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Today, we will talk about
Machine Learning techniques:

Supervised
Unsupervised
Reinforcement

Transfer 
Time-evolution

Generative

My aim today is 
to introduce a range of uses of ML in Physics & beyond

and some concepts and keywords to help you start looking
Tomorrow: hands-on!



Human vs Machine Learning
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VERY IMPRESSIVE, YET
human learning is limited by 

our personal viewpoint, 
our collective intelligence (newspeak?) 

& our inherent capacity to process information
(amount , speed, level of detail)

vs

ON THE OTHER HAND
the ultimate limitations of machine learning

are unknown (if they do exist)
CPU-> GPU, TPU, FPGA, IPU -> … 

Quantum Computing, Neurophotonics…
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TOMORROW’s HANDS-ON



ARTIFICIAL INTELLIGENCE
A programme that can feel, reason, 
act and adapt to the environment

MACHINE LEARNING 
Algorithms which improve as they are 

exposed to more data

DEEP
LEARNING

Neural Networks 
which learn from huge 

amounts of data

new algorithms and 
applications appear 
every day, and this 
tendency does not 
seem to slow down

This technology is truly disruptive

we are unable to predict 
how fast is going to 

evolve and the extent of 
its applications



Learning by example: 
Supervised ML

repeat and improve on a task



A basic task: good or bad?

Is it a crocodile?
Yes/No answer



D(xi, yi)To learn, dataset with labels y 2 {0, 1}

A basic task: good or bad?

Is this New Physics?Cat or dog?

Is it a crocodile?
Yes/No answer



The simplest classification problem

We define a cost function for this problem using  
Maximum Likelihood Estimation (MLE)

prob dataset D explained by 
our model w

logistic regression: probability datapoint x_i as true or false 

e.g. event b-tagged or not,
event new physics or not

Interpret the output of this transformation as a binomial probability



Binary cost function: Cross-entropy 

then log-likelihood is

best description: parameters w maximize the log-likelihood

Cost function is then chosen to be
CROSS-ENTROPY +regularization



Logistic regression
Take a dataset (X,y) where y is binary 

build a cost function = cross-entropy
minimise it and find the parameters w

We can use L1 or L2 regularisation

Binary is an example of categorical outputs
When we have more than 2 categories, we use a cost function called

SOFTMAX REGRESSION (a generalization of cross-entropy)

often convenient to
describe the categories with 

ONE-HOT vectors



Logistic regression: measures of performance
How do we measure performance in a 

classification task?

Moreover, in your learning you may want to specialise in id’ing dogs because 
want to make sure you don’t miss any. You raise your threshold for them, 

paying a price cat performance

‘We now can distinguish cats and dogs with 95% accuracy’
but maybe identifying cats is easier than dogs

you nearly always get cats right (98%), 
but  sometimes confuse a little dog for a cat (3%)



Logistic regression: measures of performance
So, let’s say your focus is on dogs (you were bitten or had a bad experience)

You would care about
True positives (TP) : how many dogs you id
False negatives (FN): how many you miss

False positives (FP): how many cats you confuse with dogs
True negatives (TN): cats you id

AUC = indicates goodness of learning

how often when i say 
‘dog’ is dog?

proportion of dogs I 
id correctly



Neural Networks
Learning inspired by biology



Neural Networks (NNs)
A framework to develop AI, based on an architecture of neurons

ONE NEURON = BUILDING BLOCKS OF NNs

z = w.x+ b
First, a linear transformation

y = f(z)

Second, a non-linear function

y: output, scalar
(passes information, or not)

f:  activation function

Examples of activation functions



NN Architecture
Taking many neurons together, we can build an architecture

each circle is a neuron,
 where the inputs (in-arrows) are transformed into output (out-arrows)

the outputs of each layer serve as input for the next



Why are we doing this?

This NN transforms 
inputs (at the input layer) into an output (output layer)

by passing via the hidden layers
non-linear transformations of many non-linear transformations=

highly non-linear transformation of input into output



Why are we doing this?

This NN transforms 
inputs (at the input layer) into an output (output layer)

y(x)
which couldn’t be captured by simple functional forms



Why are we doing this?

Neural Networks can model complexity 
They have a high degree of expressivity

/exhibit high representational power
More hidden layers=> more complex features

Deep learning, deep NN



Nowadays, Machine Learning is in the middle of a revolution:
processing speed and storing capacity have increased enormously but 

more importantly the way machines learn has changed

learning was limited to lines of 
code we (humans) were writing

TRADITIONALLY

we can write 
extremely complex codes

and the machine can improve 
in performing tasks

but the structure of thought
behind decision making is human

The Machine can’t describe relations we haven’t coded in
like a born-blind person who is asked to think of blue



inputs outputs

Neural networks are able to explore relations between inputs and 
outputs which cannot be contained in lines of codes

their degree of expressivity is immense
and it is extremely fast

built from simple units and in a layered architecture

A new way of thinking: Neural Networks

The network learns from data with no structured instructions

Structures made of units called neurons
and organised by layers



Complex features
images, speech : are complex

For example: cats/dogs

you can distinguish these cats and dogs, right? but how? 
would you be able to write a code which classifies them with ~ 100% 

accuracy? well, a NN can learn to do this!



Convolutional Neural Networks 
CNNs



Complex features are often local

Apart from shape and color,
we know a cat is a cat because there are relations 

among their features, e.g. the position of the eyes/
ears respect to the head centre, independently of 

where in the image the cat is
Locality and translational invariance must end up 

playing a role in the identification task 

Convolutional Neural Network (CNN)
a type of NN architecture designed to exploit 

these two characteristics



CNNs

Convolution layer: Height, Width and Depth (e.g. RGB channels)
Convolution= operation to reduce information while maintaining 

spatial relations (locality and translation properties)  

Two types of basic layers

Pooling: Take areas of the image and reduce them. Example, 
max-pooling would take 2X2 neurons and replace by a single 

neuron with input the max of the 4



CNNs

Too much superfluous information in an image
Need to transform the image and capture the essentials

while maintaining spatial relations

Why do we do this?

As we advance in the layers, the CNN is transforming the original 
image into something more and more abstract 

In physics, translationally invariant systems can be parametrised by 
wave number and functional form (sin, cos) 

whereas an arbitrary system would be much more complex



Why are NNs so good at learning?
Good at learning: ability to learn with little domain knowledge

That’s something physicists (as humans) are good at
(Physics -> other things)

DNNs are good at this too, they are able to take large streams of data 
and learn features with little guidance, work like black boxes 

Good at handling large amounts of data: 
needle in a haystack

The NN structure (layers, 0/1 gates) allows a 
high representation power with moderate 

computational demands, e.g. allows 
parallelisation, use of GPUs… 

It scales better than other learning methods 
(like SVMs)



A lot of ML in Particle Physics is answering YES/NO questions
Is it a W?
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Figure 4. The expected significance as a function of the integrated luminosity for the analysis with
and without machine learning. The vertical red dashed line corresponds to the dataset size from the
current CMS result [19] while the purple and blue dashed lines indicate the sizes required to reach 3‡
with and without machine learning, respectively. The full Run 2 (2015–2018) dataset will be about
150 fb≠1 and the full LHC dataset (up to 2023), prior to the HL-LHC, will be about 300 fb≠1.

about 300 fb≠1. The curves follow the statical scaling of
Òs

L dt, where L is the instantaneous
luminosity. The current CMS result reported an observed (expected) significance of 1.5
(0.7) [19]. As anticipated from the agreement with the mass distribution (Fig. 2), the
significance calculated using the simulation reported in Section 3.1 is very similar at 1.227.
Without machine learning, “evidence” (3‡) may only be achieved after the full LHC dataset
(up to 2023) and “observation” (5‡) may be possible only with the HL-LHC. In contrast,
with the application of the neural network, evidence may be achievable with the full Run 2
(2015–2018) dataset (about 150 fb≠1) and observation may be possible well before the end of
the LHC. This represents one of the main results of this paper, and emphasizes the possible
gains to be had with ML.

3.3 What is the Neural Network Learning?

With a significant improvement from the neural network, it is interesting to investigate in
more detail what information the machine is exploiting beyond the existing search. This
section follows some of the procedures for such a study described in Ref. [50].

First, Fig. 5 shows the (first layer) convolutional filters from both streams of the network.
Since both streams are actually three-channel images, there are three sets of filters for each
case. While it is di�cult to immediately recognize what the network is learning from these
filters, there are some hints upon careful inspection. In particular, the event images have
a small number of “hot spots.” This may indicate that the network is learning to compute
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Is it a Higgs?

5

FIG. 5. Example of the edited 800⇥400 peak image from
a simulated WIMP event. The axis labels and numbers are
removed so all images are in the same style when used in the
CNN. The y-axis are both log-scaled.

FIG. 6. Example of a 800⇥800 HitPeak image showing both
the hitpatterns and largest peaks together from a simulated
WIMP event. The axis labels and numbers are removed so
all images are in the same format when used in the CNN.

FIG. 7. Example of a 800⇥800 HitPeak image for an ER
event.

IV. CNN ARCHITECTURE

This section discusses the details of a Convolutional
Neural Network used in this work (python code can be
found in the github repository [28]).
The majority of Machine Learning problems involve a

dataset X={(yi,xi), i=1,...,N}, a model g(✓) with pa-
rameters ✓, and a cost function C(X,g(✓)) (also known
as the loss function). The cost function allows you to
judge how well the model performs on the given dataset.
A model is fitted by calculating the value of ✓ that min-
imises the cost function.
The most common way to minimise the cost function

is to use Gradient Descent ; an algorithm that finds the
local or global minima of a function. The parameters are
adjusted in the direction where the gradient of the cost
function is large and negative, and then the gradient is re-
calculated in the new position. After each iteration the
model gradually converges towards a minimum (where
any changes to the parameters will produce little or no
change in the loss) resulting in the weights being opti-
mised. Given the cost function C(✓i), it simultaneously
updates for each i = 0,...,n until convergence is reached:

✓i := ✓i � ⌘r✓C(✓0, ..., ✓n) (1)

The learning rate, ⌘, controls how large each step is taken
during gradient descent.
Neural networks (NN) contain multiple neurons3

stacked into hidden layers. The output of each layer then
serves as the input for the following one. Each neuron
takes a vector of inputs, x, and produces a scalar output
ai(x). The function ai depends on the NN but it can be
separated into a linear operation (which weighs the im-
portance of the inputs) and a non-linear transformation
(performed by an activation function).
A NN calculates the gradient of the cost function us-

ing backpropagation. This algorithm contains a forward
pass (going from the input layer to output layer), cal-
culates the weighted inputs and activations for all the
neurons, and then backpropagates the error (output to
input layer), calculating the gradients.
A Convolutional Neural Network is a type of Neu-

ral Network Machine Learning algorithm that primarily
takes images as its input and assigns weights and biases
to di↵erent parts of the image. A CNN is comprised of
many layers of di↵erent types, including Convolutional
Layers, Pooling Layers, and Fully-Connected (FC) Lay-
ers. The convolutional layer is used to extract features
from the input image by passing a filter (kernel) over the
image matrix. To perform di↵erent operations on the im-
age, such as edge detection or sharpening, di↵erent types
of filters are used. The layer outputs the image matrix at
a reduced volume, depending on the size of the filter. A

3
A computational unit which performs a nonlinear transformation

of its input.

Is it DM?

mostly using Neural Networks to deal with images (CNNs)



A lot of ML in Particle Physics is answering YES/NO questions
Is it a W?
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Figure 4. The expected significance as a function of the integrated luminosity for the analysis with
and without machine learning. The vertical red dashed line corresponds to the dataset size from the
current CMS result [19] while the purple and blue dashed lines indicate the sizes required to reach 3‡
with and without machine learning, respectively. The full Run 2 (2015–2018) dataset will be about
150 fb≠1 and the full LHC dataset (up to 2023), prior to the HL-LHC, will be about 300 fb≠1.
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Is it DM?

mostly using Neural Networks to deal with images (CNNs)

The gains in ID-ing 
phenomena are typically in 

the range of  5%-30%

for tricky environments: 
difference between discovery 

or not



Diving  
into the unknown

what if we did not know what we were looking for?



So far getting better at predicting outputs 

H1

H
†
1

H2

Vµ

V⌫

Multivariate linear regression

Classification task with images
DNNs, CNNs

Binary classification in particle physics

B
ac
kg

ro
u
n
d
re
je
ct
io
n
1/

✏ B

Signal acceptance ✏S

cHW = 0.03

AUC = 0.75

cHW = 0.001

AUC = 0.52

SM Higgs background

in all these cases we knew the labels, 
the output of each input

we knew what we were looking for
our learning was guided, supervised



What if we didn’t know what we were looking for?
what if the labels were not there? 

because they are unknown or too costly to be obtained
or you wanted to learn something beyond these labels?

what would you do? 
as a physicist, you would start thinking on 
possible physical relations, plotting things, 

trying to obtain the best data representation 
the representation which manifests a behaviour



So everything starts with data visualization
But we can’t visualise things in more than 3D

when most data we want to mine is high-dimensional…

So you need to do DIMENSIONAL REDUCTION
from original space to latent space

Reduction n-D to few-D isn’t simply 
projecting in a lower dimensional space

one dimension at a time
Choice: direction to project 

to keep as much info as possible

Bad choice 
end up with a crowding problem

the best choice to represent this data is 2D, 
going to 1D does limit your ability to learn

There’s hope, stat dynamics shows 
micro->macro can work



Being smart at dimensional reduction
The direction to project out dimensions is important

We need a criteria 
Principal Component Analysis (PCA)

In our representation of the data
there are clearly some redundancies

there could be one or more 
LINEAR COMBINATIONS 

of some of these variables which 
capture most of the information



PCA
The procedure is simple enough, take the correlation matrix

and diagonalize it

with S diagonal

is a diagonal matrix with 
ordered eigenvalues

contains the eigenvectors
the directions of decreasing 

eigenvalue

We can then dimensionally reduce, but removing the directions in V with the 
smallest eigenvalues, the ones which carry less information in correlations

eqs. from this excellent review

https://arxiv.org/pdf/1803.08823.pdf


t-SNE
PCA is good as a first try at visualisation but is limited by its linearity

Often we would like to preserve local structures in higher-dimensions,
and PCA won’t do that

A good example of non-linear techniques is 
t-SNE (t-stochastic neighbour embedding)

In a nutshell, 
t-SNE  compares local distributions in the original and latent space

ORIGINAL

LATENT

with sigma_i some parameter
and Y the projected latent space

and provides a criteria for 
minimisation

the latent space choice which 
achieves the minimum is then 

chosen as latent space
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and the singular values of X are related to the eigenval-
ues of the covariance matrix ⌃(X) via �i = s2

i
/(N � 1).

To reduce the dimensionality of data from p to p̃ < p, we
first construct the p⇥p̃ projection matrix Ṽp0 by selecting
the singular components with the p̃ largest singular val-
ues. The projection of the data from p to a p̃ dimensional
space is simply Ỹ = XṼp0 . The same idea is central
to matrix-product-state-like techniques used to compress
the number of components in quantum wavefunctions in
studies of low-dimensional many-body lattice systems.

The singular vector with the largest singular value (i.e
the largest variance) is referred to as the first principal
component; the singular vector with the second largest
singular value as the second principal component, and so
on. An important quantity is the ratio �i/

P
p

i=1 �i which
is referred as the percentage of the explained variance
contained in a principal component (see FIG. 51.b).

It is common in data visualization to present the data
projected on the first few principal components. This is
valid as long as a large part of the variance is explained
in those components. Low values of explained variance
may imply that the intrinsic dimensionality of the data is
high or simply that it cannot be captured by a linear rep-
resentation. For a detailed introduction to PCA, see the
tutorials by Shlens (Shlens, 2014) and Bishop (Bishop,
2006).

C. Multidimensional scaling

Multidimensional scaling (MDS) is a non-linear dimen-
sional reduction technique which preserves the pairwise
distance or dissimilarity dij between data points (Cox
and Cox, 2000). Moving forward, we use the term “dis-
tance” and “dissimilarity” interchangeably. There are two
types of MDS: metric and non-metric. In metric MDS,
the distance is computed under a pre-defined metric and
the latent coordinates Ỹ are obtained by minimizing the
difference between the distance measured in the original
space (dij(X)) and that in the latent space (dij(Y )):

Ỹ = arg min
Y

X

i<j

wij |dij(X) � dij(Y )|, (131)

where wij � 0 are weight values. The weight matrix wij

is a set of free parameters that specify the level of confi-
dence (or precision) in the value of dij(X). If Euclidean
metric is used, MDS gives the same result as PCA and is
usually referred to as classical scaling (Torgerson, 1958).
Thus MDS is often considered as a generalization of PCA.
In non-metric MDS, dij can be any distance matrix. The
objective function is then to preserve the ordination in
the data, i.e. if d12(X) < d13(X) in the original space,
then in the latent space we should have d12(Y ) < d13(Y ).

Both MDS and PCA can be implemented using stan-
dard Python packages such as Scikit. MDS algorithms
typically have a scaling of O(N3) where N corresponds

to the number of data points, and are thus very limited
in their application to large datasets. However, sample-
based methods have been introduce to reduce this scaling
to O(N log N) (Yang et al., 2006). In the case of PCA,
a complete decomposition has a scaling of O(Np2 + p3),
where p is the number of features. Note that the first
term Np2 is due to the computation of covariance ma-
trix Eq.(129) while the second, p3, stems from eigenvalue
decomposition. Nothe that PCA can be improved to bear
complexity O(Np2+p) if only the first few principal com-
ponents are desired (using iterative approaches). PCA
and MDS are often among the first data visualization
techniques one resorts to.

D. t-SNE

It is often desirable to preserve local structures in
high-dimensional datasets. However, when dealing with
datasets having clusters delimitated by complicated sur-
faces or datasets with a large number of clusters, preserv-
ing local structures becomes difficult using linear tech-
niques such as PCA. Many non-linear techniques such as
non-classical MDS (Cox and Cox, 2000), self-organizing
map (Kohonen, 1998), Isomap (Tenenbaum et al., 2000)
and Locally Linear Embedding (Roweis and Saul, 2000)
have been proposed and to address this class of problems.
These techniques are generally good at preserving local
structures in the data but typically fail to capture struc-
tures at the larger scale such as the clusters in which the
data is organized (Maaten and Hinton, 2008).

Recently, t-stochastic neighbor embedding (t-SNE) has
emerged as one of the go-to methods for visualizing high-
dimensional data. It has been shown to offer insight-
ful visualization for many benchmark high-dimensional
datasets (Maaten and Hinton, 2008). t-SNE is a non-
parametric15 method that constructs non-linear embed-
dings. Each high-dimensional training point is mapped
to low-dimensional embedding coordinates, which are op-
timized in a way to preserve the local structure in the
data.

When used appropriately, t-SNE is a powerful tech-
nique for unraveling the hidden structure of high-
dimensional datasets while at the same time preserv-
ing locality. In physics, t-SNE has recently been used
to reduce the dimensionality and classify spin configu-
rations, generated with the help of Monte Carlo sim-
ulations, for the Ising (Carrasquilla and Melko, 2017)
and Fermi-Hubbard models at finite temperatures (Ch’ng
et al., 2017). It was also applied to study clustering tran-
sitions in glass-like problems in the context of quantum

15 It does not explicitly parametrize feature extraction required to
compute the embedding coordinates. Thus it cannot be applied
to find the coordinate of new data points.
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projected on the first few principal components. This is
valid as long as a large part of the variance is explained
in those components. Low values of explained variance
may imply that the intrinsic dimensionality of the data is
high or simply that it cannot be captured by a linear rep-
resentation. For a detailed introduction to PCA, see the
tutorials by Shlens (Shlens, 2014) and Bishop (Bishop,
2006).

C. Multidimensional scaling

Multidimensional scaling (MDS) is a non-linear dimen-
sional reduction technique which preserves the pairwise
distance or dissimilarity dij between data points (Cox
and Cox, 2000). Moving forward, we use the term “dis-
tance” and “dissimilarity” interchangeably. There are two
types of MDS: metric and non-metric. In metric MDS,
the distance is computed under a pre-defined metric and
the latent coordinates Ỹ are obtained by minimizing the
difference between the distance measured in the original
space (dij(X)) and that in the latent space (dij(Y )):

Ỹ = arg min
Y

X

i<j

wij |dij(X) � dij(Y )|, (131)

where wij � 0 are weight values. The weight matrix wij

is a set of free parameters that specify the level of confi-
dence (or precision) in the value of dij(X). If Euclidean
metric is used, MDS gives the same result as PCA and is
usually referred to as classical scaling (Torgerson, 1958).
Thus MDS is often considered as a generalization of PCA.
In non-metric MDS, dij can be any distance matrix. The
objective function is then to preserve the ordination in
the data, i.e. if d12(X) < d13(X) in the original space,
then in the latent space we should have d12(Y ) < d13(Y ).

Both MDS and PCA can be implemented using stan-
dard Python packages such as Scikit. MDS algorithms
typically have a scaling of O(N3) where N corresponds

to the number of data points, and are thus very limited
in their application to large datasets. However, sample-
based methods have been introduce to reduce this scaling
to O(N log N) (Yang et al., 2006). In the case of PCA,
a complete decomposition has a scaling of O(Np2 + p3),
where p is the number of features. Note that the first
term Np2 is due to the computation of covariance ma-
trix Eq.(129) while the second, p3, stems from eigenvalue
decomposition. Nothe that PCA can be improved to bear
complexity O(Np2+p) if only the first few principal com-
ponents are desired (using iterative approaches). PCA
and MDS are often among the first data visualization
techniques one resorts to.

D. t-SNE

It is often desirable to preserve local structures in
high-dimensional datasets. However, when dealing with
datasets having clusters delimitated by complicated sur-
faces or datasets with a large number of clusters, preserv-
ing local structures becomes difficult using linear tech-
niques such as PCA. Many non-linear techniques such as
non-classical MDS (Cox and Cox, 2000), self-organizing
map (Kohonen, 1998), Isomap (Tenenbaum et al., 2000)
and Locally Linear Embedding (Roweis and Saul, 2000)
have been proposed and to address this class of problems.
These techniques are generally good at preserving local
structures in the data but typically fail to capture struc-
tures at the larger scale such as the clusters in which the
data is organized (Maaten and Hinton, 2008).

Recently, t-stochastic neighbor embedding (t-SNE) has
emerged as one of the go-to methods for visualizing high-
dimensional data. It has been shown to offer insight-
ful visualization for many benchmark high-dimensional
datasets (Maaten and Hinton, 2008). t-SNE is a non-
parametric15 method that constructs non-linear embed-
dings. Each high-dimensional training point is mapped
to low-dimensional embedding coordinates, which are op-
timized in a way to preserve the local structure in the
data.

When used appropriately, t-SNE is a powerful tech-
nique for unraveling the hidden structure of high-
dimensional datasets while at the same time preserv-
ing locality. In physics, t-SNE has recently been used
to reduce the dimensionality and classify spin configu-
rations, generated with the help of Monte Carlo sim-
ulations, for the Ising (Carrasquilla and Melko, 2017)
and Fermi-Hubbard models at finite temperatures (Ch’ng
et al., 2017). It was also applied to study clustering tran-
sitions in glass-like problems in the context of quantum

15 It does not explicitly parametrize feature extraction required to
compute the embedding coordinates. Thus it cannot be applied
to find the coordinate of new data points.



Clustering
Now that we have reduced dimensionality

by PCA or t-SNE or another method
we can start thinking on finding patterns in it

Clustering is the most intuitive way to 
find patterns

Finding clusters of common behaviour 
using some distance criteria 

in the latent space

Clustering is an iterative procedure
start with some parameters like N clusters, 

cluster size etc
and try clustering the data using these criteria

The mathematical expressions are cumbersome 
(many definitions of running parameters)

but the intuitive meaning is clear



Different clustering methods

From SCIKIT webpage on clustering methods

https://scikit-learn.org/stable/modules/clustering.html


Can I have a cookie?
Learning by reward

Additional



Types of learning

MACHINE 
LEARNING

SUPERVISED

UNSUPERVISED

REINFORCEMENT

Just touched the surface
Basis to explore further 

and incorporate 
it in your research



Supervised to Reinforced Learning
Cool ways to accelerate learning, capture 
important aspects of the data, incorporate 

different types of data

Learn from humans to do what humans already do, 
but better and faster, and in more difficult situations 

But, what if we wanted 
a machine to become better than a human

at completing a high-level task? 

* See these lectures

https://indico.fnal.gov/event/16720/


Let’s find a DIFFICULT task
A truly human-difficult task

not just a task that a machine can do faster or with lower resolution

Supervised/unsupervised learning identifies patterns in data
But this isn’t the same as learning to develop a strategy

and to do it better than a human 

Chess is a high-level activity
different players develop different strategies 

the goal is long-term
important pieces can be sacrificed to achieve 

checkmate some moves along the way
and you have an adversary which will oblige 

you to reassess your strategy at each step
combinatorics is ginormous 



Human vs Machine
February 1996

Deep Blue (IBM) beat Garry 
Kasparov (World Champion)

and did it again many times after
brute-force computing power 
analysing many hundreds of 
millions positions /second



Human vs Machine
February 1996

Deep Blue (IBM) beat Garry 
Kasparov (World Champion)

and did it again many times after
brute-force computing power 
analysing many hundreds of 
millions positions /second

October 2015
AlphaGo Zero beats 

a professional Go player 
learned from playing against itself

November 2017
AlphaZero builds on DNNs to beat 

world champions in 
Go, chess and shogi  



Human vs Machine
February 1996

Deep Blue (IBM) beat Garry 
Kasparov (World Champion)

and did it again many times after
brute-force computing power 
analysing many hundreds of 
millions positions /second

October 2015
AlphaGo Zero beats 

a professional Go player 
learned from playing against itself

November 2017
AlphaZero builds on DNNs to beat 

world champions in 
Go, chess and shogi  

A new paradigm of learning: REINFORCEMENT



Go game
Simple game: moves are simple

no hierarchy like chess 
king/queen/bishop/pawn…
goal: surround and capture 

opponents’ pieces

Simple rules, extreme levels of complexity when building strategies
no machine could beat a Go-master until 2015

Why is it so difficult?
how would you teach a machine to learn this game?

X,y 



Go game
Simple game: moves are simple

no hierarchy like chess 
king/queen/bishop/pawn…
goal: surround and capture 

opponents’ pieces

develop a strategy for long-term winning:
3^(19*19)~10^172 configurations at one step

decision in this one step guided by possible future gains
but opponent’s actions change every subsequent move 



Reinforcement learning
The task of getting better at Go was too difficult

too many possibilities, no human could teach from example 
To beat humans we had to allow machines to learn in a different way

Machine needs to learn to make good sequences of decisions
dealing with delayed labels and developing a long-term strategy

Some form of iterative way of improving strategy
 which can examine many steps ahead

agent interacts with 
the environment in state st

takes actions based on reward rt
which tells about good current state is

GOAL: maximise total about of 
rewards (return)

RL help the agent to achieve goal



Reinforcement learning: concepts

State/Observation: some kind of tensor (e.g. an image)
Action: possible transformation of the state (e.g. move pawn)
Policy: rule used by the agent to decide what action to take

at = ⇡(st)

at = ⇡✓(st)
can be deterministic or stochastic and often parametrised

by some form of modelling of possible new situations
this sampling of possible trajectories

⌧(s0, a0, s1, a1 . . .)

often done with DNNs (Deep Reinforcement) 



Reinforcement learning: concepts

Reward: some function of current state and action taken, and next state

Real problems have limitations, so not all trajectories can be taken at no 
cost (e.g. time limit, loss at each step…) and we introduce a discount

Return: total reward in a full sequence, a trajectory

R(⌧) =
TX

t=0

rt

R(⌧) =
TX

t=0

�trt
cash now/cash in few years



Reinforcement learning: fun video

And a super fun blog and video

https://openai.com/blog/emergent-tool-use/
https://www.youtube.com/watch?v=kopoLzvh5jY&feature=youtu.be


Reinforcement learning: overview
states could contain lots of information

an agent could choose among many actions
the number of possible steps could be very large

rewards are set to help the algorithm to increase final return 
(policy optimisation)

but their efficiency depends on ability to explore 
how the state changes by itself (opponent) or by the action

RL helps learning an environment

Clearly, this is a complex set-up

There are many, many possibilities
most successful are based on Deep Learning
& good adaptation to environment changes 

e.g. ability to dynamically drop and add terms in policy



Going further?
You could follow a Tensorflow tutorial

on training agents using different policies 
Environment: Cartpole (start reading this post)

In Physics, mostly unexplored
complex numerical simulations: many body, fluid dynamics…

situations with many agents 
and interactions

see e.g. this nice example fish 
coordinated swimming for 

energy saving

https://colab.research.google.com/github/tensorflow/agents/blob/master/docs/tutorials/1_dqn_tutorial.ipynb#scrollTo=KEHR2Ui-lo8O
https://gym.openai.com/envs/CartPole-v0/
https://towardsdatascience.com/cartpole-introduction-to-reinforcement-learning-ed0eb5b58288
https://www.cse-lab.ethz.ch/wp-content/papercite-data/pdf/verma2018a.pdf


Transfer Learning

Additional



Transfer Learning
So far, our Machine was like a newborn baby

looking at a dataset/environment 
and learning from it

with or without guidance, using rewards

Complex datasets require Deep Learning
long time to run and optimise

and specific to the dataset

BUT babies do not learn every task from scratch

example: language
learn generic concepts

actions->verbs
objects/people->names

characteristics->adjectives

Babies are able to
TRANSFER LEARNING

ENGLISH -> SPANISH, CHINESE etc
and our Machine should do too



Supervised learning Image classification problem

Hidden layers are transforming the initial image into something more 
abstract (simple/complex shapes->shapes specific to a flower)

and at the end this is transformed into a set of vectors 
which are then fed to a set of FC NNs 

initial layers are more problem-independent
later layers are more specific to the problem at hand



Changing the target 
What if now I want to classify types of dogs or leaves or cars?

I would start by changing…

Dataset Output structure

But probably build a very similar NN architecture
Transfer learning: allows me to keep some of the architecture 
and initial computations (some weights in the hidden layers)

and just re-run part of the network to specialise on this new problem

Increase AI’s speed, reusability and generalisation



Repurposing pre-trained networks

Conv

FC

as we run the network, we 
update the weights to improve 

the accuracy
this weight updating is costly

we can freeze some of the 
weights that are generic for 

problem = image
and just adjust the later layers

Images==> VGG/ResNet/DenseNet/Inception/Xception…
Language (NLP) ==> Word2Vec, GloVe, FastText…

All ML frameworks contained pre-trained models



An example of pre-trained model: VGG16
Freeze initial layers and tune the rest

This strategy reduces a lot the computing time and helps 
generalising tasks

Data augmentation is typically used to make the 
procedure more robust



Going further?
In this notebook you can find some brief examples of 

transfer learning for MNIST and for a PP example
Use PYTORCH and FASTAI, syntax is compact

PP example: LHC Olympics 2020
images of boosted jets produced by SM and by a new 

heavy particle
small dataset, use augmentation

If you got time, check-out some of the newest 
applications, like Feynman AI

or Transfer Learning for music

https://colab.research.google.com/drive/1Eh9kWky2HmCYIc9CDu9VGeoRXNtV8vfz
https://github.com/keunwoochoi/transfer_learning_music


Knowing the past, 
predicting the future
predict the evolution of a situation 

Additional
“Experience is a lantern that you carry on your back and 
that only lights up the path you have traveled.” Confucius



Never mind, Confucius! 
ML can predict the future

By learning from examples of time series 
(snapshots of past->future sequences)

and
 using RNNs (recurrent NNs)

in particular LSTMs (long short term memory)

Time evolution of 
the solar activity

blue-> reality
orange-> prediction



Going further

Here be dragons!

imagine new possibilities

Additional



What if we didn’t ask for an outcome?
Supervised learning input-> predict output

what if we just asked ‘look at this!’ with no determined output?
 GANs (Generative Adversarial Networks)

and VAEs (Variational AutoEncoders)
In CNNs, benchmarks were cats/dogs and hand-written digits (MNIST) 

Here, human faces



What if we didn’t ask for an outcome?
Supervised learning input-> predict output

what if we just asked ‘look at this!’ with no determined output?
 GANs (Generative Adversarial Networks)

and VAEs (Variational AutoEncoders)
In CNNs, benchmarks were cats/dogs and hand-written digits (MNIST) 

Here, human faces

STEP 1 - ‘LEARN’ what is a human face 

Take face images: x
Transform them

in complicated ways Create an avatar: x’

Doing this many times, while the DISCRIMINATOR says: 
‘You are going in the right direction’, ‘You are completely lost!’



What if we didn’t ask for an outcome?
Supervised learning input-> predict output

what if we just asked ‘look at this!’ with no determined output?
 GANs (Generative Adversarial Networks)

and VAEs (Variational AutoEncoders)
In CNNs, benchmarks were cats/dogs and hand-written digits (MNIST) 

Here, human faces 

STEP 2- AFTER MANY ITERATIONS…

When the avatars are indistinguishable to the 
DISCRIMINATOR, game is over



What if we didn’t ask for an outcome?
Supervised learning input-> predict output

what if we just asked ‘look at this!’ with no determined output?
 GANs (Generative Adversarial Networks)

and VAEs (Variational AutoEncoders)
In CNNs, benchmarks were cats/dogs and hand-written digits (MNIST) 

Here, human faces 

STEP 3- CREATE NEW POSSIBILITIES

This woman does not exist. It has been generated from noise.
The NN has learnt the concept of ‘human face’ and now can 

create human faces from noise



What if we didn’t ask for an outcome?
Supervised learning input-> predict output

what if we just asked ‘look at this!’ with no determined output?
 GANs (Generative Adversarial Networks)

and VAEs (Variational AutoEncoders)
In CNNs, benchmarks were cats/dogs and hand-written digits (MNIST) 

Here, human faces 

Anomaly Detection

Ask to look only to 
Standard Model 
(‘normal’) events

Learns to ID outliers
(‘New Physics’)



We are just starting to understand the applications of ML in Physics

They go beyond a mere iteration of our traditional statistical methods:
unsupervised methods, generative AI, reinforcement learning…

Remember that through AI methods we could get interesting 
cross-pollination between our area (PP) and others 
Opportunity to learn from other areas in Science

Summing up…

So far, dominated by the low-hanging fruit: supervised classification
ML brings added value, shortening data-taking times

In this document: lots of links to learn more
Tomorrow: a hands-on starting from the dataset 

David gave you yesterday

Keep exploring!

https://drive.google.com/drive/folders/17sOgwj23zhUgA44bZfUM1YxrJWaBqxuA?usp=sharing

