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Quantum Advantage?
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2019, Google: quantum advantage by solving sampling problem in 200s on 
Sycamore vs estimated 10k years on Summit
2020, Hefei National Lab, China: quantum advantage on boson sampling 
using a photonic computer 

Multiple works followed, discussing and/or reducing those claims

https://www.nature.com/articles/s41586-019-1666-5

https://www.nature.com/articl
es/d41586-020-03434-7

• Exponential advantage in data representation

• Complex algorithms acceleration
• Efficient sampling, searches and optimization
• Linear algebra, matrices and machine learning

• New algorithms/methods for  cryptography and 
communication

• Direct simulation of quantum systems

https://www.nature.com/articles/s41586-019-1666-5


CERN QTI and its
Roadmap

CERN established the QTI in 2020

T1 - Scientific and 
Technical Development 
and Capacity Building T2 - Co-development

T3 - Community Building
T4 - Integration with 

national and 
international initiatives 

and programmes

19.05.22

https://doi.org/10.5281/zenodo.5553774
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• Roadmap in 2021
• Publicly available on Zenodo

• Accessed more than 6000 times



• Assess the areas of 
potential quantum 
advantage in HEP (QML, 
classification, anomaly 
detection, tracking)

• Develop common 
libraries of algorithms, 
methods, tools; 
benchmark as technology 
evolves

• Collaborate to the 
development of shared, 
hybrid classic-quantum 
infrastructures

Scientific Objectives

19.05.22

Computing & Algorithms

• Identify and develop 
techniques for quantum 
simulation in collider 
physics, QCD, cosmology 
within and beyond the SM

• Co-develop quantum 
computing and sensing 
approaches by providing 
theoretical foundations 
to the identifications of 
the areas of interest

Simulation & Theory

• Develop and promote 
expertise in quantum 
sensing in low- and high-
energy physics 
applications

• Develop quantum sensing 
approaches with 
emphasis on low-energy 
particle physics 
measurements

• Assess novel 
technologies and 
materials for HEP 
applications

Sensing, Metrology & 
Materials

• Co-develop CERN 
technologies relevant to 
quantum infrastructures
(time synch, frequency 
distribution, lasers)

• Contribute to the 
deployment and 
validation of quantum 
infrastructures

• Assess requirements and 
impact of quantum 
communication on 
computing applications
(security, privacy)

Communications & 
Networks
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Quantum Computing at CERN 

• QC is one of the four research areas in the CERN QTI 

• Understand which applications can profit from quantum algorithms
• Choose representative use cases
• Understand challenges and limitations (on NISQ and fault tolerant hardware)
• Optimize quantum algorithms

• Quantum Machine Learning algorithms are a primary candidate for 
investigation

• Increasing use of ML in many computing and data analysis flows
• Can be built as hybrid models where quantum computers act as accelerators
• Efficient data handling is a challenge

19.05.22 6
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Quantum 
Computing Intro 

An Introduction to Quantum Computing, E. Combarro, https://indico.cern.ch/event/970905



Qubit: Quantum bit
• Classical bits are binary “0 or 1”

• Quantum Mechanics predicts superposition
states “simultaneously 0 and 1”

• Superposition can lead to highly parallel 
computations (exponential speedup)

• State of the “output qubit” has to be measured 
(stochastic nature of the result)

• Qubit state collapses 
• No-cloning theorem

819.05.22



Creating qubit: superconducting rings
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• Current oscillates in 
resistance-free circuit 
loop

• Injected microwave 
signal excites the 
current into super-
position states

Ex. Google, IBM, …
Electron 
potential 
energy

Quantization 
of energy

Z. Minev, Qiskit Global Summer School 2020

Anharmonic d.o.f in spin system



Different qubits

20.05.22 10

SuperConducting loops

See Institute of Quantum Computing, U. of Waterloo, https://uwaterloo.ca/institute-for-quantum-computing/quantum-101/quantum-information-science-and-technology/what-qubit#Spin

Spin States

Trapped Atoms and Ions

PHOTONS:

Polarization States

Path Qubits:

Time qubits



Neutral atom arrays
• Configurable arrays of single neutral atoms
• 2 energy levels represent the qubit states
• Use lasers to control position and the state of the atom

• assemble and read-out registers made of hundreds 
of qubits 

• fully programmable quantum processing
• High connectivity
• Specific computation cycle because the register is not 

permanently built
• register preparation
• quantum processing
• register readout 

19.05.22 11

D. Barredo et al.,  “Synthetic three-dimensional atomic 
structures assembled atom by 
atom.” arXiv:1712.02727, 2017.

https://arxiv.org/abs/1712.02727


Photonic based quantum computers

19.05.22 12

https://strawberryfields.ai/photonics/hardware/details.html

• Quantum superposition of different number of 
photons in a resonator generated by laser 
pulses (squeezed states)

• Set of quantum gates is implemented in a 
interferometer network (phase shifters and 
beam splitters)

• Photons are detected during the readout stage by 
superconducting counters

• Naturally represent continuous variables
https://youtu.be/v7iAqcFCTQQ



Qubit representation 

• Dirac notation is used to describe 
quantum states
Given a basis of orthogonal vectors

And a 2-dimensional vector in complex space

A quantum state is represented as 

13

Image credits:  
Qiskit textook

19.05.22

The Bloch Sphere



Quantum Gates

• Evolution of isolated quantum states follow 
Schrodinger equation

• Operations on qubits are unitary matrices describing 
state evolution 

• Reversible operations
• Input and output states have the same dimension
• Some classical gates (or , and, nand, xor...) cannot be 

implemented directly
• Can simulate any classical computation with small overhead

1419.05.22



Example 
gates

15E. Combarro, https://indico.cern.ch/event/970905



Quantum entanglement
• Quantum entanglement creates correlation between qubit that, classically, 

would be independent

• Example : Bell state 

19.05.22 16



Quantum circuits
Classical circuits combine logical  operations (and, or, not, nand, and xor). 
Quantum circuits use reversible gates that change the quantum states of one, 
two , or more qubits.

19.05.22 17

Image credits: Qiskit Textbook



Quantum Algorithms
A collection on http://quantumalgorithmzoo.org

• Multiple algorithms have been studied
• Shor algorithm for prime factorization
• Grover algorithm for unsorted DB searches
• Quantum Fourier Transform
• …

• Quantum-inspired algorithms (emulate quantum effects 
on classical hardware)

• Quantum Machine Learning
• Challenge is re-thinking algorithms design and define 

fair benchmarking and comparison to classical algorithms

19.05.22 18

image from ISC 2021  keynote , M. Troyer

Image by Frank Zickert

https://quantum-computing.ibm.com/composer/docs/iqx/guide/shors-algorithm

Shor’s

Grover’s



Grover algorithm for pattern recognition 

Quantum Associative Memory:  Reconstruct 
particle trajectory by designing a DB of expected 
patterns and use the generalised Grover 
algorithm to match them to the detector output

19.05.22



Quantum Annealing

• Annealing for optimization problems
• PDF as a mountain landscape
• Smoothly evolve probability of being at any given coordinate 

with time.
• Probability increases around the coordinates of deep valleys

• Quantum systems based on superconducting qubits
• D-Wave Advantage: 5436 qubits - 15 connection (Pegasus)

• Quantum superposition: scan simultaneously multiple 
coordinates

• Quantum tunneling: reduces risk of local minima (tunnel 
through hills)

• Quantum entanglement: discover correlations between the 
coordinates that lead to deep valleys.

19.05.22 20

𝑯 𝒕 = 𝑨 𝒕 𝑯𝟎 + 𝑩 𝒕 𝑯𝒑

T. Kadowaki and H. Nishimori, PRE, 58(5), pp. 5355-5363, (1998)
E. Farhi, et al., Science 292, 472 (2001)
W. Kaminsky, S. Lloyd, T. Orlando, arXiv:quant-ph/0403090



• Map the problem to a Ising model (spin lattice as qubit graph)
• Define Hamiltonian and train by minimizing energy
• First QA application to High Energy Physics

Training a classifier with QA

21

Adjacent qubits

https://arxiv.org/abs/1210.8395

weak classifiers = Ising spins 

Initial features

Alexander Zlokapa, Alex Mott, Joshua Job, Jean-Roch Vlimant, Daniel Lidar, 
and Maria Spiropulu. Quantum adiabatic machine learning by zooming 

into a region of the energy surface. Physical Review A, 102:062405, 2020. 
DOI:10.1103/PhysRevA.102.062405.



Today’s challenges

• Noisy Intermediate-Scale Quantum devices
• Limitations in terms of stability and connectivity
• De-coherence, measurement errors or gate level 

errors (noise)
• Specific error mitigation techniques
• Circuit optimisation
• Prefer algorithms robust against noise

• Quantum computers initially integrated in hybrid 
quantum-classical infrastructure
• Engineering, cooling, I/O
• Hybrid algorithms, QPU as accelerators

19.05.22 22

Image: D-Wave tutorial

Peruzzo, A. "A variational eigenvalue solver on a quantum processor. 
eprint." arXiv preprint arXiv:1304.3061 (2013).



What the future brings…

19.05.22 23
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Quantum Machine 
Learning 

QML tutorials  and resources https://pennylane.ai
Supervised Learning with Quantum Computers

Maria Schuld
Francesco Petruccione



Use Quantum Computing to accelerate ML/DL.

Quantum circuits are differentiable and can be trained minimizing a cost function dependent on training data:

1. Feature extraction and data encoding
• How to represent classical data in quantum states?

2. Model definition (kernel based or variational)
• Design wrt data

3. Optimisation and convergence in Hilbert space
• Convergence vs expressivity
• Barren plateau and vanishing gradients
• Gradient-free or gradient-based optimisers 
• …

Quantum Machine Learning

2519.05.22

Image credit Qiskit.org/textbook

Different tools can enable hybrid computations



Dimensionality reduction/feature extraction
• Reduce size of classical data
• Optimize input  (PCA, Auto-Encoders.. ) 
• Pre-trained or co-trained in hybrid setup

Dimensionality reduction and feature extraction

19.05.22 26

Belis, Vasilis, et al. "Higgs analysis 
with quantum classifiers." EPJ 
Web of Conferences. Vol. 251. EDP 
Sciences, 2021.

Patrick Odagiu, 2021 : End-to-end Sinkhorn autoencoder with a classifier NN (green). 
Sinkhorn part cosists of an encoder (blue), decoder (red) and noise generator (orange).



Data embedding in quantum states : 
compromise between exponential compression
and circuit depth
In some cases: data re-uploading

Quantum embedding

19.05.22 27

S.Y. Chang, poster at ”Quantum Tensor Network in Machine Learning, NeurIPS 2021 

Effect of different encoding 
in quantum CNN 

1) Amplitude Encoding 

𝜙(𝑥) =
1
𝑥
'
!"#

$

𝑥!|𝑖⟩

Exponential compression
nqubit ∝ O(log(N)) 

Polynomial number of gates
ngate ∝ O(poly(N))



Quantum Embedding

2) Dense Qubit Encoding

𝜙(𝑥) =⊗#$%

&
' (𝑒()

*!
"#$
' +%𝑒()

*$
' +&)

Easy to implement
ngate∝ O(N) 

No compression in resources
nqubit ∝ O(N) 



Quantum Embedding

3) Hybrid Angle Encoding

𝜙(𝑥) =⊗-./
0 ('

1./

2!

(
3.4

56/

cos/61"(𝑥7 3 ,-) sin1" 𝑥7 3 ,- 𝑖 -)

Compromise between Amplitude 
and Qubit Encoding

Still requires too many two qubit 
gates

Encode 𝑏×2! values into 𝑏×𝑚 qubits 



Model definition
Kernel methods

Feature maps as quantum kernels
Use quantum computers to create classically intractable features |𝝓(𝒙 ⟩)
• Build inner product of feature vectors  à Ο(𝑁,-.-' )
• Use classical kernel-based training

• Convex losses, global minimum
• Identify classes of kernels that relate to specific data structures1

• Given a variational circuit of the form 𝑈 𝑥, 𝜗 = 𝒱/𝑈0 𝑥 , can define a quantum kernel method with better 
accuracy:  |𝝓(𝒙 ⟩) = 𝑈0 𝑥 | ⟩0

• Classically: not all machine learning models can be described by kernel methods. 

Image credit M. Schuld

1 Glick, Jennifer R., et al. "Covariant quantum kernels for data with group structure." arXiv preprint arXiv:2105.03406 (2021).

Schuld, Maria. "Supervised quantum machine learning models are kernel methods." arXiv preprint arXiv:2101.11020 (2021).
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Quantum Support Vector Machine

SVM are kernel methods:
Trained to find the optimal separating plane

Quantum SVM use feature maps as kernels
Feature maps enable SVM to design non-linear decision
boundaries
Feature maps in high dimensionality space improve separation 
power

NB: 
• Quantum kernels sampled on 

quantum device
• Minimisation step is classical



Model definition

Define a parametric quantum circuit with trainable parameters 𝜗
𝑈 𝑥, 𝜗

Given an observable O, build a model 
𝑦 𝑥, 𝜗 = 0 𝑈1(𝑥, 𝜗)𝑂𝑈(𝑥, 𝜗) 0

• Trained using gradient-free or gradient-based optimization in a classical loop

• Backpropagation and auto-differentiation

• Data Embedding 𝒱0 𝑥 can be learned

• Improve performance by designing architectures to leverage data symmetries1

• There are quantum circuits that hard to simulate classically

Variational algorithms

1 Bogatskiy, Alexander, et al. "Lorentz group equivariant neural network for particle physics." International Conference on Machine Learning. PMLR, 2020.

Image credit SwissQuantumHub



Characterize the behaviour of different models, similarity
and links among them and link to data properties. 
Ex: 

• Data Re-Uploading circuits: alternating data encoding and 
variational layers. 

• Represented as explicit linear models (variational) in larger 
feature space

à can be reformulated as implicit models (kernel)

• Representer theorem: implicit models achieve better 
accuracy

• Explicit models exhibit better generalization performance

Equivalent interpretations?  

Jerbi, Sofiene, et al. "Quantum machine learning beyond 
kernel methods." arXiv preprint arXiv:2110.13162 (2021).

KERNEL-BASED

DATA RE-UP

VARIATIONAL

See M. Grossi summary at the 2022 CERN Openlab Technical Workshop : 
https://indico.cern.ch/event/1100904/contributions/4775169/



Given the size of the Hilbert space a compromise between 
expressivity, convergence and generalization performance is 
needed.
Classical gradients vanish exponentially with the number of 
layers (J. McClean et al., arXiv:1803.11173)

• Convergence still possible if gradients consistent between 
batches.

Quantum gradient decay exponentially in the number of 
qubits

• Random circuit initialization
• Loss function locality in shallow circuits (M. Cerezo et al., arXiv:2001.00550)
• Ansatz choice: TTN, CNN (Zhang et al., arXiv:2011.06258, A Pesah, et al., Physical 

Review X 11.4 (2021): 041011. )

• Noise induced barren plateau (Wang, S et al., Nat Commun 12, 6961 (2021))

Model Convergence and Barren Plateau

19.05.22 34

QCNN: A Pesah, et al., Physical 
Review X 11.4 (2021): 041011

TTN for MNIST classification (8 qubits), 
Zhang et al., arXiv:2011.06258 

J. McClean et al., arXiv:1803.11173



Defining quantum Advantage 
for QML

Different possible definitions
Runtime speedup 
Sample complexity
Representational power

Classical Intractability: a quantum algorithm that cannot be efficiently simulated classically
• No established recipe for classical data
• Need to use the whole exponential advantage in Hilbert space, but will it converge ? 

(Algorithm expressivity vs convergence and generalization) 

35

Kübler, Jonas, Simon Buchholz, and Bernhard Schölkopf. "The inductive bias of quantum kernels." Advances in Neural Information Processing Systems 34 (2021).
Huang, HY., Broughton, M., Mohseni, M. et al. Power of data in quantum machine learning. Nat Commun 12, 2631 (2021). https://doi.org/10.1038/s41467-021-22539-9

Abbas, Amira, et al. "The power of quantum neural 
networks." Nature Computational Science 1.6 (2021): 403-409.



Practical advantage
Practical implementation vs asymptotic complexity

Data embedding
NISQ vs ideal quantum devices
Realistic applications

Performance metrics and fair comparison to classical models

HEP data is classical, but originally produced by quantum processes. It is 
these intrinsically quantum correlations we are trying to identify  

A change of paradigm could reflect in interesting insights
• What are natural building blocks for QML algorithms?
• How can we construct useful bridges between QC and learning theory?
• How can we make quantum software ready for ML applications?

36

Khachatryan, Vardan, et al. "Measurement of Long-
Range Near-Side Two-Particle Angular Correlations 
in p p Collisions at s= 13 TeV." Physical review 
letters 116.17 (2016): 172302.

Schuld, Maria, and Nathan Killoran. "Is quantum advantage the right goal 
for quantum machine learning?." arXiv preprint arXiv:2203.01340 (2022).
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Quantum Machine 
Learning examples



QML in High Energy Physics
Alexander Zlokapa, Alex Mott, Joshua Job, Jean-Roch Vlimant, 

Daniel Lidar, and Maria Spiropulu. Quantum adiabatic machine 
learning by zooming into a region of the energy surface.

Physical Review A, 102:062405, 2020. 
DOI:10.1103/PhysRevA.102.062405.

Koji Terashi, Michiru Kaneda, Tomoe Kishimoto, Masahiko Saito, Ryu 
Sawada, and Junichi Tanaka. Event classification with quantum 
machine learning in 20 high-energy physics. Computing and 
Software for Big Science, 5(1), January 2021.

19.05.22 38

Sau Lan Wu, Jay Chan, Wen Guan, Shaojun Sun, Alex Wang, Chen 
Zhou, Miron Livny, Federico Carminati, Alberto Di Meglio, Andy C Y Li, 

and et al. Application of quantum machine learning using the 
quantum variational classifier method to high energy physics 

analysis at the lhc on ibm quantum computer simulator and 
hardware with 10 qubits. Journal of Physics G: Nuclear and Particle 

Physics, 48(12):125003, Oct 2021

Alessio Gianelle, Patrick Koppenburg, Donatella 
Lucchesi, Davide Nicotra, Eduardo Rodrigues, Lorenzo 
Sestini, Jacco de Vries, and Davide Zuliani. Quantum 
Machine Learning for 𝑏-jet identification. 
arXiv:2202.13943, 2022.

Vishal S Ngairangbam, Michael Spannowsky, and 
Michihisa Takeuchi. Anomaly detection in high-energy 
physics using a quantum autoencoder. arXiv preprint 
arXiv:2112.04958, 2021.

Samuel Yen-Chi Chen, Tzu-Chieh Wei, Chao 
Zhang, Haiwang Yu, and Shinjae Yoo. Quantum 
convolutional neural networks for high energy 
physics data analysis. arXiv preprint: 2012.12177, 
2020.
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QML at CERN
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Tüysüz, Cenk, et al. "Hybrid quantum classical graph neural 
networks for particle track reconstruction." Quantum 
Machine Intelligence 3.2 (2021): 1-20.

M. Shenk, V. Kain, Quantum Reinformcement Learning, 
BQiT 2021, 2022 CERN openlab Tech Workshop

p0=5%

Vasilis Belis, Samuel González-Castillo, Christina Reissel, Sofia 
Vallecorsa, Elías F. Combarro, Günther Dissertori, and Florentin
Reiter. Higgs analysis with quantum classifiers. EPJ Web of 
Conferences, 251:03070, 2021

Borras, Kerstin, et al. "Impact of quantum noise on the 
training of quantum Generative Adversarial 
Networks." arXiv preprint arXiv:2203.01007 (2022).

Chang S.Y. et al., Running the Dual-PQC 
GAN on Noisy Simulators and Real 
Quantum Hardware, QTML2021, ACAT21

O. Kiss, Quantum Born Machine for 
event generation, ACAT2021

Kinga Wozniak, Unsupervised clsutering for a 
Randall–Sundrum Graviton at 3.5TeV narrow 
resonance, 5th IML workshop, May 2022

Bravo-Prieto, Carlos, et al. "Style-based 
quantum generative adversarial networks 
for Monte Carlo events." arXiv preprint 
arXiv:2110.06933 (2021).



Hybrid setup for anomaly detection

40

Kinga Wozniak, Unsupervised clsutering for a 
Randall–Sundrum Graviton at 3.5TeV narrow 
resonance, 5th IML workshop, May 2022

Unsupervised Q-means Supervised QSVM

Supervised QSVM

Unsupervised Q-means

Di-jet events (Δφ, Δη,pT). Train AE on QCD sidebands. 
Train classifiers on signal region.



Boltzman Machines 
Ex. Compute expected value of physical observable

• In statistical mechanics define a probability function

19.05.22 41

• Minimize the free energy -ln Z (intractable in general) 
• Define a variational free energy, for a normalized variational probability q(x)

𝜋 𝑥 =
𝑒(2(*)

∑* 𝑒(2(*)

Z= ∑! 𝑒"#(!)

• L is upper bound of physical free energy – ln Z

𝐿 = H
*
q x ln

𝑞(𝑥)
𝑒(2(*)

= ⟨E(x) + ln q(x)⟩ 𝑥~𝑞(𝑥) 𝐿 + ln𝑍 = 𝐾𝐿(𝑞||𝜋) ≥ 0

Quantum Boltzman Machines: replace the energy function with Hamiltonian of a 
qubit graph (transverse field Ising model)

Amin, Mohammad H., et al. "Quantum boltzmann
machine." Physical Review X 8.2 (2018): 021050.

Restricted BM:

Discriminative learning:



Agent interacts with environment
• Receives reward after every action
• Learns through trial-and-error
• Training sample: (𝑠!, 𝑎! , 𝑟! , 𝑠!"# , 𝑑!)

Decision making
• Agent follows policy 𝝅: 𝑆 → 𝐴
• Goal: find optimal policy 𝜋∗

• Optimal ó maximizing return: 𝐺! = ∑% 𝛾%𝑅!"%

Reinforcement Learning 
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Expected return can be estimated through value function 𝑸(𝒔, 𝒂)
• Helps answering: “Best action to take in given state?”
• Not a priori known, but can be learned iteratively

RL book: Sutton & Barto

https://www.youtube.com/watch?v=SsJ_AusntiU
https://www.youtube.com/watch?v=Lu56xVlZ40M

https://www.youtube.com/watch?v=imOt8ST4Ej

M. Shenk, V. Kain
BQiT 2021
2022 CERN openlab Tech Workshop

https://web.stanford.edu/class/psych209/Readings/SuttonBartoIPRLBook2ndEd.pdf
https://www.youtube.com/watch?v=Lu56xVlZ40M
https://www.youtube.com/watch?v=Lu56xVlZ40M
https://www.youtube.com/watch?v=imOt8ST4Ejc


Quantum Reinforcement Learning
M. Shenk, V. Kain
BQiT 2021
2022 CERN openlab Tech Workshop

https://indico.cern.ch/event/1009424

Q-learning: learn 𝑸 𝒔, 𝒂 using function approximator
• DQN: Deep Q-learning (feed-forward neural network)
• FERL: Free energy based RL (quantum Boltzmann machine)

Free Energy RL: clamped Quantum Boltzman Machine
• Network of coupled, stochastic, binary units (spin up / 

down)
• &𝑸 𝒔, 𝒂 ≈ negative free energy of classical spin 

configurations 𝑐
• Sampling 𝑐 using (simulated) quantum annealing
• Clamped: visible nodes not part of QBM; accounted for as 

biases
• Using 16 qubits of D-Wave Chimera graph
• Discrete, binary-encoded state and action spaces

#𝑄 𝑠, 𝑎 ≈ −𝐹 𝒗 = − 𝐻𝒗()) −
1
𝛽
0
*

ℙ 𝑐 𝒗 logℙ 𝑐 𝒗

⋮
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𝑤""!

ℎ#

Clamped QBM



Beam optimisation in linear accelerator

• Action: deflection angle 
• State: BPM position 
• Reward: integrated beam intensity on target
• Optimality: what fraction of possible states does 

agent take the right decision

State
Reward

Action

xDipole 
magnet

Beam Position 
Monitor (BPM)

Target
±
3!Particle 

beam

Training efficiency Training efficiency vs. # Q-net / QBM weights

70k

340

8

52

M. Schenk
2022 CERN openlab technical workshop

• Training efficiency: FERL 
massively outperforms classical 
Q-learning (8±2 vs. 320±40 
steps)

• Descriptive power: QBM can 
reach high performance with 
much fewer weights than DQN 
(52 vs. ~70k)



Quantum Circuit Born Machine

• Only able to generate discrete PDFs (continuous in the limit #qubits  → ∞)
• Train using Maximum Mean Discrepancy: 

MMD(P,Q) =  𝔼6~8
9~8

K X, Y + 𝔼6~:
9~:

K X, Y − 2𝔼6~8
9~:

[K X, Y ]

with K a gaussian kernel 
• Pros: relativly easy to optimize, Cons: empircally less efficient than an adversarial approach

45

Coyle, B., Mills, D. et al, The Born supremacy. In: npj Quantum Inf 6, 60 (2020)

slide adapted from O. Kiss, QTI CERN

Sample from a variational wavefunction 
| ⟩ψ(θ) with probability given by the Born 
rule: 

p; x = |⟨x|ψ(θ ⟩) |<



Muon Force Carriers predicted by 
several theoretical models:

• Could be detected by muon fixed-
target experiments (FASER) or muon 
interactions in calorimeters (ATLAS)1. 

Generate E, pt, η of outgoing muon 
and MFC

QCBM for event generation

46

1 Galon, I, Kajamovitz, E et al. "Searching for muonic forces with the ATLAS detector". In: Phys. Rev. D 101, 011701 (2020)

Kiss O., ACAT21
Learning to Discover 2022

Perfect simulator 
Noisy simulator (IBMQ 
casablanca)  (no error 
mitigation)
IBMQ Montreal
Classical GMMD  of size 
(15,128, 256,128,16,1)
Easy GMMD ~ QCBM in size



Quantum Generative Adversarial Networks
Density estimation by comparison

Quantum Generator

Measurement Real
Data

Fake
Data

Classical 
Discriminator

Classical 
Data

Evaluate Gradients &
Update Parameters 

Uniform 
Initialization

• Sample-based comparison 
between estimated q(x) 
and true distribution p(x)

• Multiple implementations, 
mostly classical-quantum 
hybrid

• Used for 
• Data generation
• PDF loading on quantum 

systems
• Anomaly detection



qGAN as a data loader

Distribu�on 

prepara�on 

(sampling and 

discre�sa�on)

Exact 

distribu�on 

loading

Applica�on of 

the domain 

�lter through 

quantum gates

Integra�on 

through QAE

Classical 

preprocessing

Core quantum 
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loading 

through qGAN
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�lter through 

quantum gates

Integra�on 

through QAE

Core quantum 

algorithm

Classical 

postprocessing

Distribu�on 

prepara�on 

(sampling and 

discre�sa�on)

qGAN training

Classical 

preprocessing

Quantum data 

prepara�on 

Use Quantum Amplitude Estimation to accelerate Monte Carlo Integration
Data encoding into quantum states affects the quality of the integration

Test different approaches including QGAN

Loading of 1 + 𝑥' distribution:
• 10k events
• 3 qubits
• circular entanglement

Agliardi, Gabriele, et al. "Quantum integration of elementary 
particle processes." arXiv preprint arXiv:2201.01547 (2022)



qGAN for event generation

19.05.22 49

Generate  Mandelstam (s,t) + y
variables for t-tbar production
Introduce a style-based
approach

Bravo-Prieto, Carlos, et al. "Style-based quantum generative 
adversarial networks for Monte Carlo events." arXiv
preprint arXiv:2110.06933 (2021).

IBM Q Santiago

Quantum simulator



Increasing generated dimensionality

• Calorimeter simulation is one of the main use cases for 
classical GAN in HEP

• Represented as a 3D regular grid
• Reduce to:

• 1D distribution along the calorimeter depth (8 pixel)
• 2D distribution on the y-z plane (64 pixel)

Energy Profiles in Calorimeters
Energy
(GeV)

Particle

500 GeV example

Borras, Kerstin, et al. "Impact of quantum noise on the training of quantum Generative 
Adversarial Networks." arXiv preprint arXiv:2203.01007 (2022).

Rehm, Florian, et al. "Quantum Machine Learning for HEP Detector Simulations." (2021).
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Calorimeter Depth

3 qubits

qGAN image

Calorimeter Depth

Real image

Calorimeter Depth

6 qubits



Readout noise effect on GAN training

Florian Rehm - CERN openlab Technical 
Workshop 2022

• Training is up to
~5% readout noise
tolerant

• Higher readout
noise reduces
accuracy

• Intrinsic instability
in the training
process

p0=1% p0=5% p0=10%

Borras, Kerstin, et al. "Impact of quantum noise on the training of quantum Generative Adversarial 
Networks." arXiv preprint arXiv:2203.01007 (2022).



Running the model on noisy devices
Train on noisy simulator
• Evaluate importance of training hyperparameters
• Error mitigation needed only for higher noise 

level

Florian Rehm, S. Y. Chang:
https://arxiv.org/abs/2203.01007

Importance wrt Objective Function
Qubit Number 0 1 2

Readout Error 2.34% 2.66% 2.05%

CX-gate Error 1.11% 1.75%

Inference on IBM Q Manila hardware
• Maintain good physics perfomance

https://arxiv.org/abs/2203.01007


Train models using noisy simulator and  test the inference of the model on the  superconducting (IBMQ) and 
trapped-ion (IONQ) quantum hardware

• For IBMQ machines, choose the qubits with the lowest CNOT gate error

qGAN Benchmarks on hardware
Chang S.Y. et al., Running the Dual-PQC GAN on Noisy Simulators and Real 
Quantum Hardware, QTML2021, ACAT21



Research on QML applications in High Energy Physics is producing a large number of prototypes
• So far focus on different steps of data processing in «controlled environment»
• Some preliminary hints of advantage in terms of input feature size and representational power
• Mostly we do «as good as classical methods»
• Need more robust studies to relate quantum model architecture and performance to data sets
• Identify use cases where quantum approach could be more effective than classical

machine/deep learning
• Studying QML algorithms today can build links between QC and learning theory

Summary
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GET IN TOUCH IF YOU’D LIKE TO CONTRIBUTE!



Sofia.Vallecorsa@cern.ch

Thanks!

https://quantum.cern/

https://openlab.cern/quantum
55

https://quantum.cern/
https://openlab.cern/quantum
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CERN and the 
Quantum 
Technology Intiative



Direct simulation

• Quantum computer can naturally simulate 
quantum systems (reproduce the evolution of 
an Hamiltonian via the Schrodinger equation)

• Quantum chemistry and physics 

• Exploit entanglement between qubits on a 
quantum computer to simulate correlations in 
the parton shower

19.05.22 57

arxiv:1904.03196



hi(𝒙) ∈ [-1,1] are functions of the variables 
such that
P(S|hi>0) > P(B|hi>0)
P(B|hi<0) > P(S|hi<0)
i.e. 
hi>0 probably Signal
hi<0 probably Background

Weak ➙ Strong classifier

h1

h2

h3

hN

O

𝑂 𝑥 =$
$

𝑤$ℎ$ 𝑥
…

➠

https://arxiv.org/abs/1109.0325



Quantum Boltzmann Machines

Train GBM parameters to learn the underlying data distribution
à Generative models
à Feature mapping
à Can act as classifiers by clamping part of the visible units

59

Picture from wikipedia

Classical Energy: 

Quantum BM: qubits graph as a transverse field Ising model

Hamiltonian: 



Solving QBMs on the annealer

60

Spins configurations can only be measured along one axis.
Measuring along σz à σx collapses
Hv can’t be measured directly à use an approximation 
(Suzuki-Trotter representation)

Stack a set of classical Ising models (one dimension higher)



Graph Neural Networks for particle trajectory
reconstruction

Data as a graph of connected hits
Connect hits using geometric constraints
Embedding requires large graphs ( ~105 nodes)
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Charged particle tracking
Cenk Tuysuz
arXiv:2012.01379

arXiv:2109.12636

https://arxiv.org/abs/2012.01379


62QML @CERN 

GNN for particle tracking

https://exatrkx.github.io/

arxv:2007.00149



Quantum models
Replace Edge and Node networks with hybrid classifiers

19.05.22 63



Quantum circuit 
systematics

19.05.22 64



Quantum SVM for Higgs 
classification

Classical models trained on 67 features
Test several dimensionality reduction strategies 
(PCA, AutoEncoder, Kmeans.. )
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V. Belis, S. Gonzalez-Castillo
BQiT 2021
vCHEP2021
arXiv:2104.07692

momentum
Polar 
angle



Variational Quantum Classifiers

Classical dense neural network to reduce dimensionality
• 4 qubits, 8 variables 

ZZ feature map with data-re-uploading
2-local variational form

Simultaneous training of  classical feature extraction strategy and 
quantum classifier  improves the accuracy




