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Gravitational wave detections



Current tests of gravity

▷ Parametrized vs specific theories tests: h(f) = hGR(f) e
i δψ(f)

LIGO – Virgo – KAGRA, 2021



Constraints on tidal parameters

▷ From GW190425:

Credits: GW190425, LIGO-Virgo-KAGRA 2020

◦ Λ̃ ∝
(
12m2

m1
+ 1

)
λ1 +

(
12m1

m2
+ 1

)
λ2



A bright future

▷ Einstein Telescope

ET science case 2020

▷ Multiband (LISA, CE) and multimessenger astronomy (EHT, . . . )



The zoo of alternative theories of gravity

Ezquiaga & Zumalacárregui, 2018



Testing gravity

▷ Parametrized vs specific theories tests

▷ Challenges for modelisation of strong-field effects beyond GR,
specially for analytical models

◦ tidal effects, scalarisation, boson clouds, etc.



Scalar-tensor theories of gravity

Hairy or scalarized solutions

◦ ex: minimally coupled scalar-tensor theories S ∝
∫
ϕR+ (∂ϕ)2

▷ Spontaneous scalarization ▷ Dynamical scalarization

Palenzuela et al. 2014



Scalar-tensor theories of gravity

With or without scalar hair?

▷ Hairy BHs but no hair for NSs solutions (i.e. φ ∝ α
r2

)

◦ ex: Scalar-Gauss-Bonnet theories S ∝
∫
R+ (∂φ)2 + αf(φ)R2

GB

▷ Hairy NSs and no hair for BHs

◦ ex: minimally coupled scalar-tensor theories S ∝
∫
ϕR+ (∂ϕ)2

▷ Hairy BHs and NSs

Perturbative or non-perturbative regime?

▷ Non-perturbative regime

◦ ex: dynamical scalarization
◦ numerical relativity tools

▷ Perturbative regime

◦ scalarized NSs slowly evolving (adiabatic approximation)

◦ EFT description of dynamical scalarization, Khalil et al., 2206.13233
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Testing gravity

▷ Parametrized vs specific theories tests

▷ Challenges for modelisation of strong-field effects beyond GR,
specially for analytical models

◦ tidal effects, scalarisation, boson clouds, etc.

◦ what method: EFT, amplitudes, classical PN ?

▷ Degeneracies with other effects, ex: tidal vs eos for NSs

▷ Do we really have a chance to be surprised ?

◦ with LIGO-Virgo, LISA, 3rd generation detectors ?

◦ using multimessenger astronomy (EHT, NICER) ?
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Gravitational wave modelling

Credits: H. Pfeiffer

▷ New in the game : scattering amplitudes

▷ Putting it all together : effective-one-body, phenomenological models



The different problems

Near zone Exterior zoneBuffer zone Wave zone

Dynamics Matching Radiation



Hypotheses - 1

Exterior zone

Near zone

Buffer zone

Post-Newtonian source

ϵ ≡ v212
c2

∼ Gm

r12c2
≪ 1

▷ Isolated, compact support, smooth Tµν

▷ slowly moving

▷ weakly stressed
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Near zone

Buffer zone

▷ Isolated, compact support, smooth

▷ slowly moving

▷ weakly stressed

Boundary condition at infinity

▷ no incoming radiation at past null infinity

◦ in practice: stationary source in the past

∂

∂t

[
hαβ(x, t)

]
= 0 when t < −T

◦ asymptotically “simple” at future null infinity
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Hypotheses - 3

External tidal field Eij = − [∂ijUext]A

Response

U =
M

R

▷ Adiabatic approximation: Qij = − 2
3k2 R

5 Eij
▷ k

(A)
2 : dimensionless tidal Love number of body A

Effacement of the internal structure

Ftidal

FN
∼

(
RA
r12

)5

k
(A)
2 ∝︸ ︷︷ ︸

GMA

RAc2
∼1

(
Gm

r12 c2

)5

= O
(
v10

c10

)

The point-particle approximation is valid up to 5PN in GR
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The point-particle description

Spp = −c
∑
A

∫
dτAmA

Point-particle equations of motion

dv1

dt
=−Geff m2

r212
n12 +

A1PN

c2
+

A2PN

c4︸ ︷︷ ︸
conservative terms

+
A2.5PN

c5︸ ︷︷ ︸
rad. reac.

+
A3PN

c6︸ ︷︷ ︸
cons.

+
Ainst

4PN

c8︸ ︷︷ ︸
cons, local

+
Atail

4PN

c8︸ ︷︷ ︸
cons, nonloc.

▷ Radiation reaction effects start at 2.5PN: 4.5PN is in progress

▷ A conservative tail term at 4PN: mass-quadrupole interaction

▷ Tidal effects starting at 5PN; known up to 7.5PN
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Beyond the point-particle description

Spp = −c
∑
A

∫
dτAmA

Incorporating the tidal corrections

Sm = Spp +
∑
A

∫
dτA

[
µAEAµνE

µν
A + σABAµνB

µν
A + · · ·

]
◦ Electric-type multipole moments: EL ∝ ∇L−2C0a10a2

◦ Magnetic-type multipole moments: BL ∝ ϵa1bc∇L−2Ca20bc

◦ Electric and magnetic tidal Love numbers kL and jL

▷ solving the Tolmann-Oppenheimer-Volkov system of equations

▷ dependent on the equation of state of NSs
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Back to scalar-tensor theories

Violation of the Strong Equivalence Principle

◦ Incorporate the internal structure of compact, self-gravitating bodies

◦ Skeletonization (Eardley ’75): masses depend on the scalar mA(ϕ)

Sm = −c
∑
A

∫
dτAmA(ϕ)

▷ Sensitivities: sA = d lnmA(ϕ)
d lnϕ

∣∣∣
0

◦ Neutron stars: sA ∼ 0.2 (depends on the equation of states)

◦ Black holes: sA = 0.5 (compacity M/R)

◦ related to the scalar charge αA ∝ 1− 2sA

▷ Higher order: β̃ ∝ d2 lnmA(ϕ)

d lnϕ2

∣∣∣
0
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Equations of motion

dv1

dt
=−Geff m2

r212
n12 +

A1PN

c2︸ ︷︷ ︸
conservative terms

+
A1.5PN

c3︸ ︷︷ ︸
rad. reac.

+
A2PN

c4︸ ︷︷ ︸
cons.

Differences w.r.t. GR

◦ Dissipative effects start at 1.5PN

◦ A conservative scalar tail term at 3PN : Atail
3PN ∝

∫ +∞
−∞

dt′

|t−t′| Is
(4)
i (t′)

◦ Tidal effects start at 3PN

[LB, 2018, 2019]
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Tidal effects - Scalar-tensor theory

E(s)
i ∼ ∂iφ

Response to an external scalar dipolar field

U =
M

R

◦ Addiabatic approximation: Q(s)
µ = −λ(s)E(s)

µ

◦ formally 3PN order correction with small ST parameters

◦ Scalar-type Love number: ks ∝ λsR
3 scales as

(
R
M

)3
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From point particles to extended body

Spp = −c
∑
A

∫
dτAmA(ϕ)

mA (ϕ) −→ mA [ϕ] = mA (ϕ) +NA (ϕ)∇µϕ∇µϕ

In the action

Sm = Spp − 1

2

∑
A

λ
(s)
A (ϕ)

∫
dτA (gµν∂µϕ∂νϕ)A + high. orders

Consequence on the dynamics

∆a(fs) ∝

▷ formally 3PN order correction with small ST parameters

▷ but scales as
(
R
M

)3
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Effect on the gravitational signal

▷ Phase evolution: dψ
dx

= − (c2x)3/2

G̃αm

dE/dx
F

▷ Two different regimes:
Fdip

Fquad
∝ (s1−s2)2

x

Quadrupolar-driven regime

∆ψ(fs) ∝ − 1

32ζηx5/2
ks
R3

r3
=⇒ non detectable

Dipolar-driven regime

∆ψ(fs) ∝ − 1

(s1 − s2)2η x7/2
ks
R3

r3

▷ formally 2PN effect in the phase (beyong GR)

▷ but similar to the ST 1PN contribution

▷ may contribute O(1) cycles =⇒ detectable by LISA or 3G detectors

[LB, 2019]
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Conclusion

Take-home message

We need complete waveform in alternative theories of gravity to perform
precised tests of GR with future GW detectors

More precisely

▷ Including higher multipolar scalar tides: E(s)
L ∼ ∇Lφ

▷ Compute all types of Love numbers in scalar-tensor theories

▷ Total IMR waveforms =⇒ develop EOB formalism
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Thank you !


