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Lecture Plan

Statistics basic concepts (Monday/Tuesday)
Basic ingredients (PDFs, etc.)
Parameter estimation (maximum likelihood, least-squares, …)
Model testing (χ2 tests, hypothesis testing, p-values, …)

These lectures: Computing statistical results
Statistical modeling
Review of model testing
Computing results

Discovery
Confidence intervals
Upper limits

Systematics and profiling
Bayesian techniques

See also the Hands-on tutorial yesterday covering both sets of lectures.

https://indico.in2p3.fr/event/26179/timetable/?view=standard#1-basic-concepts-of-statistics
https://indico.in2p3.fr/event/26179/timetable/?view=standard#2-basic-concepts-of-statistics
https://indico.in2p3.fr/event/26179/timetable/?view=standard#13-hands-on-basic-statistitics


Highlights : Hypothesis Tests and Discovery

Given a PDF P(data; μ), define likelihood L(μ) = P(data; μ)

To estimate a parameter, use the value μ̂ that maximizes L(μ) → best-fit value

To decide between hypotheses H
0
 and H

1
, use the likelihood ratio

To test for discovery, use

For large enough datasets (n >~ 5), 

For a single Gaussian measurement,

For a single Poisson measurement,

L(H 0)

L(H 1)

q0 =−2 log
L(S=0)

L( Ŝ)
Ŝ ≥ 0

Z = √ q0

Z =
Ŝ

√B

Z = √ 2 [ ( Ŝ+B) log ( 1 +
Ŝ
B ) − Ŝ ]
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Confidence Intervals
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Confidence Intervals

Last lecture we saw how to estimate (=compute) the value of a parameter

However we also need to estimate the associated uncertainty.

What is the meaning of an 

uncertainty ?

We don’t know what the true 

value is, but there is a

68% chance that it is within 

the error bar

μ̂ = argmax L(μ)`Maximum Likelihood 

Estimator (MLE) μ̂:
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Gaussian confidence intervals

P (μ − σ < n < μ + σ ) = 68.3 %

P (n− σ < μ < n + σ) = 68.3 %

The reported interval n ± σ will contain the true value of μ 68.3% of the time

Consider a Gaussian likelihood:

L(μ) = exp [− 1
2

( n−μ
σ )

2

]

Still a statement on n!

μ = n ± σ at 68% CL (“1σ”)
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Gaussian confidence intervals

P (μ − σ < n < μ + σ ) = 68.3 %
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]
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Gaussian confidence intervals

Experiment 6

Experiment 4

Experiment 3

Experiment 2

Experiment 5

Experiment 1

μ*–σ     μ*    μ*+σ

For each experiment, get the interval 

Frequentist interpretation

If we would repeat the same 

experiment multiple times,  

with true value μ*, then 68.3% 

of the 1σ intervals would 

contain μ*.

→ Crucially, this works even if 

we do not know μ* ! 

The reported interval n ± σ will contain the true value of μ 68.3% of the time

μ = n ± σ at 68% CL (“1σ”)

`
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Neyman Construction
Tr

u
e

 v
al

u
e

 μ
*

Observed value μ̂

68% intervals for  μ̂

P(μ; μ*)

Peak Position

General case: build 1σ intervals of observed values for each true value 

 ⇒ Confidence belt
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Inversion using the Confidence Belt
Tr

u
e 

va
lu

e 
μ

*

Observed value μ̂

General case: Intersect belt with given μ̂
 
, get 

→ Same as before for Gaussian, works also when P(μobs|μ) varies with μ.

P (μ̂ − σμ

-
< μ

*
< μ̂ + σμ

+
) = 68%
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Inversion using the Confidence Belt
Tr

u
e 

va
lu

e 
μ

*

σ
μ

+

μ̂

σ
μ

-

 μ̂ Observed value μ̂

General case: Intersect belt with given μ̂
 
, get 

→ Same as before for Gaussian, works also when P(μobs|μ) varies with μ.

σ
μ
 comes from the model, 

not the data

→ data only provides .μ̂

σ
μ

+ from negative side of  intervalsμ̂

σ
μ

- from positive side of  intervalsμ̂

Problem: Doesn’t generalize well to many 

parameters in realistic models

P (μ̂ − σμ

-
< μ

*
< μ̂ + σμ

+
) = 68%
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General case: Likelihood Intervals

Confidence intervals from L(μ):

• Test various values μ using the Profile 

Likelihood Ratio t(μ)

• Minimum (=0) for μ= , rises away from .μ̂ μ̂

• Good properties thanks to the Neyman-

Pearson lemma.

Probability to observe 

the data for a given μ.

Probability to observe

the data for best-fit μ. ̂

ATLAS-CONF-2017-047 Gaussian L(μ):

● t(μ) is parabolic, distributed as a χ2

● Minimum occurs at μ = μ̂

t(μ
±
) = 1  μ = n ± σ   ⇒ 1σ interval!

L (μ ) = exp [− 1
2

( n−μ
σ )

2

]

t (μ ) =−2 log
L(μ)

L(μ̂)

t (μ) = ( n−μσ )
2

10 
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General case: Likelihood Intervals

ATLAS-CONF-2017-047 
General case:

● Generally not a perfect parabola

● Minimum still at μ = μ̂

Asymptotic approximation

→ Compute t(μ) using the exact L(μ)

→ 1σ interval given by t(μ)  1

t (μ ) =−2 log
L(μ)

L(μ̂)

Confidence intervals from L(μ):

• Test various values μ using the Profile 

Likelihood Ratio t(μ)

• Minimum (=0) for μ= , rises away from .μ̂ μ̂

• Good properties thanks to the Neyman-

Pearson lemma.
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Consider a parameter m (e.g. Higgs boson mass)

whose measurement is Gaussian with known

width σ
m

, and we measure m
obs

:

→ Compute the best-fit value (MLE)  m̂
→ Compute t(m)

→ Compute the 1σ (68.3% CL) interval on m

Solution:

→ As expected!

→ General method can be applied in the same way to more complex cases

m

σm

mobs

m = mobs ± σm

L(m;mobs) = e
−

1
2 (

m−mobs

σm )
2

Homework 3: Gaussian Case
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2D Example: Higgs σ
VBF

 vs. σ
ggF

ATLAS-CONF-2017-047 
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52

78
82

6tggF,VBF

ggF

VBF

CL 68.3% (1σ) 95% 95.5% (2σ)

1D Z2 1.00 3.84 4.00

2D Z2 2.30 5.99 6.18

Z2

 t < 2.30
t < 5.99

Gaussian case: elliptic 

paraboloid surface

t =−2 log
L(X0,Y 0)

L( X̂ , Ŷ )
∼ χ

2
(N dof=2)
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Reparameterization

Start with basic measurement in terms of e.g. (σ × B)

→ How to measure derived quantities (couplings, parameters in some theory model, 
etc.) ?  → just reparameterize the likelihood:

e.g. Higgs couplings: σ
ggF

, σ
VBF

 sensitive to Higgs coupling modifiers κ
V
, κ

F
. 

L(σ ggF ,σVBF) L(σ ggF( κV ,κF) ,σVBF ( κV ,κF)) ≡ L'( κV ,κF)

σ ggF→σ ggF (κV , κF)

σVBF→σVBF (κV , κF)
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Upper Limits
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Hypothesis tests for Limits

If no signal in data, testing for discovery not very relevant (report 0.2σ excess ?)

→ More interesting to exclude large signals 

  ⇒ Upper limits on signal yield

→ Typically report 95% CL upper limit (p-value = 5%) : “S < S
0
 @ 95% CL”

?
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Hypothesis tests for Limits

If no signal in data, testing for discovery not very relevant (report 0.2σ excess ?)

→ More interesting to exclude large signals 

  ⇒ Upper limits on signal yield

→ Typically report 95% CL upper limit (p-value = 5%) : “S < S
0
 @ 95% CL”

Excluded95% CL Upper limit
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Test Statistics for Limit-Setting

t (μ0)=−2 log
L(μ=μ0)

L(μ̂ )

S0Ŝ

“Two-sided” test

Confidence
Interval :

Try to exclude μ values
away from .μ̂

Limit-setting

Try to exclude 
values of S that 
are above Ŝ.

“One-sided” test : only interested in excluding above

Discovery was also 

one-sided, for S>0

μ̂ 
μ1 μ2

q(S0) = { −2 log
L(S=S0)

L( Ŝ)
  S0 > Ŝ

       0                      S0 ≤ Ŝ

17 
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Inversion : Getting the limit for a given CL

Procedure:

→ Compute q(S
0
) for some S

0
,

     get the exclusion p-value p(S
0
).

     Asymptotics:

→ Adjust S
0
 to get the desired exclusion

     Asymptotics: need √q(S
95

) = 1.64 for 95% CL

S1 : (too) strong exclusion 

CL p Region
90% 10% √q(S) > 1.28

95% 5% √q(S) > 1.64

99% 1% √q(S) > 2.33
p (S0) = 1 − Φ (√ q(S0) )

√qS1

p-value for qS1

√q(S) = 1.64
(p = 5%)
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Inversion : Getting the limit for a given CL

Procedure:

→ Compute q(S
0
) for some S

0
,

     get the exclusion p-value p(S
0
).

     Asymptotics:

→ Adjust S
0
 to get the desired exclusion

     Asymptotics: need √q(S
95

) = 1.64 for 95% CL

S1 : (too) strong exclusion S2 : no exclusion S3 : 95% exclusion 

CL p Region

90% 10% √q(S) > 1.28

95% 5% √q(S) > 1.64

99% 1% √q(S) > 2.33p (S0) = 1 − Φ (√ q(S0) )

√qS2

√qS1

√q(S) = 1.64
(p = 5%)

√qS3
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Homework 4: Gaussian Example

Usual Gaussian counting example with known B:

Reminder: Significance: Z = Ŝ/σ
S

→ Compute q(S
0
)

→ Compute the 95% CL upper limit on S, S
up

, by solving √q
S0

 = 1.64.

Solution:

S+B

σS 
n

Sup = Ŝ + 1.64σ S  at 95 %  CL

L(S ;n) = e
−

1
2 ( n−(S+ B)

σS )
2

σ
S
 ~ √B for small S

19 
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CL
s

Upper limits sometimes take negative

values (exclude all S>0 !)

Known feature – to avoid, usual 

solution in HEP is to use CL
s 
”modified p-value” 

 ⇒ Compute exclusion relative to that of S=0

→ Somewhat ad-hoc, but good properties…

Ŝ ~ 0 ⇒ p
B
 ~ O(1), p

CLs 
~ p(S

0
) no change

Ŝ  0 ≪ ⇒ p
B
  1, ≪ p

CLs
  p(S≫

0
) no exclusion at S=0

 

pCLs
=

p(S0)

pB

A. Read, J.Phys. G28 (2002) 2693-2704

σS = 1

Usual p-value 
for S=S0

P-value 
for S=0 

Drawback: overcoverage 

→ limit is claimed to be 95% CL, but actually >95% CL for small p
B
.

20 
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Usual Gaussian counting example with known B:

Reminder 

CL
s+b

 limit:  

CL
s
 upper limit :

→ Compute p
S0

 (same as for CLs+b)

→ Compute 1-p
B
 (hard!)

Solution: 

                      for Ŝ ~ 0,  

S+B

n
σS 

Sup = Ŝ + 1.64σ S  at 95 % CL

Sup = Ŝ + [ Φ−1 ( 1 − 0.05 Φ ( Ŝ / σ S ) ) ] σ S  at 95 %  CL

L(S ;n) = e
−

1
2 ( n−(S+B)

σS )
2

σ
S
 ~ √B for small S

Homework 5: CL
s
 in the Gaussian Case

Sup = Ŝ + 1.96 σ S  at 95 %  CL

21 
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Homework 6: CL
S
 Rule of Thumb for n

obs
=0

Same exercise, for the Poisson case with n
obs

 = 0. Perform an exact computation of the 

95% CLs upper limit based on the definition of the p-value: 

p-value : sum probabilities of cases at least as extreme as the data

Hint: for n
obs

=0, there are no “more extreme” cases (cannot have n<0 !), so

p
S0

 = Poisson(n=0 | S
0
+B) and 1 - p

B
 = Poisson(n=0 | B)

Solution:

 ⇒ Rule of thumb: when n
obs 

= 0, the 95% CL
s
 limit is 3 events (for any B)

Sup(nobs=0) = log(20) = 2.996 ≈ 3

22 
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Highlights: Confidence intervals and Upper Limits

Confidence intervals: use

→ Crossings with t(μ
0
) = 1 for 1σ intervals (in 1D)

Gaussian regime: μ =  ± σμ̂
μ
 at 68.3% CL (1σ interval)

Limits : use LR-based test statistic:

→ Use CL
s
 procedure to avoid negative limits

Gaussian regime, n~0: S < Ŝ + 1.96σ at 95% CL

Poisson regime, n=0 : S < 3 events at 95% CL

qS0
= −2 log

L(S=S0)

L( Ŝ)
S0 ≥ Ŝ

t (μ0)=−2 log
L(μ=μ0)

L(μ̂ )

23 
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Systematic Errors
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Reminder on Statistical Modeling

Description Observable Likelihood

Counting
n Poisson

Binned shape 
analysis

n
i
, i = 1 .. N

bins
Poisson product

Unbinned 
shape analysis

m
i
, i = 1 .. n

evts
Extended Unbinned Likelihood

P(ni ;S ,B)=∏
i=1

nbins

e−(S f i
sig
+ B f i

bkg
) (S f i

sig
+ B f i

bkg
)
n i

ni !

P(n;S ,B)=e−(S + B) (S + B)n

n!

P(mi ;S ,B)=
e−(S + B)

nevts!
∏
i=1

nevts

S Psig(mi)+B Pbkg(mi)

Random data must be described using a statistical model:

Model include

● Parameters of interest (POIs) – e.g. S but also

● Nuisance parameters (NPs) – e.g. B.
25 
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Systematic Errors

The statistical model (PDF) is a way to express uncertainty on the outcome 

of an experiment. e.g. 2D Gaussian :

These uncertainties are also called Statistical Uncertainties – they are the 

ones encoded in the model PDF. 

26 
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Systematic Errors

The statistical model (PDF) is a way to express uncertainty on the outcome 

of an experiment. e.g. 2D Gaussian :

These uncertainties are also called Statistical Uncertainties – they are the 

ones encoded in the model PDF. 

However the model itself may be wrong : this is a systematic error

→ To account for them, need a set of Systematic uncertainties, i.e. uncertainties 

on the form of the PDF itself.
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Systematics

Systematics = what we don’t know about
the random process.

How to describe them in practice ?

Þ Parameterize using additional nuisance parameters (NPs)

But: if the NPs are completely free, no measurement is possible (e.g. free B ?...)

 ⇒ Add constraints in the likelihood

L(μ ,θ ;data) = Lmeasurement(μ ,θ ;data) C (θ)

POI
Systematics 

NP

Measurement

Likelihood

NP Constraint 

term 

"Systematic uncertainty is, in any 
statistical inference procedure, 
the uncertainty due to the 
incomplete knowledge of the 
probability distribution of the 
observables.
G. Punzi, What is systematics ?

C(θ) represents external knowledge about the NPs that we inject into the statistical 

model – e.g. to say that “B ~ 100 ± 5”
27 
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Frequentist Systematics

Prototype: Systematics NP → measured in a separate auxiliary experiment 

e.g. background levels.

→ Build the combined PDF of the main+auxiliary measurements

Gaussian form often used by default:

In the combined likelihood, systematic NPs are constrained

 ⇒ Can be measured simultaneously with the POIs. in a fit to data.

→ Often no clear setup for auxiliary measurements

    (e.g. theory simulation uncertainties) 

→ Define constraints “by hand” (“pseudo-measurement”)

P (μ ,θ ;data) = Pmain(μ ,θ ;main data) Paux (θ ;aux. data)

Paux (θ ;aux. data) = G (θ
obs ;θ ,σ syst)

Independent 
measurements: 
Þ just a product

28 
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Profiling Nuisance Parameters
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How to deal with nuisance parameters in likelihood ratios ?

→ Let the data choose   use the best-fit values (⇒ Profiling)

 ⇒ Profile Likelihood Ratio (PLR)

^̂
θ (S0) best-fit value for S=S0

Profiling

t (S0) =−2 log
L(S=S0 ,

^̂
θ(S0))

L( Ŝ , θ̂ ) θ̂ overall best-fit value

Wilks’ Theorem : same properties as plain likelihood ratio without NPs

→ Profiling “builds in” the effect of the NPs

 ⇒ Can use t(S
0
) to compute limits, significance, etc. in the same way as before

f ( t S0
∣ S=S0 ) = f

χ
2
(ndof=1) ( tS0 ) also with NPs present

(conditional MLE)

(unconditional MLE)

30 
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Homework 7: Gaussian Profiling

Counting experiment with background uncertainty: n =  S + B :

→ Signal region (SR): n
obs

 ~ G(S + B, σ
stat

)

→ Control region (CR): B
obs

 ~ G(B, σ
bkg

)

Recall: Signal region only (fixed B): 

→ Compute the best-fit (MLEs) for S and B

→ Show that the conditional MLE for B is

 

→ Compute the profile likelihood t(S)

→ Compute the 1σ confidence interval on S

Answer: σ S = √ σ stat
2
+ σ bkg

2

L (S , B) = G (nobs ;S + B ,σ stat) G (Bobs ;B ,σ bkg)

S = (nobs−Bobs) ± √ σ stat
2
+ σ bkg

2

Stat uncertainty (on n) and systematic (on B) add in quadrature

t (S) = (
S − nobs

σ stat )
2

S= (nobs − B) ± σ stat

SR CR

nobs

Signal

Bkg Bkg^̂
B(S) = Bobs +

σ bkg
2

σ stat
2
+σ bkg

2
( Ŝ− S)

Bobs
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Uncertainty decomposition

All systematics NPs excluded : statistical uncertainty only

1σ intervals

All systematics NPs included: stat+syst uncertainties

σ syst,tot = √σ total
2

− σ stat
2

Subtraction in quadrature

μ = 0.99 ± 0.12 (stat) ± 0.06 (syst) ± 0.06 ( theo)
32 
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Pull/Impact plots

Systematics are described by NPs included in 
the fit. Define pull as

Nominally:

• pull  = 0 : i.e. the pre-fit expectation

• pull uncertainty = 1 : from the Gaussian

ATLAS-CONF-2016-058

However fit results may be different:

● Central value ≠ 0: some data feature 

differs from MC expectation

 Need investigation if large⇒
● Uncertainty < 1 : effect is constrained by 

the data  Needs checking if this ⇒

legitimate or a modeling issue

→ Impact on result of ±1σ shift of NP allows 

to gauge which NPs matter most .

(θ̂−θ0) / σθ

33 
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Pull/Impact plots

Systematics are described by NPs included in 
the fit. Define pull as

Nominally:

• pull  = 0 : i.e. the pre-fit expectation

• pull uncertainty = 1 : from the Gaussian

ATLAS-CONF-2016-05813 TeV single-t XS (arXiv:1612.07231)

However fit results may be different:

● Central value ≠ 0: some data feature 

differs from MC expectation

 Need investigation if large⇒
● Uncertainty < 1 : effect is constrained by 

the data  Needs checking if this ⇒

legitimate or a modeling issue

→ Impact on result of ±1σ shift of NP allows 

to gauge which NPs matter most .
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Profiling Takeaways

When testing a hypothesis, use the best-fit values
of the nuisance parameters: Profile Likelihood Ratio.

Allows to include systematics as uncertainties on nuisance parameters.

Profiling systematics includes their effect into the total uncertainty. 

Gaussian:

Guaranteed to work well as long as everything is Gaussian, but typically
also robust against non-Gaussian behavior.

L(μ=μ0 ,
^̂
θ (μ0))

L(μ̂ , θ̂ )

σ total = √σ stat
2

+ σ syst
2

Profiling can have unintended effects :
need to carefully check behavior 
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Bayesian Analysis
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Bayesian methods

Remember the problem from yesterday:

• PDFs give possible outcomes for known parameters

• We already know the outcome, and want information on the parameters 

Estimate

P (λ=?) 2

?

Solution: maximum likelihood estimation of the parameters, given the data

This is a (good) solution (“classical/frequentist”) but there is another way. 36 
/ 
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Bayesian methods

Bayesian methods: promote parameters (POIs and NPs) to random variables

→ Represent our best knowledge of their value, not the true values.

Can use Bayes’ Theorem to obtain a PDF for the parameters

Immediately useful to get intervals on μ:

• Peak of P(μ|n) gives the central value :
Maximum a posteriori (MAP).

• 68.3% interquantile gives the 1σ interval

Problem: what to use for the prior ?… 

P (μ | n) = P (n |μ)
P (μ)

P (n)
Bayes’ Theorem

Posterior PDF: represents our
total knowledge from
prior + measurement

Measurement PDF,
same as for the 

frequentist P(n;μ)

Normalization
factor: adjusted

so P(μ|n) is
normalized to 1)

Prior PDF on μ:
represents our

knowledge before 
the measurement

μ
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Bayesian methods

Systematics and nuisance parameters:

Each NP is considered a random variable: Bayes theorem gives P(μ, θ | n)

Define a prior π(θ) for each nuisance parameter.

 ⇒ Obtain P(μ|n) for μ alone by integrating out the θ:

Use probability distribution P(μ) to compute intervals and limits as before.

P (μ|n) =∫ P (μ ,θ|n) C (θ) d θ

∫
A

B

P (μ|n) dμ = 68.3 % ∫
−∞

L

P (μ|n) dμ = 95 %

68.3% CL interval: Here CL means  
“Credibility Level”)

95% CL upper limit

μ μ
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Bayesian vs. frequentist

Many points of commonality

Bayesian analysis typically

 ⊕ Conceptually simpler – frequentist results often difficult to interpret

 ⊖ No simple way to test for discovery

 ⊕ Hybrid methods sometimes used (frequentist discovery + Bayesian systs)

 ⊖ No support for NPs constrained in data

 ⊖ Integration over NPs can be CPU-intensive (but can use MCMC methods)

 ⊕ Minimization over many NPs also not a simple problem for frequentist case...

 ⊖ Need to specify priors, which often contains some arbitrariness – e.g. a prior flat

     in one parameterization is usually not flat in another.
 Can use Jeffreys’ or reference priors to avoid this, although difficult in practice.⊕

 ⊕ Frequentist and Bayesian results often agree, so not a big issue in practice! 

“Bayesians address the question everyone is 
interested in, by using assumptions no-one 
believes.
Frequentists use impeccable logic to deal 
with an issue of no interest to anyone.”
– Louis Lyons
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Gaussian counting problem with systematic on background: n = S + B + σ
syst

θ

→ What is the 95% CL upper limit on S, given a measurement n
obs

 ?

1. CLs computation:

● Use the result of Homework 7 to compute the PLR for S

● Use the result of Homework 6 to compute the CLs upper limit

2. Bayesian computation:

● Integrate P(n; S, θ) over θ to get the marginalized P(n| S)

● Use Bayes’ theorem to compute P(S|n)  P(n|S) P(S), with P(S) a flat prior over ∝

S>0.

● Find the 95% CL limit by solving 

 

Homework 8: Bayesian methods and CL
s

P (n ;S ,θ) = G(n ;S+B+σ syst θ ,σ stat) G (θobs=0 ;θ ,1)

Sup
CL s = n−B + [ Φ−1

( 1 − 0.05 Φ (
n−B

√σ stat
2
+σ syst

2 ) ) ] √σ stat
2
+σ syst

2

∫
Sup

∞

P (S∣ n) dS= 5 %

Solution:

In both cases
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Example: W’→lν Search

• POI: W’ σ × B → use flat prior over [0, +inf[.

• NPs: syst on signal ε (6 NPs), bkg (6), lumi (1) → integrate over Gaussian priors

arXiv:1706.04786 
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Presentation of Results

→ Cannot test every model : need to make enough information public so that others 
(theorists) are able to do it independently

  ⇒ Gaussian case: sufficient to provide measurements + covariance matrix

→ For example using the HEPData repository.

Non-Gaussian case: not so simple, but can publish full likelihood (e.g. here) 42 
/ 
76
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Generating Pseudo-data

Model describes the distribution of the observable: P(data; parameters)

Þ Possible outcomes of the experiment, for given parameter values

Can draw random events according to PDF : generate pseudo-data

Generate 

P ( λ=5)
2, 5, 3, 7, 4, 9, ….

Each entry = separate “experiment”

Unbinned
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Expected Limits: Toys

Expected results: median outcome under a given hypothesis

→ usually B-only for searches, but other choices possible.

Two main ways to compute:

→ Pseudo-experiments (toys):

• Generate a pseudo-dataset in B-only hypothesis

• Compute limit

• Repeat and histogram the results

• Central value = median, bands 
based on quantiles

Computed limit

95% of toys68% of toys

    Repeat for each mass

Nu
m

be
r o

f T
oy

s

Eur.Phys.J.C71:1554,2011

Phys. Lett. B 775 (2017) 105
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Expected Limits: Asimov Datasets

Expected results: median outcome under a given hypothesis

→ usually B-only for searches, but other choices possible.

Two main ways to compute:

→ Asimov Datasets

• Generate a “perfect dataset” – e.g. for binned
data, set bin contents carefully, no fluctuations.

• Gives the median result immediately:

median(toy results) ↔ result(median dataset) 

• Get bands from asymptotic formulas:
Band width

⊕ Much faster (1 “toy”)

⊖ Relies on Gaussian approximation

σ S0 , A
2

=
S0

2

qS0
(Asimov)

Strictly speaking, Asimov dataset if

 = XX̂
0
 for all parameters X, 

where X
0
 is the generation value
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Toys: Example  JHEP 10 (2017) 112

ATLAS X→Zγ Search: covers 200 GeV < m
X
 < 2.5 TeV

→ for m
X
 > 1.6 TeV, low event counts  derive results from toys⇒

Asimov results (in gray) give optimistic result compared to toys (in blue) 
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Upper Limit Examples
ATLAS 2015-2016 4l aTGC Search

Phys. Lett. B 775 (2017) 105

Phys. Re v. D 92 (2015) 0 12004 
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Look-Elsewhere Effect
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Look-Elsewhere effect

Sometimes, unknown parameters in signal model
e.g. p-values as a function of mX

Þ Effectively: multiple, simultaneous searches
→ If e.g. small resolution and large scan range, 
many independent experiments

→ More likely to find an excess 
anywhere in the range, rather 
than in a predefined location
⇒ Look-elsewhere effect (LEE)
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Global Significance

Probability for a fluctuation anywhere in the range → Global p-value.
 at a given location       → Local p-value

→ pglobal > plocal  Þ  Zglobal < Zlocal : global fluctuation
more likely ⇒ less significant

Trials factor : naively = # of independent intervals:

However this is usually wrong – more on this later

pglobal = 1 − (1−plocal)
N
≈ N plocal

Trials factor 

Global 
p-value

Local 
p-value

N trials

??
= N indep =

scan range
peak width
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Global Significance

Probability for a fluctuation anywhere in the range → Global p-value.
 at a given location       → Local p-value

For searches over a parameter range, the global p-value is the relevant one
→ Accounts for the actual search procedure: look for an excess anywhere in 
the scanned range

→ Depends on the scanned 
     parameter ranges

e.g. X→γγ :
• 200 < mX< 2000 GeV
• 0 < ΓX < 10% mX.

→ plocal is what comes out of the usual formulas
How to compute pglobal (or Ntrials) ? 

51 
/ 
76



Trials Factor

Trials factor N = # of independent searches:

Naively, one could expect

However this is only correct for a discrete
Number of experiments (i.e. 10 different regions)

pglobal = 1 − (1−plocal)
N
≈ N plocal

Trials factor 

Global 
p-value

Local 
p-value

N trials

??
= N indep =

scan range
peak width
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Trials Factor for continuous variables

Asymptotic limit : trials factor (1 POI) is

→ Trials factor is not just Nindep, also depends on Zlocal ! 

Why ? Slicing range into Nindep regions misses
peaks sitting on edges between regions 
⇒ true Ntrials is > Nindep!

N trials = 1 + √
π
2

N indep Zlocal

N indep =
scan range
peak width

Gross & Vitells, 
EPJ.C70:525-
530,2010

Search in 10 fixed 
bins: Ntrials = 10

Se
arch

 
ev

ery
whe

re:

Toy data

53 
/ 
76



Trials Factor for continuous variables

Asymptotic limit : trials factor (1 POI) is

→ Trials factor is not just Nindep, also depends on Zlocal ! 

Why ? Slicing range into Nindep regions misses
peaks sitting on edges between regions 
⇒ true Ntrials is > Nindep!

N trials = 1 + √
π
2

N indep Zlocal

N indep =
scan range
peak width

Gross & Vitells, 
EPJ.C70:525-
530,2010

Search in 10 fixed 
bins: Ntrials = 10

Se
arch

 
ev

ery
whe

re:

Toy data

53 
/ 
76



Global Significance from Toys

Principle: repeat the analysis in toy data:
→ generate pseudo-dataset
→ perform the search, scanning over parameters
     as in the data
→ report the largest significance found
→ repeat many times 

⇒ The frequency at which a given Z0 is found is the global p-value

e.g. X→γγ Search: Zlocal = 3.9σ (⇒ plocal ~ 5 10-5), 
→ However we are scanning 200 < mX< 2000 GeV and  0 < ΓX < 10% mX !
→ Toys : find such an excess 2% of the time somewhere in the range 
⇒ pglobal ~ 2 10-2, Zglobal = 2.1σ Less exciting, and better indication of true Z!

⊕ Exact treatment
⊖ CPU-intensive especially for large Z (need ~O(100)/pglobal toys)

Local 3.9σ
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Conclusion

• Significant evolution in the statistical methods used in HEP

• Variety of methods, adapted to various situations and target results

• Allow to

– model the statistical process with high precision in difficult situations (large 
systematics, small signals)

– make optimal use of available information

• Implemented in standard RooFit/RooStat toolkits within the ROOT framework, as 
well as other tools (BAT)

• Still many open questions and areas that could use improvement

→ e.g. how to present results with all available information
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Homework solutions
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Homework 1: Gaussian Counting

Count number of events n in data

→ assume n large enough so process is Gaussian

→ assume B is known, measure S

Likelihood :

MLE for S : Ŝ = n – B

Test statistic: assume Ŝ > 0,

Finally: 

L(S ;n) = e
−

1
2 (

n−(S+B)

√S+B )
2

S+B

√(S+B
)

n

q0 =−2 log
L(S=0)

L( Ŝ)
= λ(S=0) − λ(Ŝ) = (

n−B

√B )
2

= ( Ŝ√B )
2

Z = √ q0 =
Ŝ

√B

λ (S ;n) = (
n−(S+B)

√S+B )
2

Known formula!

→ Strictly speaking only 

valid in Gaussian regime
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Homework 2: Poisson Counting

Same problem but now not assuming Gaussian behavior:

MLE: Ŝ = n – B, same as Gaussian

Test statistic (for Ŝ > 0):

Assuming asymptotic distribution for q
0
,

L(S ;n) = e−(S+ B)
(S+B)n λ (S ;n) = 2(S+B)−2n log (S+B)

q0 = λ(S=0) − λ ( Ŝ) = −2 Ŝ−2( Ŝ+B)  log
B

Ŝ+B

Z = √ 2 [ ( Ŝ+B) log ( 1 +
Ŝ
B ) − Ŝ ]

See G. Cowan’s slides for case with B uncertainty 58 
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Homework 3: Gaussian CL
s+b

Usual Gaussian counting example with known B:

Reminder:

Best fit signal : Ŝ = n - B

Significance: Z = Ŝ/√B

Compute the 95% CL upper limit on S:

so

And finally

S+B

σ 
n

λ (S) = ( n−(S+B)σ S )
2

qS0
=−2 log

L(S=S0)

L( Ŝ)
= λ (S0) − λ ( Ŝ) = ( n−(S0+B)

σ S )
2

= ( S0− Ŝ
σS )

2 for 
S0 > Ŝ 

qS0
= 2.70  for  S0 = Ŝ + √2.70 σ S

Sup = Ŝ + 1.64σ S  at 95 % CL
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Usual Gaussian counting example with known B:

Reminder 

Best fit signal : Ŝ = n - B

CL
s+b

 limit:  

CL
s
 upper limit : still have 

so need to solve

for Ŝ = 0,  

S+B

ÖB
n

λ (S) = ( n−(S+B)σ S )
2

qS0
= ( S0− Ŝ

σ S )
2 (for S0 > Ŝ) 

Sup = Ŝ + 1.64σ S  at 95 % CL
Ŝ ~ G(S, σS) so
Under H0(S = S0) :

Under H0(S = 0) :
pCLs

=
pS0

1 − pB

=
1−Φ(√ qS0

)

1−Φ(√ qS0
− S0/ σ S)

= 5%

Sup = Ŝ + [ Φ−1

(1 − 0.05 Φ ( Ŝ / σ S) ) ] σ S  at 95 %  CL

pS0
= 1−Φ(√qS0

)

pB = Φ(√ qS0
−S0 / σ S)

√ qS0
∼ G (S0 / σ S ,1)

√ qS0
∼ G (0, 1)

Homework 4 : Gaussian CL
s
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Homework 5: Poisson CL
S

Same exercise, for the Poisson case

Exact computation : sum probabilities of cases “at least as extreme as data” (n)

For n = 0: 

 ⇒ Rule of thumb: when n
obs

=0, the 95% CL
s
 limit is 3 events (for any B)

Asymptotics: as before, 

For n = 0,

 ⇒ S
up

 ~ 2, exact value depends on B 

 Asymptotics not valid in this case (n=0) – need to use exact results, or toys⇒

qS0
= λ (S0) − λ ( Ŝ) = 2(S0 + B− n)−2n  log

S0+B

n

pS0
(n) =∑

0

n

e−(S0+B)
(S0+B)

k

k !

pCLs
=

pSup
(0)

p0(0)
= e−Sup = 5% ⇒ Sup = log (20) = 2.996 ≈ 3

and one should solve pCLs
=

pSup
(n)

p0(n)
= 5 %  for Sup

pCLs
=

pS0

p0

=
1−Φ(√ qS0

(n=0))

1−Φ(√ qS0
(n=0)−√qS0

(n=B))
= 5%

qS0
(n=0) = 2(S0+B)
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Consider a parameter m (e.g. Higgs boson mass)
whose measurement is Gaussian with known
width σm, and we measure mobs:

→ Best-fit value (MLE): m̂ = mobs. 

→ Test statistic : 

→ 1σ Interval

m

σm

mobs

m = mobs ± σm

λ (m;mobs) = (
m−mobs

σm )
2

Homework 6: Gaussian Intervals

λ (m;mobs) = (
m−mobs

σm )
2

tm= (m−mobs
σm )

2

JHEP 1 1 (201 7) 047
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Homework 7: Gaussian Profiling

Counting experiment with background uncertainty: n =  S + θ :

→ Signal region: n ~ G(S + θ, σ
stat

)

→ Control region: θobs ~ G(θ, σ
syst

)

Then: 

PLR: 

1σ interval σ S = √ σ stat
2
+ σ syst

2

L (S ,θ) = G (n ;S + θ ,σ stat) G (θ
obs ;θ ,σ syst)

Ŝ= n− θ
obs

θ̂ = θ
obs

^̂
θ (S) = θ

obs
+

σ syst
2

σ stat
2
+σ syst

2
( Ŝ− S)

λ (S ,θ) = ( n− (S + θ)
σ stat )

2

+ ( θ
obs
− θ

σ syst )
2

Conditional MLE:

t S=−2 log
L(S ,

^̂
θ (S))

L( Ŝ , θ̂ )
= λ (S ,

^̂
θ (S)) − λ ( Ŝ , θ̂ ) =

(S− Ŝ)2

σ stat
2

+ σ syst
2

MLEs:

For S = Ŝ, matches 
MLE as it should 

S = Ŝ ± √ σ stat
2
+ σ syst

2

Stat uncertainty (on n) and systematic (on θ) add in quadrature 63 
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Homework 8: CL
s
 computation

L(n ;S ,θ) = G (n ;S+B+σ systθ ,σ stat) G(θobs=0 ;θ ,1)

Conditional MLE: ^̂θ(μ) =
σ syst

σ stat
2

+σ syst
2

(n− S−B)
PLR : λ(μ) = (

S+B − n

√ σ stat
2

+σ syst
2 )

2

This boils down to the Gaussian case of HW 6, so the CLs limit is

CLs :    Sup
CLs = n−B + [ Φ−1

( 1 − 0.05 Φ (
n−B

√σ stat
2
+σ syst

2 ) ) ] √σ stat
2
+σ syst

2

MLE: Ŝ= n−B

Gaussian counting with systematic on background: n = S + B + σsystθ
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Homework 8: Bayesian computation

P (n ∣ S ,θ) = G (n ;S+B+σ syst θ ,σ stat) G (θ ∣ 0, 1)

Gaussian counting with systematic on background: n = S + B + σ
syst

θ

Bayesian: G(θ) is actually a prior on θ  perform integral (⇒ marginalization)

P (n ∣ S) = G (S ; n−B , √σ stat
2
+σ syst

2
)

∫
Sup

∞

P (S∣ n) dS= 5 % = [ 1−Φ (
Sup−(n−B)

√σ stat
2
+σ syst

2 ) ] [Φ (
n−B

√σ stat
2
+σ syst

2 ) ]
−1

P (S ∣ n) = G (S ;n−B ,√σ stat
2
+σ syst

2
) [ Φ (

n−B

√σ stat
2
+σ syst

2 ) ]
−1

same result as CL
s
!

same effect as profiling!

Need P(S|n)  a prior for S – take flat PDF over S > 0⇒
 Truncate Gaussian at S=0: ⇒

P (S ∣ n) = P (n ∣ S) P (S)

Bayesian Limit:

Sup
Bayes

= n−B + [ Φ−1

( 1 − 0.05 Φ (
n−B

√σ stat
2
+σ syst

2 ) ) ] √σ stat
2
+σ syst

2
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Extra Slides
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Categories arXiv:2111.06712

Better sensitivity at high pT

→ lower B backgrounds, higher S/B

Backgrounds levels from simulation here 
→ Large systematic uncertainties!

Multiple analysis regions often used.
→ Exploit better sensitivity in some regions 
→ Constrain NPs:  Control regions for bkgs

Here (ttH, H→bb analysis) 7 regions:
→ 4 Signal Regions (SR) split in pT(Higgs)

67 
/ 
76

https://arxiv.org/abs/2111.06712


Categories arXiv:2111.06712

Signal regions only

Signal + Bkg regions

Include 
Background CRs

Backgrounds from 
simulation (large 
uncertainties!)

Backgrounds 
from control 
regions

Multiple analysis regions often used.
→ Exploit better sensitivity in some regions 
→ Constrain NPs:  Control regions for bkgs

Here (ttH, H→bb analysis) 7 regions:
→ 4 Signal Regions (SR) split in pT(Higgs)
→ 3 Background Control Regions (CR)
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Þ Combined PDF : 

No overlaps between categories  ⇒ No statistical correlations 
Þ can simply take product of individual PDFs.

Multiple categories allows to constrain nuisance parameters (e.g. B)

Categories

P (S ,B ;{ni
(k)
}
i=1... nevts

( k)

k=1. ..ncats) =∏
k=1

ncats

Pk ( S , B ;{ni
(k )
}
i=1 ...nevts

(k ) )

PDF for category k

arXiv:2111.06712

Multiple analysis regions often used.
→ Exploit better sensitivity in some regions 
→ Constrain NPs:  Control regions for bkgs

Here (ttH, H→bb analysis) 7 regions:
→ 4 Signal Regions (SR) split in pT(Higgs)
→ 3 Background Control Regions (CR)
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Counting model, the full version

Bin Yields or
Observable 

values
Sig/Bkg Shapes,

efficiencies

Systematics

P (μ ,{θ j } j=1... nNP
;{ni

(k)
}
i=1... ndata

( k )

k=1...ncat ,{θ j
obs
} j=1. .nNP

)=

∏
k=1

ncats

P [ ni ;μ ϵi , k( θ⃗ ) N S , i , k( θ⃗ ) + Bi , k ( θ⃗) ] ∏
j=1

n syst

G (θ j
obs ;θ j ;1)

DataPseudo-
experiments

MC
Auxiliary 

Data

Expected 
bin yield

POI NPs

× number of categories! 70 
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CL
s
 : Gaussian Bands

Usual Gaussian counting example with known B:
95% CLs upper limit on S:

Compute expected bands for S=0:
→ Asimov dataset ⇔ Ŝ = 0 : 
→ ± nσ bands:  

Sup,exp
0

= 1.96 σ S

Sup = Ŝ + [ Φ−1

(1 − 0.05 Φ ( Ŝ / σ S) ) ] σ S

Sup,exp
±n

= (±n + [ 1 − Φ
−1

( 0.05 Φ(∓n) ) ] ) σ S

Ŝ 

n Sexp
±n

  /√B

+2 3.66

+1 2.72

  0 1.96

-1 1.41

-2 1.05

CLs : 
● Positive bands 

somewhat reduced,
● Negative ones more so

σS = √B

with

Band width from
depends on S, for
non-Gaussian cases,different
values for each band...

σ S , A
2

=
S2

qS(Asimov)

Eur.Phys.J.C71:1554,2011

71 
/ 
76

https://arxiv.org/abs/1007.1727


Comparison with LEP/TeVatron definitions

Likelihood ratios are not a new idea:
• LEP: Simple LR with NPs from MC

– Compare μ=0 and μ=1
• Tevatron: PLR with profiled NPs

Both compare to μ=1 instead of best-fit μ̂ 

→ Asymptotically:
• LEP/Tevaton: q linear in μ Þ ~Gaussian
• LHC: q quadratic in μ Þ  ~χ2 

→ Still use TeVatron-style for discrete cases

H0
H1

μ=1
H1

H0

qLEP=−2 log
L(μ=0,~θ)

L (μ=1,~θ)

qTevatron=−2 log
L(μ=0, ^̂θ0)

L(μ=1, ^̂θ1)

LEP/Tevatron
LHC

μ=0 Andrey Korytov , EPS 20 11
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Wilks’ Theorem

To test the S=S
0
 hypothesis, consider

→ Assume Gaussian regime (e.g. large n
evts

, 

    Central-limit theorem) : then:

Wilk’s Theorem:  t(S
0
) is distributed as a χ2 

under S=S
0
:

Cowan, Cranmer, Gross & Vitells
Eur.Phys.J.C71:1554,2011

Z = √q0

f ( tS0
∣ S=S0 ) = f

χ
2
(ndof=1) ( tS0 )

 ⇒ In particular, the significance is:

S ≤ 0

q0

Observed 
value q

0
obs

χ2(n
dof

=1) 

large S

p-value

√q0

t (S0) =−2 log
L(S=S0)

L( Ŝ)
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Profiling Example: ttH→bb

Analysis uses low-S/B categories to constrain backgrounds.
→ Reduction in large uncertainties on tt bkg
→ Propagates to the high-S/B categories through the
statistical modeling 
Þ Care needed in the propagation (e.g. different 
kinematic regimes)

ATLAS- CO
NF- 2016-08

0

Fit
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Profiling Issues

Too simple modeling can have unintended effects
→ e.g. single Jet E scale parameter:  
Þ Low-E jets calibrate high-E jets – intended ?

Two-point uncertainties: 
→ Interpolation may not cover full configuration
space, can lead to too-strong constraints

Jet E

JE
S

θJES Pre-fit

Post-fit

Pre -fit constraint Post -fit constraint

W. Verkerke, SOS 2014
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Two-point uncertainties: 
→ Interpolation may not cover full configuration
space, can lead to too-strong constraints
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Test Statistics for Limit-Setting

t (μ0)=−2 log
L(μ=μ0)

L(μ̂ )

S0

H0H1

q(S0) = { −2 log
L(S=S0)

L( Ŝ)
  S0 > Ŝ

       0                      S0 ≤ Ŝ

S0Ŝ

H0

μ
0

H1
H1

“Two-sided” test

Interval :

H
0
 : μ = μ

0

H
1
 : μ ≠ μ

0

Limit-setting

H
0
 : S = S

0

H
1
 : S < S

0

Try to exclude values of S that are above Ŝ.

 ⇒ “One-sided” test : only interested in excluding above

Discovery is also one-
sided, for S>0 !

Try to exclude μ values
away from .μ̂

μ̂ 
μ1 μ2
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