IN2P3 School of Statistics 2

Computing Statistical Results

Classical interval estimation Limits, Systematics and beyond

Lecture Plan

Statistics basic concepts (Monday/Tuesday)
Basic ingredients (PDFs, etc.)
Parameter estimation (maximum likelihood, least-squares, ...)
Model testing (X^{2} tests, hypothesis testing, p-values, ...)

These lectures: Computing statistical results
Statistical modeling
Review of model testing
Computing results
Discovery
Confidence intervals
Upper limits
Systematics and profiling
Bayesian techniques

See also the Hands-on tutorial yesterday covering both sets of lectures.

Highlights : Hypothesis Tests and Discovery

Given a PDF P(data; $\mu)$, define likelihood $L(\mu)=P($ data $; \mu)$
To estimate a parameter, use the value $\hat{\boldsymbol{\mu}}$ that maximizes $\mathrm{L}(\mu) \rightarrow$ best-fit value
To decide between hypotheses H_{0} and H_{1}, use the likelihood ratio $\frac{L\left(\boldsymbol{H}_{0}\right)}{L\left(\boldsymbol{H}_{1}\right)}$
To test for discovery, use $\boldsymbol{q}_{0}=-2 \log \frac{L(S=0)}{L(\hat{S})} \quad \hat{S} \geq 0$
For large enough datasets ($n>\sim 5$), $\quad \mathbf{Z}=\sqrt{\boldsymbol{q}_{\mathbf{0}}}$

For a single Gaussian measurement, $\quad Z=\frac{\hat{\boldsymbol{S}}}{\sqrt{\boldsymbol{B}}}$
For a single Poisson measurement, $Z=\sqrt{2\left\lfloor\left.(\hat{S}+B) \log \left(1+\frac{\hat{S}}{B}\right)-\hat{S} \right\rvert\,\right.}$

Confidence Intervals

Confidence Intervals

Last lecture we saw how to estimate (=compute) the value of a parameter

Maximum Likelihood Estimator (MLE) $\hat{\boldsymbol{\mu}}$:

$\hat{\mu}=\arg \max L(\mu)$

However we also need to estimate the associated uncertainty.

What is the meaning of an uncertainty?

We don't know what the true value is, but there is a 68% chance that it is within the error bar

Gaussian confidence intervals

Consider a Gaussian likelihood:

$$
\begin{gathered}
L(\mu)=\exp \left[-\frac{1}{2}\left(\frac{n-\mu}{\sigma}\right)^{2}\right] \\
P(\mu-\sigma<n<\mu+\sigma)=68.3 \% \\
P(n-\sigma<\mu<n+\sigma)=68.3 \% \\
\text { Still a statement on } n! \\
\left.\mu=n \pm \sigma \text { at } 68 \% \text { CL (" } 1 \sigma^{\prime \prime}\right)
\end{gathered}
$$

The reported interval $\mathrm{n} \pm \sigma$ will contain the true value of $\mu 68.3 \%$ of the time

Gaussian confidence intervals

Consider a Gaussian likelihood:

$$
\begin{gathered}
L(\mu)=\exp \left[-\frac{1}{2}\left(\frac{n-\mu}{\sigma}\right)^{2}\right] \\
P(\mu-\sigma<n<\mu+\sigma)=68.3 \% \\
P(n-\sigma<\mu<n+\sigma)=68.3 \% \\
\text { Still a statement on } n! \\
\left.\mu=n \pm \sigma \text { at } 68 \% \text { CL (" } 1 \sigma^{\prime \prime}\right) \\
\hline
\end{gathered}
$$

The reported interval $\mathrm{n} \pm \sigma$ will contain the true value of $\mu 68.3 \%$ of the time

Gaussian confidence intervals

Consider a Gaussian likelihood:

$$
\begin{gathered}
L(\mu)=\exp \left[-\frac{1}{2}\left(\frac{n-\mu}{\sigma}\right)^{2}\right] \\
P(\mu-\sigma<n<\mu+\sigma)=68.3 \% \\
P(n-\sigma<\mu<n+\sigma)=68.3 \% \\
\text { Still a statement on } n! \\
\mu=n \pm \sigma \text { at } 68 \% \mathrm{CL}\left(" 1 \sigma^{\prime \prime}\right) \\
\hline
\end{gathered}
$$

The reported interval $\mathrm{n} \pm \sigma$ will contain the true value of $\mu 68.3 \%$ of the time

Gaussian confidence intervals

Frequentist interpretation

If we would repeat the same experiment multiple times, with true value μ^{*}, then 68.3% of the 1σ intervals would contain μ^{*}.
\rightarrow Crucially, this works even if we do not know μ^{*} !

For each experiment, get the interval

$$
\mu=n \pm \sigma \text { at } 68 \% \mathrm{CL} \text { (" } 1 \sigma^{\prime \prime} \text {) }
$$

The reported interval $\mathrm{n} \pm \sigma$ will contain the true value of $\mu 68.3 \%$ of the time

Neyman Construction

General case: build 1σ intervals of observed values for each true value
\Rightarrow Confidence belt

Neyman Construction

General case: build 1σ intervals of observed values for each true value
\Rightarrow Confidence belt

Inversion using the Confidence Belt

General case: Intersect belt with given $\hat{\boldsymbol{\mu}}$, get $\boldsymbol{P}\left(\hat{\mu}-\sigma_{\mu}^{-}<\mu^{*}<\hat{\mu}+\sigma_{\mu}^{+}\right)=\mathbf{6 8 \%}$
\rightarrow Same as before for Gaussian, works also when $\mathrm{P}\left(\mu^{\mathrm{obs}} \mid \mu\right)$ varies with μ.

Inversion using the Confidence Belt

General case: Intersect belt with given $\hat{\boldsymbol{\mu}}$, get $\boldsymbol{P}\left(\hat{\mu}-\sigma_{\mu}^{-}<\mu^{*}<\hat{\mu}+\sigma_{\mu}^{+}\right)=68 \%$
\rightarrow Same as before for Gaussian, works also when $\mathrm{P}\left(\mu^{\mathrm{obs}} \mid \mu\right)$ varies with μ.

Inversion using the Confidence Belt

General case: Intersect belt with given $\hat{\mu}$, get $P\left(\hat{\mu}-\sigma_{\mu}^{-}<\mu^{*}<\hat{\mu}+\sigma_{\mu}^{+}\right)=68 \%$
\rightarrow Same as before for Gaussian, works also when $\mathrm{P}\left(\mu^{\mathrm{obs}} \mid \mu\right)$ varies with μ.

Inversion using the Confidence Belt

General case: Intersect belt with given $\hat{\mu}$, get $P\left(\hat{\mu}-\sigma_{\mu}^{-}<\mu^{*}<\hat{\mu}+\sigma_{\mu}^{+}\right)=68 \%$
\rightarrow Same as before for Gaussian, works also when $\mathrm{P}\left(\mu^{\mathrm{obs}} \mid \mu\right)$ varies with μ.

General case: Likelihood Intervals

Probability to observe

Confidence intervals from $L(\mu)$:

- Test various values μ using the Profile Likelihood Ratio $t(\mu)$
- Minimum ($=0$) for $\mu=\hat{\mu}$, rises away from $\hat{\mu}$.
- Good properties thanks to the NeymanPearson lemma.

$$
\text { the data for a given } \mu \text {. }
$$

Probability to observe the data for best-fit $\hat{\mu}$.

Gaussian L(μ):

$$
\begin{gathered}
L(\mu)=\exp \left[-\frac{1}{2}\left(\frac{n-\mu}{\sigma}\right)^{2}\right] \\
t(\mu)=\left(\frac{n-\mu}{\sigma}\right)^{2}
\end{gathered}
$$

- $t(\mu)$ is parabolic, distributed as a χ^{2}
- Minimum occurs at $\mu=\hat{\mu}$

$$
\mathrm{t}\left(\mu_{ \pm}\right)=1 \Rightarrow \mu=\mathrm{n} \pm \sigma \quad 1 \sigma \text { interval| }{ }_{j}^{10}
$$

General case: Likelihood Intervals

Confidence intervals from $L(\mu)$:

- Test various values μ using the Profile Likelihood Ratio $t(\mu)$

$$
t(\mu)=-2 \log \frac{L(\mu)}{L(\hat{\mu})}
$$

- Minimum ($=0$) for $\mu=\hat{\mu}$, rises away from $\hat{\mu}$.
- Good properties thanks to the NeymanPearson lemma.

ATLAS-CONF-2017-047

General case:

- Generally not a perfect parabola
- Minimum still at $\boldsymbol{\mu}=\hat{\boldsymbol{\mu}}$

Asymptotic approximation
\rightarrow Compute $\mathrm{t}(\mu)$ using the exact $\mathrm{L}(\mu)$
$\rightarrow \mathbf{1 \sigma}$ interval given by $\mathrm{t}(\mu) 1$

Homework 3: Gaussian Case

Consider a parameter m (e.g. Higgs boson mass) whose measurement is Gaussian with known width σ_{m}, and we measure $\mathrm{m}_{\text {obs }}$:

$$
L\left(\boldsymbol{m} ; \boldsymbol{m}_{\mathrm{obs}}\right)=\boldsymbol{e}^{-\frac{1}{2}\left(\frac{m-\boldsymbol{m}_{\mathrm{oss}}}{\sigma_{m}}\right)^{2}}
$$

m
\rightarrow Compute the best-fit value (MLE) $\hat{\mathrm{m}}$
\rightarrow Compute tim)
\rightarrow Compute the $1 \sigma(68.3 \% \mathrm{CL})$ interval on m

Solution: $m=m_{\text {obs }} \pm \sigma_{m}$

\rightarrow As expected!
\rightarrow General method can be applied in the same way to more complex cases

2D Example: Higgs $\sigma_{\text {vBF }}$ vs. σ_{ggF}

Reparameterization

Start with basic measurement in terms of e.g. ($\sigma \times \mathbf{B}$)
\rightarrow How to measure derived quantities (couplings, parameters in some theory model, etc.) ? \rightarrow just reparameterize the likelihood:
e.g. Higgs couplings: $\sigma_{\mathrm{gg}}, \sigma_{\mathrm{VBF}}$ sensitive to Higgs coupling modifiers $\mathrm{K}_{\mathrm{V}}, \mathrm{K}_{\mathrm{F}}$.

Upper Limits

Hypothesis tests for Limits

If no signal in data, testing for discovery not very relevant (report 0.2σ excess ?)
\rightarrow More interesting to exclude large signals
\Rightarrow Upper limits on signal yield
\rightarrow Typically report 95\% CL upper limit (p-value =5\%) : "S < S @ 95\% CL"

Hypothesis tests for Limits

If no signal in data, testing for discovery not very relevant (report 0.2σ excess ?)
\rightarrow More interesting to exclude large signals
\Rightarrow Upper limits on signal yield
\rightarrow Typically report 95\% CL upper limit (p-value =5\%) : "S < S @ 95\% CL"

Hypothesis tests for Limits

If no signal in data, testing for discovery not very relevant (report 0.2σ excess ?)
\rightarrow More interesting to exclude large signals
\Rightarrow Upper limits on signal yield
\rightarrow Typically report 95\% CL upper limit (p-value = 5\%) : "S < So @ 95\% CL"

Hypothesis tests for Limits

If no signal in data, testing for discovery not very relevant (report 0.2σ excess ?)
\rightarrow More interesting to exclude large signals
\Rightarrow Upper limits on signal yield
\rightarrow Typically report 95\% CL upper limit (p-value =5\%) : "S < S @ 95\% CL"

Test Statistics for Limit-Setting

Confidence Interval :

Try to exclude μ values away from $\hat{\mu}$.

Limit-setting

Try to exclude values of S that are above \hat{S}.

$$
t\left(\mu_{0}\right)=-2 \log \frac{L\left(\mu=\mu_{0}\right)}{L(\hat{\mu})}
$$

"Two-sided" test

$$
\begin{aligned}
& q\left(S_{0}\right)=\left\{-2 \log \frac{L\left(S=S_{0}\right)}{L(\hat{S})} \quad S_{0}>\hat{S}\right. \\
& 0
\end{aligned}
$$

Discovery was also one-sided, for $S>0$

Inversion : Getting the limit for a given CL

Procedure:

\rightarrow Compute $\mathrm{q}\left(\mathrm{S}_{0}\right)$ for some S_{0}, get the exclusion p-value $p\left(S_{0}\right)$.

$$
\text { Asymptotics: } \quad p\left(S_{0}\right)=1-\Phi\left(\sqrt{q\left(S_{0}\right)}\right)
$$

CL	p	Region
90%	10%	$\sqrt{\mathrm{q}(\mathrm{S})}>1.28$
95%	5%	$\sqrt{\mathrm{q}(\mathrm{S})>1.64}$
99%	1%	$\sqrt{\mathrm{q}(\mathrm{S})>2.33}$

\rightarrow Adjust S_{0} to get the desired exclusion Asymptotics: need $\sqrt{ } \mathbf{q}\left(\mathrm{S}_{95}\right)=1.64$ for $95 \% \mathrm{CL}$

$$
\sqrt{q}(S)=1.64
$$

$$
(p=5 \%)
$$

Inversion : Getting the limit for a given CL

Procedure:

\rightarrow Compute $\mathrm{q}\left(\mathrm{S}_{0}\right)$ for some S_{0}, get the exclusion p-value $p\left(S_{0}\right)$.

$$
\text { Asymptotics: } \quad p\left(S_{0}\right)=1-\Phi\left(\sqrt{q\left(S_{0}\right)}\right)
$$

CL	p	Region
90%	10%	$\sqrt{ } \mathrm{q}(\mathrm{S})>1.28$
95%	5%	$\sqrt{\mathrm{q}(\mathrm{S})}>1.64$
99%	1%	$\sqrt{\mathrm{q}(\mathrm{S})>2.33}$

\rightarrow Adjust S_{0} to get the desired exclusion Asymptotics: need $\sqrt{ } \mathbf{q}\left(\mathrm{S}_{95}\right)=1.64$ for $95 \% \mathrm{CL}$
$\sqrt{q}(S)=1.64$
($p=5 \%$)

Inversion : Getting the limit for a given CL

Procedure:

\rightarrow Compute $\mathrm{q}\left(\mathrm{S}_{0}\right)$ for some S_{0}, get the exclusion p-value $p\left(S_{0}\right)$.

$$
\text { Asymptotics: } \quad p\left(S_{0}\right)=1-\Phi\left(\sqrt{q\left(S_{0}\right)}\right)
$$

CL	p	Region
90%	10%	$\sqrt{ } \mathrm{q}(\mathrm{S})>1.28$
95%	5%	$\sqrt{\mathrm{q}(\mathrm{S})>1.64}$
99%	1%	$\sqrt{\mathrm{q}(\mathrm{S})>2.33}$

\rightarrow Adjust S_{0} to get the desired exclusion Asymptotics: need $\sqrt{ } \mathbf{q}\left(\mathrm{S}_{95}\right)=1.64$ for $95 \% \mathrm{CL}$
$\sqrt{q}(S)=1.64$
($p=5 \%$)

Homework 4: Gaussian Example

Usual Gaussian counting example with known B:

$$
L(S ; \boldsymbol{n})=e^{-\frac{1}{2}\left(\frac{n-(S+B)}{\sigma_{s}}\right)^{2}} \quad \sigma_{\mathrm{s}} \sim \text { V } \text { b for small } S
$$

$S+B$
Reminder: Significance: Z = $\hat{S} / \sigma_{\mathrm{s}}$
\rightarrow Compute $q\left(S_{0}\right)$
\rightarrow Compute the 95% CL upper limit on $\mathrm{S}, \mathrm{S}_{\mathrm{up}}$, by solving $\mathrm{V}_{\mathrm{s} 0}=1.64$.

Solution: $\quad S_{\text {up }}=\hat{S}+1.64 \sigma_{S}$ at 95% CL

Upper limits sometimes take negative values (exclude all S>0!)

Known feature - to avoid, usual

$$
p_{C L_{s}}=\frac{p\left(S_{0}\right)}{p_{B}} \quad \begin{aligned}
& \text { Usual } \mathrm{P} \text {-value } \\
& \text { for } \mathrm{S}=\mathrm{S}_{0}
\end{aligned}
$$

\Rightarrow Compute exclusion relative to that of $\mathrm{S}=0$
\rightarrow Somewhat ad-hoc, but good properties...
$\hat{s} \sim 0 \Rightarrow p_{\mathrm{B}} \sim \mathrm{O}(1), \mathrm{p}_{\mathrm{Cl}} \sim \mathrm{p}\left(\mathrm{s}_{0}\right)$ no change
$\hat{s} \ll 0 \Rightarrow p_{B} \ll 1, p_{\text {cls }} \gg p\left(S_{0}\right)$ no exclusion at $\mathrm{S}=0$

Drawback: overcoverage

\rightarrow limit is claimed to be $95 \% \mathrm{CL}$, but actually $>95 \%$ CL for small p_{B}.

Homework 5: CL_{s} in the Gaussian Case

Usual Gaussian counting example with known B:

$$
L(S ; n)=e^{-\frac{1}{2}\left(\frac{n-(S+B)}{\sigma_{s}}\right)^{2}}
$$

$\sigma_{\mathrm{s}} \sim \sqrt{ }$ B for small S

Reminder

$\mathrm{CL}_{\mathrm{s}+\mathrm{b}}$ limit: $\quad S_{\mathrm{up}}=\hat{\boldsymbol{S}}+\mathbf{1 . 6 4 \sigma _ { s }}$ at $\mathbf{9 5} \% \mathbf{C L}$

CL_{s} upper limit :
\rightarrow Compute $\mathrm{p}_{\mathrm{s} 0}$ (same as for CLs+b)
\rightarrow Compute 1- p_{B} (hard!)
Solution:

$$
\begin{aligned}
& S_{\mathrm{up}}=\hat{S}+\left[\Phi^{-1}\left(\mathbf{1}-\mathbf{0 . 0 5} \Phi\left(\hat{S} / \sigma_{S}\right)\right)\right] \sigma_{s} \text { at } 95 \% \mathrm{CL} \\
& \text { for } \hat{S} \sim 0, \quad S_{\mathrm{up}}=\hat{S}+\mathbf{1 . 9 6} \sigma_{S} \text { at } 95 \% \mathrm{CL}
\end{aligned}
$$

Homework 6: CL_{s} Rule of Thumb for $\mathrm{n}_{\text {obs }}=0$

Same exercise, for the Poisson case with $\mathrm{n}_{\mathrm{obs}}=0$. Perform an exact computation of the 95% CLs upper limit based on the definition of the p-value:
p-value : sum probabilities of cases at least as extreme as the data

Hint: for $\mathrm{n}_{\mathrm{obs}}=0$, there are no "more extreme" cases (cannot have $\mathrm{n}<0$!), so
$\mathrm{p}_{\mathrm{s} 0}=\operatorname{Poisson}\left(\mathrm{n}=0 \mid \mathrm{S}_{0}+B\right)$ and $1-\mathrm{p}_{\mathrm{B}}=\operatorname{Poisson}(\mathrm{n}=0 \mid B)$

Solution: $\quad S_{\mathrm{up}}\left(n_{\mathrm{obs}}=0\right)=\log (20)=2.996 \approx 3$
\Rightarrow Rule of thumb: when $n_{\text {obs }}=0$, the $95 \% \mathrm{CL}_{\mathrm{s}}$ limit is 3 events (for any B)

Highlights: Confidence intervals and Upper Limits

Confidence intervals: use $t\left(\mu_{0}\right)=-2 \log \frac{L\left(\mu=\mu_{0}\right)}{L(\hat{\mu})}$
\rightarrow Crossings with $t\left(\mu_{0}\right)=1$ for 1σ intervals (in 1D)

Gaussian regime: $\mu=\hat{\mu} \pm \sigma_{\mu}$ at $68.3 \% \mathrm{CL}$ (1 1σ interval)

Limits : use LR-based test statistic: $\quad q_{S_{0}}=-2 \log \frac{L\left(S=S_{0}\right)}{L(\hat{S})} \quad S_{0} \geq \hat{S}$
\rightarrow Use CLs procedure to avoid negative limits

Gaussian regime, $\mathrm{n} \sim 0: \mathrm{S}<\mathrm{S}+1.96 \sigma$ at $95 \% \mathrm{CL}$

Poisson regime, $\mathrm{n}=0$: $\mathrm{S}<3$ events at $95 \% \mathrm{CL}$

Systematic Errors

Reminder on Statistical Modeling

Random data must be described using a statistical model:

Description	Observable	Likelihood
Counting	n	Poisson $P(\boldsymbol{n} ; \boldsymbol{S}, \boldsymbol{B})=e^{-(\boldsymbol{s}+\boldsymbol{B})} \frac{(\boldsymbol{S}+\boldsymbol{B})^{n}}{n!}$
Binned shape analysis	$\mathrm{n}_{\mathrm{i}}, \mathrm{i}=1 . . \mathrm{N}_{\mathrm{bins}}$	Poisson product $P\left(\boldsymbol{n}_{i} ; \boldsymbol{S}, \boldsymbol{B}\right)=\prod_{i=1}^{n_{\text {bins }}} e^{-\left(\boldsymbol{s} f_{i}^{\text {sig }}+\boldsymbol{B} f_{i}^{\text {vigs })}\right.} \frac{\left(\boldsymbol{S} f_{i}^{\text {sig }}+\boldsymbol{B} f_{i}^{\text {bkg }}\right)^{\boldsymbol{n}_{i}}}{n_{i}!}$
Unbinned shape analysis	$m_{i}, \mathrm{i}=1 . . \mathrm{n}_{\text {evts }}$	Extended Unbinned Likelihood $P\left(\boldsymbol{m}_{i} ; \boldsymbol{S}, \boldsymbol{B}\right)=\frac{e^{-(\boldsymbol{s}+\boldsymbol{B})}}{\boldsymbol{n}_{\mathrm{evts}}!} \prod_{i=1}^{n_{\mathrm{evs}}} \boldsymbol{S} P_{\mathrm{sig}}\left(\boldsymbol{m}_{\boldsymbol{i}}\right)+\boldsymbol{B} P_{\mathrm{bkg}}\left(\boldsymbol{m}_{i}\right)$

Model include

- Parameters of interest (POIs) - e.g. S but also
- Nuisance parameters (NPs) - e.g. B.

Systematic Errors

The statistical model (PDF) is a way to express uncertainty on the outcome of an experiment. e.g. 2D Gaussian :

These uncertainties are also called Statistical Uncertainties - they are the ones encoded in the model PDF.

Systematic Errors

The statistical model (PDF) is a way to express uncertainty on the outcome of an experiment. e.g. 2D Gaussian :

These uncertainties are also called Statistical Uncertainties - they are the ones encoded in the model PDF.

However the model itself may be wrong : this is a systematic error
\rightarrow To account for them, need a set of Systematic uncertainties, i.e. uncertainties on the form of the PDF itself.

Systematics

Systematics = what we don't know about the random process.

How to describe them in practice?
P Parameterize using additional nuisance parameters (NPs)

But: if the NPs are completely free, no measurement is possible (e.g. free B ?...)
\Rightarrow Add constraints in the likelihood

$C(\theta)$ represents external knowledge about the NPs that we inject into the statistical model - e.g. to say that "B $\mathbf{~ 1 0 0 \pm 5 " ~}$

Frequentist Systematics

Prototype: Systematics NP \rightarrow measured in a separate auxiliary experiment egg. background levels.
\rightarrow Build the combined PDF of the main+auxiliary measurements

$$
\boldsymbol{P}(\mu, \theta ; \text { data })=\boldsymbol{P}_{\text {main }}(\mu, \theta ; \text { main data }) \boldsymbol{P}_{\text {aux }}(\theta ; \text { aux. data }) \underset{\substack{\text { just a product }}}{\substack{\text { measurements: }}}
$$

Gaussian form often used by default: $\quad P_{\text {aux }}(\theta ;$ aux. data $)=G\left(\theta^{\text {obs }} ; \theta, \sigma_{\text {syst }}\right)$

In the combined likelihood, systematic RPs are constrained
\Rightarrow Can be measured simultaneously with the POlIs. in a fit to data.
\rightarrow Often no clear setup for auxiliary measurements
(e.g. theory simulation uncertainties)
\rightarrow Define constraints "by hand" ("pseudo-measurement")

Profiling Nuisance Parameters

Profiling

How to deal with nuisance parameters in likelihood ratios?
\rightarrow Let the data choose \Rightarrow use the best-fit values (Profiling)
\Rightarrow Profile Likelihood Ratio (PLR)
$\hat{\hat{\theta}}\left(S_{0}\right)$ best-fit value for $S=S_{0}$ (conditional MLE)

$$
t\left(S_{0}\right)=-2 \log \frac{L\left(S=S_{0}, \hat{\hat{\theta}}\left(S_{0}\right)\right)}{L(\hat{S}, \hat{\theta}) \longleftarrow} \hat{\theta} \begin{gathered}
\text { overall best-fit value } \\
\text { (unconditional MLE) }
\end{gathered}
$$

Wilks' Theorem : same properties as plain likelihood ratio without NPs

$$
f\left(t_{S_{0}} \mid S=S_{0}\right)=f_{\chi^{2}\left(n_{\text {dof }}=1\right)}\left(t_{S_{0}}\right) \quad \text { also with NPs present }
$$

\rightarrow Profiling "builds in" the effect of the NPs
\Rightarrow Can use $t\left(S_{0}\right)$ to compute limits, significance, etc. in the same way as before

Homework 7: Gaussian Profiling

Counting experiment with background uncertainty: $\mathbf{n}=\mathrm{S}+\mathrm{B}$:
$\left.\begin{array}{l}\rightarrow \text { Signal region (SR): } \mathrm{n}_{\text {obs }} \sim \mathrm{G}\left(\mathrm{S}+\mathrm{B}, \sigma_{\text {stat }}\right) \\ \rightarrow \text { Control region (CR): } \mathrm{B}_{\text {obs }} \sim \mathrm{G}\left(B, \sigma_{\text {bkg }}\right)\end{array}\right\} L(S, B)=G\left(n_{\text {obs }} ; S+B, \sigma_{\text {stat }}\right) G\left(B_{\text {obs }} ; B, \sigma_{\text {bkg }}\right)$
Recall: Signal region only (fixed B): $\quad t(S)=\left(\frac{S-n_{\text {obs }}}{\sigma_{\text {stat }}}\right)^{2} \quad S=\left(n_{\text {obs }}-B\right) \pm \sigma_{\text {stat }}$
\rightarrow Compute the best-fit (MLEs) for S and B
\rightarrow Show that the conditional MLE for B is

$$
\hat{\hat{B}}(S)=B_{\mathrm{obs}}+\frac{\sigma_{\mathrm{bkg}}^{2}}{\sigma_{\mathrm{stat}}^{2}+\sigma_{\mathrm{bkg}}^{2}}(\hat{S}-S)
$$

\rightarrow Compute the profile likelihood $\mathrm{t}(\mathrm{S})$
\rightarrow Compute the 1σ confidence interval on S
Answer: $\boldsymbol{S}=\left(\boldsymbol{n}_{\mathrm{obs}}-\boldsymbol{B}_{\mathrm{obs}}\right) \pm \sqrt{{\sigma_{\mathrm{stat}}}^{2}+{\sigma_{\mathrm{bkg}}}^{2}} \quad \boldsymbol{\sigma}_{S}=\sqrt{{\sigma_{\mathrm{stat}}}^{2}+{\sigma_{\mathrm{bkg}}}^{2}}$
Stat uncertainty (on n) and systematic (on B) add in quadrature

Uncertainty decomposition

All systematics NPs excluded : statistical uncertainty only All systematics NPs included: stat+syst uncertainties

Pull/Impact plots

Systematics are described by NPs included in the fit. Define pull as

$$
\left(\hat{\theta}-\theta_{0}\right) / \sigma_{\theta}
$$

Nominally:

- pull $=0$: i.e. the pre-fit expectation
- pull uncertainty $=1$: from the Gaussian

However fit results may be different:

- Central value $\neq 0$: some data feature differs from MC expectation \Rightarrow Need investigation if large
- Uncertainty < 1 : effect is constrained by the data \Rightarrow Needs checking if this legitimate or a modeling issue
\rightarrow Impact on result of $\pm 1 \sigma$ shift of NP allows to gauge which NPs matter most .
33

13 TeV single-t XS (arXiv:1612.07231)

Pull/Impact plots

Systematics are described by NPs included in the fit. Define pull as

$$
\left(\hat{\theta}-\theta_{0}\right) / \sigma_{\theta}
$$

Nominally:

- pull $=0$: i.e. the pre-fit expectation
- pull uncertainty $=1$: from the Gaussian

However fit results may be different:

- Central value $\neq 0$: some data feature differs from MC expectation \Rightarrow Need investigation if large
- Uncertainty < 1 : effect is constrained by the data \Rightarrow Needs checking if this legitimate or a modeling issue
\rightarrow Impact on result of $\pm 1 \sigma$ shift of NP allows to gauge which NPs matter most .

Profiling Takeaways

When testing a hypothesis, use the best-fit values of the nuisance parameters: Profile Likelihood Ratio.

$$
\frac{L\left(\mu=\mu_{0}, \hat{\hat{\theta}}\left(\mu_{0}\right)\right)}{L(\hat{\mu}, \hat{\theta})}
$$

Allows to include systematics as uncertainties on nuisance parameters.

Profiling systematics includes their effect into the total uncertainty.
Gaussian:

$$
\sigma_{\text {total }}=\sqrt{\sigma_{\text {stat }}^{2}+\sigma_{\text {syst }}^{2}}
$$

Guaranteed to work well as long as everything is Gaussian, but typically also robust against non-Gaussian behavior.

Profiling can have unintended effects : need to carefully check behavior

Bayesian Analysis

Bayesian methods

Remember the problem from yesterday:

- PDF give possible outcomes for known parameters
- We already know the outcome, and want information on the parameters

$$
P(\lambda=?)
$$

2

Solution: maximum likelihood estimation of the parameters, given the data This is a (good) solution ("classical/frequentist") but there is another way.

Bayesian methods

Bayesian methods: promote parameters (POIs and NPs) to random variables \rightarrow Represent our best knowledge of their value, not the true values.

Can use Bayes' Theorem to obtain a PDF for the parameters

Bayes' Theorem
Posterior PDF: represents our total knowledge from prior + measurement

$$
\boldsymbol{P}(\mu \mid n)=\boldsymbol{P}(n \mid \mu) \frac{\boldsymbol{P}(\mu)}{\boldsymbol{P}(n)}
$$

Measurement PDF, same as for the frequentist $P(n ; \mu)$

Prior PDF on μ : represents our knowledge before the measurement

Normalization factor: adjusted so $P(\mu \mid n)$ is normalized to 1)

Immediately useful to get intervals on μ :

- Peak of $\mathrm{P}(\mu \mid \mathrm{n})$ gives the central value : Maximum a posteriori (MAP).
- 68.3% interquantile gives the 1σ interval

Bayesian methods

Systematics and nuisance parameters:

Each NP is considered a random variable: Bayes theorem gives $\mathbf{P}(\mu, \theta \mid \mathrm{n})$
Define a prior $\pi(\theta)$ for each nuisance parameter.
\Rightarrow Obtain $\mathbf{P}(\boldsymbol{\mu} \mid \mathbf{n})$ for μ alone by integrating out the θ :

$$
\boldsymbol{P}(\mu \mid n)=\int \boldsymbol{P}(\mu, \theta \mid n) \boldsymbol{C}(\theta) d \theta
$$

Use probability distribution $\mathrm{P}(\mu)$ to compute intervals and limits as before.

Bayesian vs. frequentist

Many points of commonality

Bayesian analysis typically

\oplus Conceptually simpler - frequentist results often difficult to interpret
Θ No simple way to test for discovery
\oplus Hybrid methods sometimes used (frequentist discovery + Bayesian systs)
Θ No support for NPs constrained in data
Θ Integration over NPs can be CPU-intensive (but can use MCMC methods)
\oplus Minimization over many NPs also not a simple problem for frequentist case...
Θ Need to specify priors, which often contains some arbitrariness - e.g. a prior flat in one parameterization is usually not flat in another.
\oplus Can use Jeffreys' or reference priors to avoid this, although difficult in practice.
\oplus Frequentist and Bayesian results often agree, so not a big issue in practice!

Homework 8: Bayesian methods and CL_{s}

Gaussian counting problem with systematic on background: $\mathrm{n}=\mathrm{S}+\mathrm{B}+\boldsymbol{\sigma}_{\text {syst }} \boldsymbol{\theta}$

$$
P(n ; S, \theta)=G\left(n ; S+B+\sigma_{\text {syst }} \theta, \sigma_{\text {stat }}\right) G\left(\theta_{\text {obs }}=0 ; \theta, 1\right)
$$

\rightarrow What is the 95% CL upper limit on S , given a measurement $\mathrm{n}_{\text {obs }}$?

1. CLs computation:

- Use the result of Homework 7 to compute the PLR for S
- Use the result of Homework 6 to compute the CLs upper limit

2. Bayesian computation:

- Integrate $P(n ; S, \theta)$ over θ to get the marginalized $P(n \mid S)$
- Use Bayes' theorem to compute $\mathrm{P}(\mathrm{S} \mid \mathrm{n}) \propto \mathrm{P}(\mathrm{n} \mid \mathrm{S}) \mathrm{P}(\mathrm{S})$, with $\mathrm{P}(\mathrm{S})$ a flat prior over $\mathrm{S}>0$.
- Find the 95% CL limit by solving $\int_{S_{\mathrm{w} \cdot}}^{\infty} P(S \mid n) d S=5 \%$ Solution:
In both cases

$$
S_{\mathrm{up}}^{\mathrm{CL}_{s}}=n-B+\left[\Phi ^ { - 1 } \left(\left.1-0.05 \Phi\left(\frac{n-B}{\sqrt{\sigma_{\text {stat }}^{2}+\sigma_{\text {syst }}^{2}}}\right) \right\rvert\, \sqrt{\sigma_{\text {stat }}^{2}+\sigma_{\text {syst }}^{2}}\right.\right.
$$

Example: W' \rightarrow Iv Search

- POI: W' $\sigma \times \mathrm{B} \rightarrow$ use flat prior over [0, +inf[.
- NPs: syst on signal ε (6 NPs), bkg (6), lumi (1) \rightarrow integrate over Gaussian priors

Trigger
Lepton reconstruction
and identification
Lepton momentum
scale and resolution
$E_{\mathrm{T}}^{\text {miss }}$ resolution and scale
Jet energy resolution
Pile-up

Multijet background
Top extrapolation
Diboson extrapolation
PDF choice for DY
PDF variation for DY
EW corrections for DY
Luminosity

--- Expected limit
Expected ± 10
Expected $\pm 2 \sigma$

- Observed limit
- W' ${ }_{\text {SSM }}$

Presentation of Results

\rightarrow Cannot test every model : need to make enough information public so that others (theorists) are able to do it independently
\Rightarrow Gaussian case: sufficient to provide measurements + covariance matrix
\rightarrow For example using the HEPData repository.

Non-Gaussian case: not so simple, but can publish full likelihood (e.g. here)

Generating Pseudo-data

Model describes the distribution of the observable: P(data; parameters)
P Possible outcomes of the experiment, for given parameter values
Can draw random events according to PDF : generate pseudo-data

$$
P(\lambda=5)
$$

Each entry = separate "experiment"

Expected Limits: Toys

Expected results: median outcome under a given hypothesis
\rightarrow usually B-only for searches, but other choices possible.

Two main ways to compute:
\rightarrow Pseudo-experiments (toys):

- Generate a pseudo-dataset in B-only hypothesis

Phys. Lett. B 775 (2017) 105

- Compute limit
- Repeat and histogram the results
- Central value = median, bands based on quantiles

Expected Limits: Asimov Datasets

Expected results: median outcome under a given hypothesis
\rightarrow usually B-only for searches, but other choices possible.

Two main ways to compute:
\rightarrow Asimov Datasets

Strictly speaking, Asimov dataset if
$\hat{\mathbf{X}}=\mathbf{X}_{0}$ for all parameters \mathbf{X},
where X_{0} is the generation value

- Generate a "perfect dataset" - e.g. for binned data, set bin contents carefully, no fluctuations.
- Gives the median result immediately: median(toy results) \leftrightarrow result(median dataset)
- Get bands from asymptotic formulas: Band width

$$
\sigma_{S_{0}, A}^{2}=\frac{S_{0}^{2}}{q_{S_{0}}(\text { Asimov })}
$$

Toys: Example

ATLAS $X \rightarrow Z \gamma$ Search: covers $200 \mathrm{GeV}<\mathrm{m}_{\mathrm{x}}<2.5 \mathrm{TeV}$
\rightarrow for $m_{x}>1.6 \mathrm{TeV}$, low event counts \Rightarrow derive results from toys

Asimov results (in gray) give optimistic result compared to toys (in blue)

Upper Limit Examples

ATLAS 2015-2016 4l aTGC Search

Look-Elsewhere Effect

Look-Elsewhere effect

Sometimes, unknown parameters in signal model e.g. p-values as a function of m_{x}
\Rightarrow Effectively: multiple, simultaneous searches
\rightarrow If egg. small resolution and large scan range, many independent experiments

\rightarrow More likely to find an excess anywhere in the range, rather than in a predefined location
\Rightarrow Look-elsewhere effect (LEE)

Global Significance

Probability for a fluctuation anywhere in the range \rightarrow Global p-value. at a given location \rightarrow Local p-value

$\rightarrow \mathrm{p}_{\text {global }}>\mathrm{p}_{\text {local }} \Rightarrow \mathrm{Z}_{\text {global }}<\mathrm{Z}_{\text {local }}$: global fluctuation more likely \Rightarrow less significant

Trials factor : naively = \# of independent intervals:

$$
N_{\text {trials }} \stackrel{? ?}{=} N_{\text {indep }}=\frac{\text { scan range }}{\text { peak width }}
$$

However this is usually wrong - more on this later

Global Significance

Probability for a fluctuation anywhere in the range \rightarrow Global p-value. at a given location \rightarrow Local p-value

For searches over a parameter range, the global p-value is the relevant one \rightarrow Accounts for the actual search procedure: look for an excess anywhere in the scanned range
\rightarrow Depends on the scanned parameter ranges
e.g. $X \rightarrow W$:

- $200<m_{x}<2000 \mathrm{GeV}$
- $0<\Gamma_{x}<10 \% m_{x}$.

$\rightarrow \mathrm{p}_{\text {Iocal }}$ is what comes out of the usual formulas
How to compute $\mathrm{p}_{\text {global }}$ (or $\mathrm{N}_{\text {trials }}$)?

Trials Factor

Trials factor $\mathrm{N}=$ \# of independent searches:

Naively, one could expec \dagger

$$
\stackrel{? ?}{N_{\text {trials }}=} \quad N_{\text {indep }}=\frac{\text { scan range }}{\text { peak width }}
$$

However this is only correct for a discrete Number of experiments (i.e. 10 different regions)

Trials Factor for continuous variables

Asymptotic limit : trials factor (1 POI) is

$$
N_{\text {trials }}=1+\sqrt{\frac{\pi}{2}} N_{\text {indep }} Z_{\text {local }}
$$

\rightarrow Trials factor is not just $\mathrm{N}_{\text {indep }}$, also depends on $\mathbf{Z}_{\text {local }}$!

$$
N_{\text {indep }}=\frac{\text { scan range }}{\text { peak width }}
$$

Why ? Slicing range into $N_{\text {indep }}$ regions misses $\vec{⿺}$ peaks sitting on edges between regions \Rightarrow true $N_{\text {trials }}$ is $>\mathrm{N}_{\text {indep }}$!

Trials Factor for continuous variables

Asymptotic limit : trials factor (1 POI) is

$$
N_{\text {trials }}=1+\sqrt{\frac{\pi}{2}} N_{\text {indep }} Z_{\text {local }}
$$

\rightarrow Trials factor is not just $\mathrm{N}_{\text {indep }}$, also depends on $\mathbf{Z}_{\text {local }}$!

$$
N_{\text {indep }}=\frac{\text { scan range }}{\text { peak width }}
$$

Why ? Slicing range into $N_{\text {indep }}$ regions misses $\overrightarrow{8}$ peaks sitting on edges between regions \Rightarrow true $N_{\text {trials }}$ is $>\mathrm{N}_{\text {indep }}$!

Global Significance from Toys

Principle: repeat the analysis in toy data:
\rightarrow generate pseudo-dataset
\rightarrow perform the search, scanning over parameters as in the data
\rightarrow report the largest significance found
\rightarrow repeat many times

\Rightarrow The frequency at which a given Z_{0} is found is the global p-value
e.g. $X \rightarrow \mathbf{Y y}$ Search: $Z_{\text {local }}=3.9 \sigma\left(\Rightarrow p_{\text {local }} \sim 510^{-5}\right)$,
\rightarrow However we are scanning $200<\mathrm{m}_{\mathrm{x}}<2000 \mathrm{GeV}$ and $0<\Gamma_{x}<10 \% \mathrm{~m}_{\mathrm{x}}$!
\rightarrow Toys : find such an excess 2% of the time somewhere in the range
$\Rightarrow P_{\text {global }} \sim 210^{-2}, \mathbf{Z}_{\text {global }}=2.1 \sigma$ Less exciting, and better indication of true Z !
\oplus Exact treatment
ө CPU-intensive especially for large Z (need $\sim O(100) / \mathrm{p}_{\text {global }}$ toys)

Conclusion

- Significant evolution in the statistical methods used in HEP
- Variety of methods, adapted to various situations and target results
- Allow to
- model the statistical process with high precision in difficult situations (large systematics, small signals)
- make optimal use of available information
- Implemented in standard RooFit/RooStat toolkits within the ROOT framework, as well as other tools (BAT)
- Still many open questions and areas that could use improvement
\rightarrow e.g. how to present results with all available information

Homework solutions

Homework 1: Gaussian Counting

Count number of events \mathbf{n} in data

\rightarrow assume n large enough so process is Gaussian
\rightarrow assume B is known, measure S

$$
L(S ; \boldsymbol{n})=e^{-\frac{1}{2}\left(\frac{n-(S+B)}{\sqrt{S}+B}\right)^{2}}
$$

Likelihood :

$$
\lambda(S ; n)=\left(\frac{n-(S+B)}{\sqrt{S+B}}\right)^{2}
$$

MLE for $\mathrm{S}: \hat{\mathrm{S}}=\mathrm{n}-\mathrm{B}$

Test statistic: assume $\hat{S}>0$,

$$
q_{0}=-2 \log \frac{L(S=0)}{L(\hat{S})}=\lambda(S=0)-\lambda(\hat{S})=\left|\frac{n-B}{\sqrt{B}}\right|^{2}=\left|\frac{\hat{S}}{\sqrt{B}}\right|^{2}
$$

Finally:

$$
Z=\sqrt{q_{0}}=\frac{\hat{S}}{\sqrt{B}}
$$

Known formula!
\rightarrow Strictly speaking only

Homework 2: Poisson Counting

Same problem but now not assuming Gaussian behavior:

$$
L(S ; n)=e^{-(S+B)}(S+B)^{n} \quad \lambda(S ; n)=2(S+B)-2 n \log (S+B)
$$

MLE: $\hat{S}=\mathrm{n}-\mathrm{B}$, same as Gaussian

Test statistic (for $\hat{\mathrm{S}}>0$):

$$
q_{0}=\lambda(S=0)-\lambda(\hat{S})=-2 \hat{S}-2(\hat{S}+B) \log \frac{B}{\hat{S}+B}
$$

Assuming asymptotic distribution for q_{0},

$$
Z=\sqrt{2\left\{\left.(\hat{S}+B) \log \left|1+\frac{\hat{S}}{B}\right|-\hat{S} \right\rvert\,\right.}
$$

Homework 3: Gaussian CL_{s+b}

Usual Gaussian counting example with known B:

Reminder:

$$
\lambda(S)=\left(\frac{n-(S+B)}{\sigma_{S}}\right)^{2}
$$

Best fit signal : $\hat{S}=\mathrm{n}-\mathrm{B}$

Significance: $\mathrm{Z}=\hat{\mathrm{S}} / \sqrt{ } \mathrm{B}$

Compute the 95% CL upper limit on S :
$\boldsymbol{q}_{S_{0}}=-2 \log \frac{L\left(S=S_{0}\right)}{L(\hat{S})}=\lambda\left(S_{0}\right)-\lambda(\hat{\boldsymbol{S}})=\left(\frac{n-\left(S_{0}+B\right)}{\boldsymbol{\sigma}_{S}}\right)^{2}=\left(\frac{S_{0}-\hat{S}}{\boldsymbol{\sigma}_{S}}\right)^{2} \begin{aligned} & \text { for } \\ & S_{0}>\hat{S}\end{aligned}$
so $\quad q_{S_{0}}=2.70$ for $\boldsymbol{S}_{\mathbf{0}}=\hat{\boldsymbol{S}}+\sqrt{2.70} \boldsymbol{\sigma}_{\boldsymbol{s}}$
And finally $\quad S_{\mathrm{up}}=\hat{S}+1.64 \sigma_{S}$ at $95 \% \mathrm{CL}$

Homework 4 : Gaussian CL

Usual Gaussian counting example with known B :

Reminder

$$
\lambda(S)=\left(\frac{n-(S+B)}{\sigma_{s}}\right)^{2}
$$

Best fit signal : $\hat{\mathbf{S}}=\mathbf{n}-\mathbf{B}$
$\mathrm{CL}_{\text {st }}$ limit: $S_{\text {up }}=\hat{S}+\mathbf{1 . 6 4} \sigma_{s}$ at $\mathbf{9 5 \%} \mathbf{C L}$
CL_{s} upper limit : still have $\quad \boldsymbol{q}_{S_{0}}=\left(\frac{S_{0}-\hat{S}}{\boldsymbol{\sigma}_{s}}\right)^{2}\left(\right.$ for $\left.S_{0}>\hat{\mathrm{S}}\right)$

$$
\hat{s} \sim G\left(S, \sigma_{s}\right) \text { so }
$$

$$
\text { Under } H_{0}\left(S=S_{0}\right) \text { : }
$$

so need to solve

$$
p_{C L_{s}}=\frac{p_{S_{0}}}{1-p_{B}}=\frac{1-\Phi\left(\sqrt{q_{S_{0}}}\right)}{1-\Phi\left(\sqrt{q_{S_{0}}}-S_{0} / \sigma_{S}\right)}=5 \%
$$

$$
\sqrt{\boldsymbol{q}_{s_{0}}} \sim \boldsymbol{G}(\mathbf{0}, \mathbf{1})
$$

$$
p_{s_{0}}=1-\Phi\left(\sqrt{q_{s_{0}}}\right)
$$

Under $\mathrm{H}_{0}(\mathrm{~S}=0)$:
$\sqrt{\boldsymbol{q}_{S_{0}}} \sim G\left(S_{0} / \sigma_{s}, 1\right)$
$\boldsymbol{p}_{\mathrm{B}}=\boldsymbol{\Phi}\left(\sqrt{\boldsymbol{q}_{\mathrm{s}_{0}}}-S_{0} / \sigma_{\mathrm{s}}\right)$

Homework 5: Poisson CL_{s}

Same exercise, for the Poisson case
Exact computation : sum probabilities of cases "at least as extreme as data" (n)
$\boldsymbol{p}_{S_{0}}(\boldsymbol{n})=\sum_{0}^{n} \boldsymbol{e}^{-\left(S_{0}+B\right)} \frac{\left(\boldsymbol{S}_{\mathbf{0}}+\boldsymbol{B}\right)^{\boldsymbol{k}}}{\boldsymbol{k}!} \quad$ and one should solve $\boldsymbol{p}_{C L}=\frac{\boldsymbol{p}_{S_{\mathrm{Lo}}}(\boldsymbol{n})}{\boldsymbol{p}_{\mathbf{0}}(\boldsymbol{n})}=5 \%$ for $S_{\text {up }}$
For $\mathrm{n}=0$: $\quad \boldsymbol{p}_{C L_{\mathrm{s}}}=\frac{\boldsymbol{p}_{S_{\text {up }}}(0)}{\boldsymbol{p}_{0}(0)}=e^{-S_{\text {up }}}=5 \% \Rightarrow S_{\text {up }}=\log (20)=2.996 \approx 3$
\Rightarrow Rule of thumb: when $\mathrm{n}_{\text {obs }}=0$, the $95 \% \mathrm{CL}_{\mathrm{s}}$ limit is 3 events (for any B)
Asymptotics: as before, $\quad q_{S_{0}}=\lambda\left(S_{0}\right)-\lambda(\hat{S})=2\left(S_{0}+B-n\right)-2 n \log \frac{S_{0}+B}{n}$
For $\mathrm{n}=0, \quad \boldsymbol{q}_{S_{0}}(\boldsymbol{n}=\mathbf{0})=2\left(\boldsymbol{S}_{\mathbf{0}}+\boldsymbol{B}\right)$

$$
p_{C L_{s}}=\frac{p_{S_{0}}}{p_{0}}=\frac{1-\Phi\left(\sqrt{q_{S_{0}}(n=0)}\right)}{1-\Phi\left(\sqrt{q_{S_{0}}(n=0)}-\sqrt{q_{S_{0}}(n=B)}\right)}=5 \%
$$

$\Rightarrow S_{u p} \sim 2$, exact value depends on B
\Rightarrow Asymptotics not valid in this case $(\mathrm{n}=0)$ - need to use exact results, or toys

Homework 6: Gaussian Intervals

Consider a parameter m (e.g. Higgs boson mass) whose measurement is Gaussian with known width $\sigma_{m^{\prime}}$ and we measure $\mathrm{m}_{\text {obs }}$:

$$
\lambda\left(m ; m_{\mathrm{obs}}\right)=\left(\frac{m-m_{\mathrm{obs}}}{\sigma_{m}}\right)^{2}
$$

\rightarrow Best-fit value (MLE): $\hat{\mathrm{m}}=\mathrm{m}_{\text {obs }}$.
\rightarrow Test statistic : $\quad t_{m}=\left(\left.\frac{m-m_{\text {obs }}}{\sigma_{m}}\right|^{2}\right.$
\rightarrow l σ interval $\quad \boldsymbol{m}=\boldsymbol{m}_{\mathrm{obs}} \pm \boldsymbol{\sigma}_{\boldsymbol{m}}$

Homework 7: Gaussian Profiling

Counting experiment with background uncertainty: $\mathbf{n}=\mathbf{S + \theta}$:
\rightarrow Signal region: $\mathbf{n} \sim \mathbf{G}\left(\mathbf{S}+\boldsymbol{\theta}, \boldsymbol{\sigma}_{\text {stat }}\right)$
\rightarrow Control region: $\theta^{\text {obs }} \sim \mathrm{G}\left(\theta, \sigma_{\text {syst }}\right)$

$$
L(S, \theta)=G\left(n ; S+\theta, \sigma_{\text {stat }}\right) G\left(\theta^{\text {obs }} ; \theta, \sigma_{\text {syst }}\right)
$$

Then: $\quad \lambda(S, \theta)=\left(\frac{n-(S+\theta)}{\sigma_{\text {stat }}}\right)^{2}+\left(\frac{\theta^{\text {obs }}-\theta}{\sigma_{\text {syst }}}\right)^{2}$
For $\mathrm{S}=\hat{\mathbf{S}}$, matches
MLE as it should

$$
\hat{\theta}=\theta^{\mathrm{obs}}
$$

Conditional MLE:

$$
\hat{\hat{\theta}}(S)=\theta^{\mathrm{obs}}+\frac{\sigma_{\text {syst }}^{2}}{\sigma_{\text {stat }}^{2}+\sigma_{\text {syst }}^{2}}(\hat{S}-S)
$$

PLR: $\quad t_{S}=-2 \log \frac{L(S, \hat{\hat{\theta}}(S))}{L(\hat{S}, \hat{\theta})}=\lambda(S, \hat{\hat{\theta}}(S))-\lambda(\hat{S}, \hat{\theta})=\frac{(S-\hat{S})^{2}}{\sigma_{\text {stat }}^{2}+\sigma_{\text {syst }}^{2}}$
1σ interval $\quad S=\hat{S} \pm \sqrt{\sigma_{\text {stat }}{ }^{2}+\sigma_{\text {syst }}{ }^{2}} \quad \sigma_{S}=\sqrt{\sigma_{\text {stat }}{ }^{2}+\sigma_{\text {syst }}{ }^{2}}$
Stat uncertainty (on n) and systematic (on θ) add in quadrature, ${ }^{63}$

Homework 8: CL_{s} computation

Gaussian counting with systematic on background: $\mathbf{n}=\mathbf{S}+\mathbf{B}+\sigma_{\text {syst }} \boldsymbol{\theta}$
$L(n ; S, \theta)=G\left(n ; S+B+\sigma_{\text {syst }} \theta, \sigma_{\text {stat }}\right) G\left(\theta_{\text {obs }}=0 ; \theta, 1\right)$

MLE: $\hat{\boldsymbol{S}}=\boldsymbol{n} \boldsymbol{- B}$
Conditional MLE: $\left.\hat{\hat{\theta}}(\mu)=\frac{\sigma_{\text {syst }}}{\sigma_{\text {stat }}^{2}+\sigma_{\text {syst }}^{2}}(n-S-B)\right\} \quad$ PLR: $\lambda(\mu)=\left|\frac{S+B-n}{\sqrt{\sigma_{\text {stat }}^{2}+\sigma_{\text {syst }}^{2}}}\right|^{2}$

This boils down to the Gaussian case of HW 6, so the CL_{s} limit is

$$
\mathrm{CL}_{s}: \quad S_{\mathrm{up}}^{\mathrm{CL}_{s}}=n-B+\left[\left.\Phi^{-1}\left(1-0.05 \Phi\left(\frac{n-B}{\sqrt{\sigma_{\text {stat }}^{2}+\sigma_{\text {syst }}^{2}}}\right)\right) \right\rvert\, \sqrt{\sigma_{\text {stat }}^{2}+\sigma_{\text {syst }}^{2}}\right.
$$

Homework 8: Bayesian computation

Gaussian counting with systematic on background: $\mathbf{n}=\mathbf{S}+\mathrm{B}+\sigma_{\text {syst }} \boldsymbol{\theta}$

$$
P(n \mid S, \theta)=G\left(n ; S+B+\sigma_{\text {syst }} \theta, \sigma_{\text {stat }}\right) G(\theta \mid 0,1)
$$

Bayesian: $\mathrm{G}(\theta)$ is actually a prior on $\theta \Rightarrow$ perform integral (marginalization)

$$
P(n \mid S)=G\left(S ; n-B, \sqrt{\sigma_{\text {stat }}^{2}+\sigma_{\text {syst }}^{2}}\right) \quad \text { same effect as profiling! }
$$

Need $\mathrm{P}(\mathrm{S} \mid \mathrm{n}) \Rightarrow$ a prior for S - take flat PDF over $\mathrm{S}>0$ \Rightarrow Truncate Gaussian at $\mathrm{S}=0$:

$$
P(S \mid n)=P(n \mid S) P(S)
$$

$$
P(S \mid n)=G\left(S ; n-B, \sqrt{\sigma_{\text {stat }}^{2}+\sigma_{\text {syst }}^{2}}\right)\left[\Phi\left(\frac{n-B}{\sqrt{\sigma_{\text {stat }}^{2}+\sigma_{\text {syst }}^{2}}}\right)\right]^{-1}
$$

Bayesian Limit:

$$
\left.\left.\int_{S_{\mathrm{up}}}^{\infty} P(S \mid n) d S=5 \%=\left[1-\Phi\left(\frac{S_{\mathrm{up}}-(n-B)}{\sqrt{\sigma_{\text {stat }}^{2}+\sigma_{\text {syst }}^{2}}}\right)\right] \right\rvert\, \Phi\left(\frac{n-B}{\sqrt{\sigma_{\text {stat }}^{2}+\sigma_{\text {syst }}^{2}}}\right)\right]^{-1}
$$

$S_{\text {up }}^{\text {Bayes }}=n-\boldsymbol{B}+\left[\Phi^{-1}\left(1-0.05 \Phi\left(\frac{n-B}{\sqrt{\sigma_{\text {stat }}^{2}+\sigma_{\text {syst }}^{2}}}\right)\right)\right] \sqrt{\sigma_{\text {stat }}^{2}+\sigma_{\text {syst }}^{2}} \quad$ same result as $\mathrm{CL}_{s}!$

$$
S_{\text {up }}^{\text {Bayes }}=n-\boldsymbol{B}+\left[\Phi^{-1}\left(1-0.05 \Phi\left(\frac{n-\boldsymbol{B}}{\sqrt{\sigma_{\text {stat }}^{2}+\sigma_{\text {syst }}^{2}}}\right)\right)\right] \sqrt{\sigma_{\text {stat }}^{2}+\sigma_{\text {syst }}^{2}} \quad \text { same result as } C_{s}!
$$

Extra Slides

Categories

Multiple analysis regions often used.

\rightarrow Exploit better sensitivity in some regions

Here (tH, H \rightarrow bb analysis) 7 regions:
$\rightarrow 4$ Signal Regions (SR) split in p_{T} (Hings)

Better sensitivity at high p_{T}

\rightarrow lower B backgrounds, higher S/B

Backgrounds levels from simulation here
\rightarrow Large systematic uncertainties!

Categories

Multiple analysis regions often used.

\rightarrow Exploit better sensitivity in some regions
\rightarrow Constrain RPs: Control regions for bags

Here (tH, H \rightarrow bb analysis) 7 regions:
$\rightarrow 4$ Signal Regions (SR) split in p_{T} (Hings)
$\rightarrow 3$ Background Control Regions (CR)

Signal + Bkg regions

Categories

Multiple analysis regions often used.
\rightarrow Exploit better sensitivity in some regions
\rightarrow Constrain NPs: Control regions for bkgs
Here (ttH, H \rightarrow bb analysis) 7 regions:
$\rightarrow 4$ Signal Regions (SR) split in p_{T} (Higgs)
$\rightarrow 3$ Background Control Regions (CR)
\Rightarrow Combined PDF :
PDF for category k

No overlaps between categories \Rightarrow No statistical correlations
\Rightarrow can simply take product of individual PDFs.

Counting model, the full version

CL_{s} : Gaussian Bands

Usual Gaussian counting example with known B: $95 \% \mathrm{CL}_{\mathrm{s}}$ upper limit on S :

$$
\boldsymbol{S}_{\text {up }}=\hat{\boldsymbol{S}}+\left[\boldsymbol { \Phi } ^ { - 1 } \left(\mathbf{1 - 0 . 0 5 \Phi (\hat { S } / \sigma _ { S }))] \sigma _ { S }} \begin{array}{cc}
\text { with } \\
\sigma_{S}=\sqrt{B}
\end{array}\right.\right.
$$

Compute expected bands for $\mathrm{S}=0$:
\rightarrow Asimov dataset $\Leftrightarrow \hat{\mathrm{S}}=0: S_{\text {up,exp }}^{0}=1.96 \sigma_{S}$
$\rightarrow \pm$ no bands:

$$
S_{\mathrm{up}, \mathrm{exp}}^{ \pm n}=\left(\pm n+\left[1-\Phi^{-1}(0.05 \Phi(\mp n))\right]\right) \sigma_{s}
$$

n	$S_{\text {exp }}{ }^{ \pm n} / \sqrt{B}$
+2	3.66
+1	2.72
$\mathbf{0}$	1.96
-1	1.41
-2	1.05

CLs:

- Positive bands somewhat reduced,
- Negative ones more so

Band width from
depends on S, for $\sigma_{S, A}^{2}=\frac{\boldsymbol{S}^{2}}{\boldsymbol{q}_{s}(\text { Asimov })}$ non-Gaussian cases, diffefén values for each band...

Comparison with LEP/TeVatron definitions

Likelihood ratios are not a new idea:

- LEP: Simple LR with NPs from MC

$$
\begin{aligned}
q_{L E P} & =-2 \log \frac{L(\mu=0, \widetilde{\theta})}{L(\mu=1, \widetilde{\theta})} \\
q_{\text {Tevatron }} & =-2 \log \frac{L\left(\mu=0, \hat{\hat{\theta}}_{0}\right)}{L\left(\mu=1, \hat{\hat{\theta}_{1}}\right)}
\end{aligned}
$$

- Compare $\mu=0$ and $\mu=1$
- Tevatron: PLR with profiled NPs

Both compare to $\boldsymbol{\mu}=\mathbf{1}$ instead of best-fit $\hat{\boldsymbol{\mu}}$

LEP/Tevatron LHC

$$
\mu=0 \quad \mu=1
$$

\rightarrow Asymptotically:

- LEP/Tevaton: q linear in $\mu \Rightarrow \sim$ Gaussian
- LHC: q quadratic in $\mu \Rightarrow \sim x^{2}$
\rightarrow Still use TeVatron-style for discrete cases

Wilks' Theorem

To test the $\mathrm{S}=\mathrm{S}_{0}$ hypothesis, consider

$$
t\left(S_{0}\right)=-2 \log \frac{L\left(S=S_{0}\right)}{L(\hat{S})}
$$

\rightarrow Assume Gaussian regime (e.g. large $\mathrm{n}_{\text {evts }}$,
Central-limit theorem) : then:
Wilk's Theorem: $\mathrm{t}\left(\mathrm{S}_{0}\right)$ is distributed as a χ^{2} under $\mathrm{S}=\mathrm{S}_{0}: \quad \boldsymbol{f}\left(\boldsymbol{t}_{\boldsymbol{S}_{0}} \mid \boldsymbol{S}=\boldsymbol{S}_{\mathbf{0}}\right)=\boldsymbol{f}_{\chi^{2}\left(n_{\text {dof }}=1\right)}\left(\boldsymbol{t}_{\boldsymbol{S}_{0}}\right)$ \Rightarrow In particular, the significance is:

$$
Z=\sqrt{q_{0}}
$$

Profiling Example: ttH $\rightarrow \mathbf{b b}$

Analysis uses low-S/B categories to constrain backgrounds.
\rightarrow Reduction in large uncertainties on tt bkg
\rightarrow Propagates to the high-S/B categories through the statistical modeling \Rightarrow Care needed in the propagation (e.g. different kinematic regimes)

Profiling Issues

Too simple modeling can have unintended effects \rightarrow e.g. single Jet E scale parameter:
\Rightarrow Low-E jets calibrate high-E jets - intended?

Two-point uncertainties:

\rightarrow Interpolation may not cover full configuration
space, can lead to too-strong constraints

Profiling Issues

Too simple modeling can have unintended effects \rightarrow e.g. single Jet E scale parameter:
\Rightarrow Low-E jets calibrate high-E jets - intended?

Two-point uncertainties:

\rightarrow Interpolation may not cover full configuration
space, can lead to too-strong constraints

Test Statistics for Limit-Setting

Interval :

$H_{0}: \mu=\mu_{0}$
$H_{1}: \mu \neq \mu_{0}$
Try to exclude μ values away from $\hat{\mu}$.

$$
t\left(\mu_{0}\right)=-2 \log \frac{L\left(\mu=\mu_{0}\right)}{L(\hat{\mu})}
$$

Limit-setting
$H_{0}: S=S_{0}$
$\mathrm{H}_{1}: \mathrm{S}<\mathrm{S}_{0}$

$$
\begin{aligned}
\mathrm{H}_{1} & \xrightarrow{S_{0}} \mathrm{H}_{0} \\
q\left(S_{0}\right) & =\left(\begin{array}{cc}
-2 \log \frac{L\left(S=S_{0}\right)}{L(\hat{S})} & S_{0}>\hat{S} \\
0 & S_{0} \leq \hat{S}
\end{array}\right.
\end{aligned}
$$

Try to exclude values of S that are above Ŝ.
\Rightarrow "One-sided" test : only interested in excluding above

Discovery is also onesided, for $\mathrm{S}>0$!

