Probing the nature of Dark Matter. ..with compact objects

Yoann Géholini

Paris, June 2022

Outline

Context and motivations

DM accretion in a NS

2

Dynamic of PBH captured by NS

Common signatures and prospects of detection

New strategies to probe other candidates

Use extreme properties of compact stars and look for new interactions!

Example of neutron star -> Density $\rho_{\rm NS} \sim 1 \,{\rm GeV/fm^3}$ -> Magnetic field $B_{\rm NS} \in [10^4 - 10^{11}] \,{\rm T}$ -> Gravitational field $g_{\rm NS} \sim 10^{10} \,g_{\rm sun} \sim 10^{11} \,g_{\rm earth}$

Context and motivations

New strategies to probe new candidates

→ Impact NS cooling/temperature

4

Black holes

Context and motivations

New strategies to probe new candidates

→ Impact NS cooling/temperature

New strategies to probe new candidates

DM accretion in NS

 N_{χ}

8

Symmetric Dark Matter

Boltzmann equation

Indirect DM signature!

 $\frac{\mathrm{dN}_{\chi}}{\mathrm{dt}} = C_{\odot} - A_{\odot} \mathrm{N}_{\chi}^2 - E_{\odot} \mathrm{N}_{\chi}$

Solar neutrino flux $\frac{d\Phi}{dE_{\nu}} = \frac{\Gamma_A}{4\pi d_{\odot}^2} \frac{dN_{\nu}}{dE_{\nu}}$

Press&Spergel (1985), Gould (1987), Silk+ (1985) ...

Reheating NS surface

1

$$\frac{T}{t} = \frac{-\epsilon_{\gamma} - \epsilon_{\nu} + \epsilon_{DM}}{C_V}$$

Lavallaz&Fairbairn (2010), Kouvaris&Tinyakov (2010) ...

Extensively studied!

Asymmetric Dark Matter

 $= C_{\odot} - A_{\odot} N_{\chi}^2 - E_{\odot} N_{\chi}$

Boltzmann equation

Accumulate more DM particles!

Modify temperature gradient -> seismology

Ilopes+ (2014), Vincent&Scott (2014), Geytenbeek+ (2018)

Black hole formation and collaspe of the star:

Goldman+ (1989), Kouvaris (2008), Bertone+ (2008), McCullough+ (2010), Kouvaris&Tinyakov (2011), McDermott+ (2012) ...

Extensively studied too! ... But accretion rate never properly computed

Geometrical cross-section

$$\sigma_{\rm geom} n_b R_\star \approx 1$$

•DM capture by NS

Best case scenario for capture $\sigma_{\chi} \ge \sigma_{\text{geom}}$

$$\sigma_{\text{geom}}^{sun} \approx 1.3 \times 10^{-35} \text{ cm}^2 \left(\frac{R_{\star}}{R_{\odot}}\right)^2 \left(\frac{M_{\odot}}{M_{\star}}\right)$$

$$\sigma_{\text{geom}}^{wd} \approx 1.3 \times 10^{-39} \text{ cm}^2.$$

$$\sigma_{\text{geom}}^{NS} \approx 2 \times 10^{-45} \text{ cm}^2.$$

•DM capture by NS

Best case scenario for capture $\sigma_{\chi} \ge \sigma_{\text{geom}}$

$$\sigma_{\text{geom}}^{sun} \approx 1.3 \times 10^{-35} \text{ cm}^2 \left(\frac{R_{\star}}{R_{\odot}}\right)^2 \left(\frac{M_{\odot}}{M_{\star}}\right)$$

$$\sigma_{\text{geom}}^{wd} \approx 1.3 \times 10^{-39} \text{ cm}^2.$$

$$\sigma_{\text{geom}}^{NS} \approx 2 \times 10^{-45} \text{ cm}^2.$$

Geometrical cross-section

Capture rate \propto interaction probability

 $\sigma_{\rm geom} n_b R_\star \approx 1$

 $C_{\odot} \propto rac{\sigma_{\chi}}{\sigma_{
m geom}}.$

DM capture by NS

The capture rate is proportional to

 $C_{\star} \sim \pi b^2 \times v_{\infty} \rho_{DM} \times \frac{\sigma_{\chi}}{\sigma_{\text{geom}}}.$

Gravitational cross-section

$$\pi b^2 = \pi \left(1 + \frac{2GM}{R_\star v_\infty^2} \right) R_\star^2$$

DM capture by NS

The capture rate is proportional to:

 $C_{\star} \sim \pi b^2 \times v_{\infty} \rho_{DM} \times \frac{\sigma_{\chi}}{\sigma_{\text{geom}}}.$

For $\sigma_{\chi} \leq \sigma_{
m geom}$:

$$C_{sun} \approx 3.6 \times 10^{-21} \,\mathrm{M_{\odot}.Gyr^{-1}} \left(\frac{M_{\star}}{\mathrm{M_{\odot}}}\right)^2 \left(\frac{\sigma_{\chi}}{\sigma_{geom}^{NS}} \cdot \frac{\rho_{DM}}{0.3 \,\mathrm{GeV.cm^{-3}}} \cdot \frac{R_{\odot}}{R_{\star}}\right)$$
$$C_{wd} \approx 3.6 \times 10^{-19} \,\mathrm{M_{\odot}.Gyr^{-1}}$$

 $\overline{|C_{NS}} \approx 5.7 \times 10^{-16} \mathrm{M}_{\odot}.\mathrm{Gyr}^{-1}$

Compact objects accrete DM more efficiently!

DM thermalization in the NS

Succesive collisions \rightarrow DM looses energy \rightarrow DM accumulates at the center

$$r_{th}^{sun} = 0.15 \text{ R}_{\odot} \left(\frac{T_{core}}{10^7 \text{K}}\right)^{1/2} \left(\frac{1 \text{GeV}}{m_{\chi}}\right)^{1/2} \left(\frac{10^2 \text{ g.cm}^{-3}}{\rho_{core}}\right)^{1/2}$$
$$r_{th}^{wd} = 80 \text{ km} \left(\frac{T_{core}}{10^5 \text{K}}\right)^{1/2} \left(\frac{1 \text{GeV}}{m_{\chi}}\right)^{1/2} .$$

Thermal radius r_{th} of the core $\frac{3}{2} k_b T_{core} = \frac{GM_{\star}(r_{th}) m_{\chi}}{r_{th}}$

$$r_{th}^{NS} = 4.3 \text{ m} \left(\frac{T_{core}}{10^5 \text{K}}\right)^{1/2} \left(\frac{1 \text{GeV}}{m_{\chi}}\right)^{1/2}$$

Small DM core!

3

Two conditions to collapse into a Black Hole

Self gravitation

 $\overline{\rho}_{DM} \gtrsim \overline{\rho}_{core}$

 \rightarrow Assuming DM particles thermalize

 \rightarrow Critical number for DM to self gravitate

$$N_{self} \simeq 4.8 \times 10^{41} \left(\frac{100 \text{GeV}}{m_{\chi}}\right)^{5/2} \left(\frac{T_{core}}{10^5 \text{ K}}\right)^{3/2}$$

Two conditions to collapse into a Black Hole

Self gravitation

 $\rho_{DM} \gtrsim \rho_{core}$

 \rightarrow Assuming DM particles thermalize

 \rightarrow Critical number for DM to self gravitate

$$N_{self} \simeq 4.8 \times 10^{41} \left(\frac{100 \text{GeV}}{m_{\chi}}\right)^{5/2} \left(\frac{T_{core}}{10^5 \text{ K}}\right)^{3/2}$$

Chandrasekhar limit

$$E_{tot} = -\frac{GN_{\chi}m_{\chi}^2}{R} + E_k \; .$$

 \rightarrow When bosons become relativistic

$$E_k = \frac{3}{2} k_b T_{core} \to \frac{1}{R}$$

→ Critical number gravity > kinetic energy

 $N_{Cha}^{boson} \simeq 1.5 \times 10^{34} \left(\frac{100 \text{GeV}}{m}\right)^2$.

Yoann Genolini

DM constraints from black hole formation

- For a given $\,\sigma_{\chi}\,$ and $\,m_{\chi}\,$

Compute the total number of DM particles accreted

2 – Assume DM particles have thermalized

Compare with black hole formation conditions

 \blacktriangleright Accretion time au_{acc} to

DM constraints from black hole formation

Constraints on σ_χ and m_χ

Compute the total number of DM particles accreted

2 – Assume DM particles have thermalized

3 – Compare with black hole formation conditions

Observation of old NS in DM-rich environment PSR J2124-3358 $\rightarrow \tau_{old}^{NS} = 10\,{\rm Gyr}$ PSR J2124-3358

DM constraints from black hole formation

PSR J2124-3358 $\rightarrow \tau_{old}^{NS} = 10 \, \mathrm{Gyr}$

20

21

$$C^{\mathsf{w}}_{\star} = \int_{0}^{R_{\star}} 4\pi r^{2} \mathrm{d}r \int_{0}^{\infty} \mathrm{d}u_{\chi} \left(\frac{\rho_{\chi}}{m_{\chi}}\right) \frac{f_{v_{\star}}(u_{\chi})}{u_{\chi}} w(r) \int_{0}^{v_{e}(r)} R_{i}^{-}(w \to v) \,\mathrm{d}v$$
Gould (1987)

$$R(w \to v) = \int n(r) \frac{\mathrm{d}\sigma}{\mathrm{d}v} |\boldsymbol{w} - \boldsymbol{u}| f_p(E_p, r) (1 - f_{p'}(E_p + q_0, r)) \mathrm{d}^3 \boldsymbol{u}$$

Garami, YG, and Hambye, JCAP (2018)

Scattering on a degenerate Fermi gaz

$$C^{\mathsf{w}}_{\star} = \int_{0}^{R_{\star}} 4\pi r^{2} \mathrm{d}r \int_{0}^{\infty} \mathrm{d}u_{\chi} \left(\frac{\rho_{\chi}}{m_{\chi}}\right) \frac{f_{v_{\star}}(u_{\chi})}{u_{\chi}} w(r) \int_{0}^{v_{e}(r)} R_{i}^{-}(w \to v) \,\mathrm{d}v$$
Gould (1987)

$$R(w \to v) = \int n(r) \frac{\mathrm{d}\sigma}{\mathrm{d}v} |\boldsymbol{w} - \boldsymbol{u}| f_p(E_p, r) (1 - f_{p'}(E_p + q_0, r)) \mathrm{d}^3 \boldsymbol{u}$$

Garami, YG, and Hambye, JCAP (2018)

Scattering on a degenerate Fermi gaz

$$C^{\mathsf{w}}_{\star} = \int_{0}^{R_{\star}} 4\pi r^{2} \mathrm{d}r \int_{0}^{\infty} \mathrm{d}u_{\chi} \left(\frac{\rho_{\chi}}{m_{\chi}}\right) \frac{f_{v_{\star}}(u_{\chi})}{u_{\chi}} w(r) \int_{0}^{v_{e}(r)} R_{i}^{-}(w \to v) \,\mathrm{d}v$$
Gould (1987)

$$R(w \to v) = \int n(r) \frac{\mathrm{d}\sigma}{\mathrm{d}v} |\boldsymbol{w} - \boldsymbol{u}| f_p(E_p, r) (1 - f_{p'}(E_p + q_0, r)) \mathrm{d}^3 \boldsymbol{u}$$

Garami, YG, and Hambye, JCAP (2018)

Scattering on a degenerate Fermi gaz

27

$$R(w \to v) = \int n(r) \frac{\mathrm{d}\sigma}{\mathrm{d}v} |\boldsymbol{w} - \boldsymbol{u}| f_p(E_p, r) (1 - f_{p'}(E_p + q_0, r)) \mathrm{d}^3 \boldsymbol{u}$$

Garami, YG, and Hambye, JCAP (2018)

Scattering on a degenerate Fermi gaz

$$R(w \to v) = \int n(r) \frac{\mathrm{d}\sigma}{\mathrm{d}v} |\boldsymbol{w} - \boldsymbol{u}| f_p(E_p, r) (1 - f_{p'}(E_p + q_0, r)) \mathrm{d}^3 \boldsymbol{u}$$

Garami, YG, and Hambye, JCAP (2018)

Scattering on a degenerate Fermi gaz

Yoann Genolini

 E_p

 μ_F

$$R(w \to v) = \int n(r) \frac{\mathrm{d}\sigma}{\mathrm{d}v} |\boldsymbol{w} - \boldsymbol{u}| f_p(E_p, r) (1 - f_{p'}(E_p + q_0, r)) \mathrm{d}^3 \boldsymbol{u}$$

Garami, YG, and Hambye, JCAP (2018)

Scattering on a degenerate Fermi gaz

Yoann Genolini

 E_p

$$R(w \to v) = \int n(r) \frac{\mathrm{d}\sigma}{\mathrm{d}v} |\boldsymbol{w} - \boldsymbol{u}| f_p(E_p, r) (1 - f_{p'}(E_p + q_0, r)) \mathrm{d}^3 \boldsymbol{u}$$

Scattering on a degenerate Fermi gaz

Garami, YG, and Hambye, JCAP (2018)

Novel DM constraints

Self-gravitation condition

 $C^W_{\star} \times \tau^{NS}_{old} = N_{self}$

40

Novel DM constraints

Self-gravitation condition $C^W_{\star} \times \tau^{NS}_{old} = N_{self}$

BH evaporates too fast

Confirmation of previous results using heuristic arguments
DM accretion in NS - New formalism for capture

Novel DM constraints

Bose Einstein Condensate

 $N_{self}^{BEC} \ll I$ $boson \\ Chan$ NEW limiting condition -

DM accretion in NS - New formalism for capture

DM accretion in NS - New formalism for capture

Novel Thermalisation bound

90 % of the particles In thermal equilibrium

Novel Thermalisation bound

90 % of the particles In thermal equilibrium

Novel Thermalisation bound

NEW bounds!

Gain of orders of magnitudes from observations of old NS in dense environement!

Other components of NS!

Yoann Genolini

47

Summary

Extension of DM constraints \rightarrow Including Fermi Dirac kinematic

- \rightarrow Realistic NS EOS
- \rightarrow Other components of NS
- \rightarrow Proper treatment of thermalization

Other developments

- \rightarrow Different EFT operators / multiscatering e.g. Joglekar+ (2020), Bell+ (2020),
- → Dark matter self interactions e.g. Bell+ (2013), Güver+ (2014), Garani+ (2021)
- → Relativistic formalism e.g. Joglekar+ (2020), Bell+ (2021)
- \rightarrow Strong interaction effects / hadronic form factors e.g. Bell+ (2021)
- \rightarrow Thermalization e.g. Garani+ (2020),

PBH interactions with a NS

50

3

Observation of old NS in PBH-rich environment.

$$\tau_{old}^{NS} = 10 \,\mathrm{Gyr}$$

Yoann Genolini

53

Yoann Genolini

54

Yet, such a catastrophic event should be observable!

1 - Dynamical Friction

Overdensity in the wake of the PBH

Overdensity in the wake of the PBH

$$\mathbf{F}_{\rm dyn} = -4\pi G^2 m^2 \rho \ln \Lambda_{\rm dyn}(v) \frac{\boldsymbol{v}}{v^3}$$

Chandrasekhar (1949)

60

$$\mathbf{F}_{\rm dyn} = -4\pi G^2 m^2 \rho \ln \Lambda_{\rm dyn}(v) \frac{\boldsymbol{v}}{v^3}$$

Chandrasekhar (1949)

Overdensity in the wake of the PBH

$$\ln \Lambda_{\rm dyn}(v) = v^4 \gamma^2 \frac{2}{R_g^2} \int_{d_{\rm crit}}^{d_{\rm max}} \mathrm{d}x \, x (1 - \cos \varphi(x))$$
Capela+ (2013)

$$\mathbf{F}_{\rm dyn} = -4\pi G^2 m^2 \rho \ln \Lambda_{\rm dyn}(v) \frac{\boldsymbol{v}}{v^3}$$

Chandrasekhar (1949)

Overdensity in the wake of the PBH

Fermi- suppressed scatterings

$$\ln \Lambda_{\rm dyn}(v) = v^4 \gamma^2 \frac{2}{R_g^2} \int_{d_{\rm crit}}^{d_{\rm max}} \mathrm{d}x \, x (1 - \cos \varphi(x))$$
Capela+ (2013)

-> DF is suppressed by a factor of a few, up to 10

II- PBH interactions with a NS

Derived for a collisionless medium

$$\mathbf{F}_{\rm dyn} = -4\pi G^2 m^2 \rho \ln \Lambda_{\rm dyn}(v) \frac{\boldsymbol{v}}{v^3}$$

Chandrasekhar (1949)

NS = strongly interacting neutron fluid

ermi- suppressed process

Dynamical friction is suppressed by a factor of a few, up to 10.

II- PBH interactions with a NS

Derived for a collisionless medium

$$\mathbf{F}_{\rm dyn} = -4\pi G^2 m^2 \rho \ln \Lambda_{\rm dyn}(v) \frac{\boldsymbol{v}}{v^3}$$

Chandrasekhar (1949)

NS = strongly interacting neutron fluid Collisionless if $\tau_{gravitation} \ll \tau_{causal}$

ermi- suppressed process $\ln \Lambda_{\rm dyn}(v) =$

 $v \gg \overline{c_s}$

 $\mathcal{M} = v/c_s \gg 1$

 $\frac{1}{r(1-\cos arphi(x))}$

Dynamical friction is suppressed by a factor of a few, up to 10.

1 - Dynamical Friction:

In a collisionless or a collisional medium?

1 - Dynamical Friction:

In a collisionless or a collisional medium?

1 - Dynamical Friction:

In a collisionless or a collisional medium?

1 - Dynamical Friction:

In a collisionless or a collisional medium?

$\mathcal{M} = v/c_s \ll 1$

 $\bigcirc \bigcirc \bigcirc \bigcirc$

2 - Accretion

•
$$\mathcal{M} = v/c_s \gg 1$$

$$\mathbf{F}_{\rm dyn} = -4\pi G^2 m^2 \rho \ln \Lambda_{\rm dyn}(v) \frac{\boldsymbol{v}}{v^3}$$

Capela+ (2013)

$$\ln \Lambda_{\rm acc}(v) = v^4 \gamma^2 \frac{d_{\rm crit}^2}{R_g^2}$$

•
$$\mathcal{M} = v/c_s \ll 1$$

$$\mathbf{F}_{\text{drag}} = -\dot{m}\boldsymbol{v} = -4\pi G^2 m^2 \rho \frac{\boldsymbol{v}}{c_s^3}$$

Y.G. et al. PRD (2020)

3 - Surface waves

Hydrodynamical surface waves:

$$|\Delta E|_{\text{tidal}} \sim \frac{Gm^2}{R_{\star}} \sum_{\ell=2}^{\infty} \left(\frac{R_{\star}}{r_{\min}}\right)^{2\ell+2} T_{\ell},$$

Defillon+ (2014) Press&Teukolsky (1977)

4 - Gravitational waves

$$|\Delta E|_{\rm gw} = \Delta E_{\rm gw}^{\rm in} + \Delta E_{\rm gw}^{\rm out}$$

Y.G. et al. PRD (2020)

Generalisation of the GW emission inside the NS

PBH interactions with a NS - Capture of a PBH

 v_i

PBH interactions with a NS - Capture of a PBH

What is the speed regime for capture?

What is the speed regime for capture ?

80

What is the speed regime for capture ?

81

What is the speed regime for capture ?

What is the dominant process for capture?

 v_i

h

82

$$b_c = R_\star \sqrt{1 + 2\frac{v_\star^2}{v_i^2}}$$

with,

$$v_{\star} = \sqrt{\frac{GM_{\star}}{R_{\star}}}$$

What is the dominant process for capture?

Estimate of the number of event

The PBH distribution follows a Maxwellian in velocities

$$d^{3}n = n_{\text{PBH}} \left(\frac{3}{2\pi\bar{v}^{2}}\right)^{3/2} \exp\left\{\frac{-3v^{2}}{2\bar{v}^{2}}\right\} d^{3}v_{2}$$

Rate of NS-PBH encounter leading to capture

$$\mathcal{G}_{\star} = \int rac{\mathrm{d}^3 n}{\mathrm{d} v^3} \, \mathcal{S}(v) \; v \; \mathrm{d}^3 v \qquad$$
 with: $\mathcal{S}(v) = \pi \; b_{\mathcal{G}}^2$

Estimate of the number of event in the Galaxy

Rate of NS-PBH encounter leading to capture

$$\begin{aligned} \mathcal{G}_{\star} N_{\star} \simeq 0.021 \ \left(\frac{\rho_{\rm PBH}}{\rm GeV\,cm^{-3}}\right) \left(\frac{10^{-3}}{\bar{v}}\right)^3 \mathcal{C}\left[X\right] \,\rm Myr^{-1} \\ & \text{with} \quad X = X(m,\bar{v}) \equiv \left(\frac{m}{10^{25}\rm g}\right) \left(\frac{10^{-3}}{\bar{v}}\right)^2 \\ & \text{Within} \quad \tau_U = 10^{10} yr \quad \text{, few} \ \sim 100 \text{ of NS transmutted into BH.} \end{aligned}$$

Compare with the rate of NS-PBH encounter

$$\Gamma_{\star} \mathcal{N}_{\star} \simeq 0.38 \left(\frac{\rho_{\rm BH}}{\rm GeV \, cm^{-3}}\right) \left(\frac{10^{25} \rm g}{m}\right) \left(\frac{10^{-3}}{\bar{v}}\right) \rm Myr^{-1}$$

Similar to the GRB rate in the Galaxy

Yoann Genolini

 $N_{\star} \simeq 10^9$

Estimate of the number of event in the Galaxy

Rate of NS-PBH encounter leading to capture

$$\mathcal{G}_{\star}N_{\star} \simeq 0.021 \left(\frac{\rho_{\rm PBH}}{\rm GeV\,cm^{-3}}\right) \left(\frac{10^{-3}}{\bar{v}}\right)^3 \mathcal{C}\left[X\right] \,\mathrm{Myr}^{-1}$$

Within $au_U=1\overline{0^{10}yr}$, few ~ 100 of NS transmutted into BH.

Compare with the rate of NS-PBH encounter

$$\Gamma_{\star} \mathcal{N}_{\star} \simeq 0.38 \left(\frac{\rho_{\rm BH}}{\rm GeV \, cm^{-3}} \right) \left(\frac{10^{25} \rm g}{m} \right) \left(\frac{10^{-3}}{\bar{v}} \right) \rm Myr^{-1}$$

Yoann Genolini

 $N_{\star} \simeq 10^9$

Settling time within the NS

$$t_{\text{settle}} \lesssim 4 \times 10^4 \left(\frac{m}{10^{22} \,\text{g}}\right)^{-3/2} \,\text{yr}$$

Capela+ (2013)

Settling time within the NS

$$t_{\text{settle}} \lesssim 4 \times 10^4 \left(\frac{m}{10^{22} \,\text{g}}\right)^{-3/2} \,\text{yr}$$

Capela+ (2013)

The motion becomes subsonic for

$$r \lesssim R_\star \; \frac{c_s}{v_\star}$$

Settling time within the NS

$$t_{\text{settle}} \lesssim 4 \times 10^4 \left(\frac{m}{10^{22} \,\text{g}}\right)^{-3/2} \,\text{yr}$$

Capela+ (2013)

The motion becomes subsonic for

$$r \lesssim R_\star \; \frac{c_s}{v_\star}$$

Model	BSK-20-1	BSK-20-2	BSK 21-1	BSK 21-2
Radius R_{\star} [km]	11.6	10.7	12.5	12.0
Mass M_{\star} [M _{\odot}]	1.52	2.12	1.54	2.11
v_{\star} [c]	0.44	0.54	0.43	0.50
$f_{\star} = 1/T_{\star} \; [\mathrm{kHz}]$	1.8	2.4	1.6	2.0
c_s (core) $[c]$	0.68	0.97	0.64	0.81
μ_n (core) [GeV]	0.27	0.81	0.24	0.51

Realistic neutron star models Potekhin+ (2013)

Subsonic regime

DF negligible & accretion dominates

Subsonic regime

DF negligible & accretion dominates

Equation of motion

$$\ddot{\boldsymbol{r}} + \mathcal{D}(t) \left[\dot{\boldsymbol{r}} - \boldsymbol{\Omega} \times \boldsymbol{r} \right] + \omega_{\star}^2 \boldsymbol{r} = 0$$

Y.G. et al. PRD (2020)

Subsonic regime

DF negligible & accretion dominates

Equation of motion

$$\ddot{\boldsymbol{r}} + \mathcal{D}(t) \left[\dot{\boldsymbol{r}} - \boldsymbol{\Omega} \times \boldsymbol{r} \right] + \omega_{\star}^2 \boldsymbol{r} = 0$$

Y.G. et al. PRD (2020)

Subsonic regime

DF negligible & accretion dominates

Equation of motion

$$\ddot{\boldsymbol{r}} + \mathcal{D}(t) \left[\dot{\boldsymbol{r}} - \boldsymbol{\Omega} \times \boldsymbol{r} \right] + \omega_{\star}^2 \boldsymbol{r} = 0$$

Y.G. et al. PRD (2020)

For
$$\frac{\mathcal{D}}{\omega_{\star}} \sim 2.8 \times 10^{-12} \left(\frac{m}{10^{22} \text{g}}\right) \ll 1$$

conserved quantity $m r^2 = \text{const}$

whatever accretion regime

Signatures PBH – NS encounter

Signatures PBH – NS encounter

\rightarrow Gravitational wave burst

$$h_0 \sim 10^{-25} \left(\frac{m}{10^{25} \text{g}}\right) \left(\frac{1 \text{ kpc}}{d}\right)$$

Signatures PBH – NS encounter

 \rightarrow Gravitational wave burst

$$h_0 \sim 10^{-25} \left(\frac{m}{10^{25} \mathrm{g}}\right) \left(\frac{1 \mathrm{\,kpc}}{d}\right)$$

 \rightarrow Gravitational wave background

$$\sqrt{\langle h_c^2 \rangle} \simeq 3 \times 10^{-20} \left(\frac{10^{-10} \,\mathrm{Hz}}{f}\right)^2$$

far below SKA sensitivity

Signatures captured PBH

100

Signatures captured PBH

 \rightarrow GW emission from the inspiral motion

$$h_0 = \frac{4\sqrt{2}G}{dc^4} mr^2 \omega_\star^2 \approx 2.5 \times 10^{-25} \left(\frac{m}{10^{25} \text{g}}\right) \left(\frac{1 \text{ kpc}}{d}\right)$$
$$f_\star \sim \text{kHz}$$

$$mr^2 = \text{const}$$

101

Signatures captured PBH

 \rightarrow GW emission from the inspiral motion

$$h_0 = \frac{4\sqrt{2}G}{dc^4} mr^2 \omega_\star^2 \approx 2.5 \times 10^{-25} \left(\frac{m}{10^{25} \text{g}}\right) \left(\frac{1 \text{ kpc}}{d}\right)$$
$$f_\star \sim \text{kHz}$$

Emission sustained during the all accretion phase

$$t_B = \frac{c_s^3 R_\star^3}{3 G^2 M_\star m} \approx 9 \left(\frac{10^{25} \text{g}}{m}\right) \text{hours}$$

Signatures captured PBH

 \rightarrow GW emission from the inspiral motion

$$h_0 = \frac{4\sqrt{2}G}{dc^4} mr^2 \omega_\star^2 \approx 2.5 \times 10^{-25} \left(\frac{m}{10^{25} \text{g}}\right) \left(\frac{1 \text{ kpc}}{d}\right)$$
$$f_\star \sim \text{kHz}$$

Emission sustained during the all accretion phase

$$t_B = \frac{c_s^3 R_\star^3}{3 G^2 M_\star m} \approx 9 \left(\frac{10^{25} \text{g}}{m}\right) \text{hours}$$

→ Multiwavelength signature from the final collapse Might depend on the final asymmetry

Final radius

$$\mathbf{r} R_f = R_\star \sqrt{\frac{\eta}{f}}$$

Initial PBH mass

Fraction of the star mass accreted

105

The collapse

106

The collapse

107

Direct emissions

→ Electromagnetic waves: promising ! GRB? FRB?

No-hair theorem

$$\overset{\bullet}{E}_{B} = \frac{B^{2}}{8\pi} \frac{4\pi}{3} R_{\star}^{3} \simeq 2 \times 10^{41} \left(\frac{B}{10^{12} \text{G}}\right)^{2} \left(\frac{R_{\star}}{10 \text{ km}}\right)^{3} \text{ erg}$$

Fuller&Ott (2015), Abramowicz+ (2018), Chirenti+ (2019),...

The collapse

108

Direct emissions

→ Electromagnetic waves: promising ! GRB? FRB?

No-hair theorem

$$\overset{\bullet}{E}_{B} = \frac{B^{2}}{8\pi} \frac{4\pi}{3} R_{\star}^{3} \simeq 2 \times 10^{41} \left(\frac{B}{10^{12} \text{G}}\right)^{2} \left(\frac{R_{\star}}{10 \text{ km}}\right)^{3} \text{ erg}$$

Fuller&Ott (2015), Abramowicz+ (2018), Chirenti+ (2019),...

→ Gravitational waves: unpromising from simulations?

East+ (2019)

But PBH at the center and no magnetic field

The collapse

109

The collapse

110

Direct emissions

 \rightarrow Electromagnetic waves: promising ! GRB? FRB? e.g. Fuller&Ott (2015), Abramowicz+ (2018), Chirenti+ (2019),...

 \rightarrow Gravitational waves: unpromising from simulations? e.g. East+ (2019) \rightarrow Observing quiet kilonovae?

e.g. Bramante+ (2016,2017)

Later detection

- \rightarrow Leading mecanism for « light » BH formation? e.g. Takhistov+ (2021), Dexter+(2014)
- \rightarrow Solving the missing pulsar problem? e.g. Bramante+ (2016,2017)