutron star

Convective dynamo in a protoneutron star

Convective dynamo in a protoneutron star

Jérôme Guilet (CEA Saclay) – Modelling core collapse supernovae & NS mergers

28/37

Magnetic field strength

Intermediate rotation: 2.5 ms < P < 10-20 ms delayed strong dynamo => normal magnetar with superluminous SNe & normal SNe ?

Magnetorotational explosions as extreme explosions ?

Multimessenger signatures

Gravitational waves from corotation instability

Neutrino signature

Detectability by current detectors

LEAK labex project

Bugli et al, in prep

Neutron star mergers

Same physical ingredients as in SN.. ..but stronger general relativitic effects

3 possibilities :

- direct collapse to a black hole
- hypermassive NS stabilized by rotation : delayed collapse
- stable neutron star

Neutron star mergers: dynamics and ejecta

Radice+ 2018

Ejecta & nucleosynthesis

Radice+ 2018

A magnetar formed in NS mergers ?

A magnetar as a central engine of short GRBs ?

Moesta+2020

Magnetic field amplification => magnetar ?

Shear instability at interface

(d4) t - $t_{mrg} = 2.91 \text{ msLog}_{10}[|B| (G)]$

Magnetorotational instability

(b4) $t - t_{merger} = 31.3 \text{ ms} \log_{10}[|B|(G)]$

Big uncertainty: can this generate a strong large-scale magnetic field ?

Conclusions

Very rich and complex physics governs core collapse supernovae & neutron star mergers: MHD, general relativity, equation of state, neutrino cross sections, nucleosynthesis..

The neutrino-driven mechanism is the favored scenario to explain standard CCSN

Magnetorotational explosions are good candidate for extreme explosions

Neutron star mergers:

- robust source of r-process elements
- Magnetar or black hole as GRB central engine ?

Multi-messenger observations will be essential to constrain all this physics

Thank you !