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Lecture Plan

Statistics basic concepts (Monday/Tuesday)

Basic ingredients (PDFs, etc.)

Parameter estimation (maximum likelihood, least-squares, …)

Model testing (χ2 tests, hypothesis testing, p-values, …)

These lectures: Computing statistical results

Statistical modeling

Review of model testing

Computing results

Confidence intervals

Discovery

Upper limits

Systematics and profiling

Bayesian techniques

See also the Hands-on tutorial yesterday covering both sets of lectures.

https://indico.in2p3.fr/event/26179/timetable/?view=standard#1-basic-concepts-of-statistics
https://indico.in2p3.fr/event/26179/timetable/?view=standard#2-basic-concepts-of-statistics
https://indico.in2p3.fr/event/26179/timetable/?view=standard#13-hands-on-basic-statistitics


Statistical Modeling 
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Example 1: Z counting

Measure the cross-section (event rate) of the Z→ 
ee process

σ
fid
=
ndata−N bkg

C fid L

35000 ± 187

Phys. Lett. B 759 (2016) 601

175 ± 8

0.552 ± 0.006

(81 ± 2) pb-1

σfid = 0.781  ± 0.004 (stat)  ± 0.018 (syst) nb

“Single bin counting” : only data input is N
data

.

Fluctuations in 

the data counts

Other uncertainties 

(assumptions, parameter values)

4 / 
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http://dx.doi.org/10.1016/j.physletb.2016.06.023


Example 2: ttH→bb 

Event counting in different regions: 

Multiple-bin counting

Lots of information available

→ Potentially higher sensitivity

→ How to make optimal use of it ?

arXiv:2111.06712
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https://arxiv.org/abs/2111.06712


Example 3: unbinned modeling ATLAS-CONF-2017-045

All modeling done using continuous distributions:

P total(mγ γ ) =
S

S+B
P signal(mγ γ ;mH) +

B
S+B

Pbkg(mγ γ) 6 / 
70

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2017-045/


How to count

Common situation: produce many events N, select a (very) small fraction P

→ In principle, binomial process

→ In practice, P  1, N  1≪ ≫ ,  Poisson approximation.⇒
→ i.e. very rare process, but very many trials so still expect to see good events

Poisson distribution P (n ;λ)=e−λ λ
n

n!
(1−P)N−n

∼
n≪N

( 1−
λ
N )

N

∼
N≫1

e−λ

Mean = λ

Variance = λ

σ = √λ

Central limit theorem :

becomes Gaussian for large λ : 

P (λ) →
λ → ∞

G(λ , √λ ) 7 / 
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Statistical Model for Counting

Observable: number of events n

Typically both Signal and Background present:

Model has parameters S and B.

B can be known a priori or not (S usually not...)

→ Example: assume B is known, use measured n to find out about S.

P (n ;S , B)=e−(S + B) (S + B) n

n!
S : # of events from signal process

B : # of events from bkg. process(es)

8 / 
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Multiple counting bins

Count in bins of a variable  ⇒ histogram n
1 
... n

N
. 

(N : number of bins)

 

Shapes f typically obtained from simulated events (Monte Carlo)

→ HEP: typically excellent modeling from simulation, although some uncertainties 

need to be accounted for.

However not always possible to generate sufficiently large MC samples

MC stat fluctuations can create artefacts, especially for S  B.≪

P ({ni } ;S , B) =∏
i=1

N

e−(Sf S , i+Bf B , i)
(S f S , i+B f B , i)

ni

ni !

Per-bin fractions (=shapes)

of Signal and Background

Poisson distribution in each bin

9 / 
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Model typically includes:

• Parameters of interest (POIs) : what we want to measure

→ S, m
W

, …

• Nuisance parameters (NPs) : other parameters needed to define the model

→ Background levels (B)

→ For binned data, fsig
i
 , fbkg

i

NPs must be either:

→ Known a priori (within uncertainties) or

→ Constrained by the data

Model Parameters

10 
/ 
70



Takeaways

Description Observable Likelihood

Counting
n Poisson

Binned shape 
analysis

n
i
, i = 1 .. N

bins
Poisson product

Unbinned 
shape analysis

m
i
, i = 1 .. n

evts
Extended Unbinned Likelihood

P(ni ;S ,B)=∏
i=1

nbins

e−(S f i
sig
+ B f i

bkg
) (S f i

sig
+ B f i

bkg
)
n i

ni !

P(n;S ,B)=e−(S + B) (S + B)
n

n!

P(mi ;S ,B)=
e−(S + B)

nevts!
∏
i=1

nevts

S Psig(mi)+B Pbkg(mi)

Random data must be described using a statistical model:

Model can include multiple categories, each with a separate description

Includes parameters of interest (POIs) but also nuisance parameters (NPs)

Next step: use the model to obtain information on the POIs
11 
/ 
70



Hypothesis Testing 
and discovery

12 
/ 
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Discovery Testing

We see an unexpected feature in our data, is it 

a signal for new physics or a fluctuation ?

e.g. Higgs discovery :  “We have 5σ” !

“5σ”

Phys. Lett. B 716 (2012) 1-29 13 
/ 
70

http://www.sciencedirect.com/science/article/pii/S037026931200857X


Say we have a Gaussian measurement with

a background B=100, and we measure n=120

Did we just discover something ? Maybe :-) (but not very likely)

The measured signal is S = 20. 

Uncertainty on B is √B = 10

 ⇒ Significance Z = 2

 ⇒ we are ~2σ away from S=0.

Gaussian quantiles : 

Z = 2 happens p
0 
~ 2.3% of the time if S=0

P-value: 

 ⇒ Rare, but not exceptional

Discovery Testing

B=100

√B=10

n

B=100

Obs: 120n

Obs: 120

Z =
S

√B

p0 = 1−Φ(Z)
Φ(Z) =∫

−∞

Z
G (u ;0,1) du

S = nobs – B 

14 
/ 
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Discovery Testing

n
obs S Z p

0

105 5 0.5σ 31%

110 10 1σ 16%

120 20 2σ 2.3%

130 30 3σ 0.1%

150 50 5σ 3 10-7

B=100

 √B=10

n

Evidence

Discovery

105
110

130 150

B=100

n
105
110

130

150

● Determine S

● Compute Z and p
0
 

120120

Straightforward in this Gaussian case

Need to be able to do the same in 

more complex cases:

15 
/ 
70



What is PDF is for

Generate 

P (λ=5) 2, 5, 3, 7, 4, 9, ….
Each entry = separate “experiment”

Unbinned

Model describes the distribution of the observable: P(data; parameters)

⇒ Possible outcomes of the experiment, for given parameter values

Can draw random events according to PDF : generate pseudo-data

16 
/ 
70



What is PDF is also for: Likelihood

Estimate

P (λ=?) 2

Likelihood:  L(parameters) = P(data; parameters)

?

→ same as the PDF, but seen as function of the parameters

Model describes the distribution of the observable: P(data; parameters)

 ⇒ Possible outcomes of the experiment, for given parameter values

We want the other direction: use data to get information on parameters

17 
/ 
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Maximum Likelihood Estimation

To estimate a parameter μ, find the value μ̂ that maximizes L(μ)

Observed 
Value n=5

S = 20S = 5

S = 0.5 

n
s

L(S) max 
@ Ŝ = 5

given n=5

μ̂ = argmax L(μ)

n
L(

S; 
n=

5)

P(
n;

 S)

Maximum Likelihood 

Estimator (MLE) :μ̂

MLE: the value of μ for which this data was most likely to occur

The MLE is a function of the data – itself an observable

No guarantee it is the true value (data may be “unlikely”) but sensible estimate 18 
/ 
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Gaussian case

data

 Best-fit of Gaussian PDF mean to observed data
19 
/ 
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Gaussian case

data

 Best-fit of Gaussian PDF mean to observed data
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Multiple Gaussian bins

-2 log Likelihood:

Maximum likelihood    Minimum χ⇔ 2

  ⇔ Least-squares

      minimization

λ (μ) =−2 log L(μ)=∑
i=1

N bins

 (
ni−μ i

σ i )
2

However typically need to perform non-linear minimization.

HEP practice:

● MINUIT (C++ library within ROOT, numerical gradient descent)

● scipy.minimize – using NumPy/TensorFlow/PyTorch/... backends

→ Usual methods – gradient-based, etc.
20 
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Hypothesis Testing

Null Hypothesis: assumption on POIs, say value of S (e.g. H
0
 : S=0)

→ Goal : decide if H
0
 is favored or disfavored using a test based on the data

  Possible 
 outcomes:

Data disfavors H
0
 

(Discovery claim)

Data favors H
0

(Nothing found)

H
0
 is false 

(New physics!)
 Discovery! 

 Missed
 discovery

H
0
 is true 

(Nothing new)

 False
 discovery

 No new physics, 
 None found

 "... the null hypothesis is never proved or established, but is possibly disproved, in the course 
of experimentation. Every experiment may be said to exist only to give the facts a chance of 
disproving the null hypothesis." – R. A. Fisher 21 

/ 
70



Hypothesis Testing

Hypothesis: assumption on model parameters, say value of S (e.g. H
0
 : S=0)

 
Data disfavors H

0
 

(Discovery claim)
Data favors H

0

(Nothing found)

H
0
 is false 

(New physics!)
Discovery! Type-II error

(Missed discovery)

H
0
 is true 

(Nothing new)
Type-I error 
(False discovery)

No new physics, 
none found

Lower Type-I errors ⇔ Higher Type-II errors and vice versa: cannot have everything!

S = 0

Type-I error
p-value

BSM

Type-II Error
→ Goal: test that minimizes Type-II 

errors for a given level of Type-I error.

Discriminant observable

p-value, significance

22 
/ 
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ROC Curves

→ Goal: test that minimizes Type-II 

errors for given level of Type-I error.

→ Usually set predefined level of

acceptable Type-I error (e.g. “5σ”)

S = 0

Type-I error
p-value

BSM

Type-II Error

1- εType-II (= εS)

1-
 ε Ty

pe
-I (

=1
 - 

ε B)

1

1

Better

Be
tte

r

0

No discrimination

Increasingly
more powerful
discriminators

“Receiver operating characteristic” 

(ROC) Curve:

→ Shows Type-I vs Type-II rates for 

different selections

→ All curves monotonically 

decrease from (0,1) to (1,0)

→ Better discriminators more bent 

towards (1,1)

Discriminant observable
23 
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Hypothesis Testing with Likelihoods

Neyman-Pearson Lemma

When comparing two hypotheses H
0
 and H

1
, the 

optimal discriminator is the Likelihood ratio (LR) 

e.g. 

As for MLE, choose the hypothesis that is more likely given the data we have.

L(H1 ;data)

L(H0 ; data)

L(S= 5 ; data)

L(S= 0 ; data)
Caveat: Strictly true only for simple 
hypotheses (no free parameters)

→ Minimizes Type-II uncertainties for given level of Type-I uncertainties

→ Always need an alternate hypothesis to test against the null.

→ In the following: all tests based on LR, will focus on p-values (Type-I errors),

trusting that Type-II errors are anyway as small as they can be...
24 
/ 
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Discovery: Test Statistic

Discovery :

• H
0
 : background only (S = 0) against

• H
1
: presence of a signal (S > 0)

→ For H
1
, any S > 0 is possible, which to use ? The one preferred by the data, Ŝ.

 ⇒ Use Likelihood ratio:

→ In fact use the test statistic

Note: for Ŝ < 0, set q
0
=0 to reject negative signals (“one-sided test statistic”)

S=0

H0
H1

Cowan, Cranmer, Gross & Vitells, 
Eur.Phys.J.C71:1554,2011

L(S=0)

L( Ŝ)

q0 = −2 log
L(S=0)

L( Ŝ)

25 
/ 
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https://arxiv.org/abs/1007.1727


Discovery p-value

Large values of

 ⇒ observed Ŝ is far from 0

 ⇒ H
0
(S=0) disfavored compared to H

1
(S≠0).

How large q
0
 before we can exclude H

0
 ? 

(and claim a discovery!)

→ Need small Type-I rate (falsely rejecting H
0
)

→ Type-I error rate, a.k.a. the p-value : 

= Fraction of outcomes that are 

At  least as extreme (signal-like) as data, when H
0
 is true (no signal).

−2 log
L(S=0)

L( Ŝ)

Ŝ ≤ 0

Observed 
value q

0
obs

data 

prefer

S = 0

data 

prefer

S > 0

f(q
0
|S=0) 

p0 =∫
q0

obs

∞

f (q0∣S=0) dq0

large Ŝ

q
0

if:

26 
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Asymptotic distribution of q
0

 Gaussian regime for Ŝ (e.g. large n
evts

, Central-limit theorem) :

Wilk’s Theorem: q
0
 distributed as χ2 (n

par
) for S = 0

Cowan, Cranmer, Gross & Vitells
Eur.Phys.J.C71:1554,2011

Z = √q0

L(S) = exp[− 1
2
( S− Ŝσ )

2

] ⇒ q 0 = ( Ŝσ )
2

⇒ √ q 0 =
Ŝ
σ ∼ G (0 ,1) ⇒ q 0 ∼ χ

2
(ndof=1 )

 ⇒ n
par

 = 1 :  √q
0
 is distributed as a Gaussian

 ⇒ Can compute p-values from Gaussian quantiles

 ⇒ Even more simply, the significance is:

Typically works well already for for event counts of O(5) and 

above   Widely applicable⇒

S ≤ 0

q
0

Observed 

value q
0

obs

χ2(n
dof

=1) 

large S

p-value

√q
0

(*) 1-line “proof” : asymptotically L and S are Gaussian, so

p0 = 1 − Φ(√ q0)

27 
/ 
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https://arxiv.org/abs/1007.1727


Homework 1: Gaussian Counting

Count number of events n in data

→ Assume n large enough so process is Gaussian

→ Assume B is known, and we measure S

Likelihood :

→ Find the best-fit value (MLE) Ŝ for the signal

    (can use λ = -2 log L instead of L for simplicity)

→ Find the expression of q
0
 for Ŝ > 0.

→ Find the expression for the significance

L(S ;nobs) = e
−

1
2 (
nobs−(S+B)

√S+B )
2

S+B

√(S+B)
nobs

Z =
Ŝ

√B
28 
/ 
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Homework 2: Poisson Counting

Same problem but now not assuming Gaussian behavior:

→ As before, compute Ŝ, and q
0

→ Compute Z = √q
0
, assuming asymptotic behavior

Solution:

Exact result can be obtained using

pseudo-experiments → close to √q
0
 result

L(S ;n) = e−(S+ B)
(S+B)n

Z= √ 2 [ ( Ŝ+B) log ( 1 +
Ŝ
B ) − Ŝ ]

Asymptotic formulas justified by Gaussian

regime, but remain valid even for small 

values of S+B (down to 5 events!)
See G. Cowan’s slides for the 
case with B uncertainty

Eur.Phys.J.C71:1554,2011

(Can remove the n! constant since we’re only 

dealing with L ratios)

29 
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http://www-conf.slac.stanford.edu/statisticalissues2012/talks/glen_cowan_slac_4jun12.pdf
https://arxiv.org/abs/1007.1727


Discovery Thresholds

Evidence : 3σ  p⇔
0
 = 0.3%   1 chance in 300⇔

Discovery:  5σ  p⇔
0
 = 3 10-7   1 chance in 3.5M⇔

Why so high thresholds ? (from Louis Lyons):

• Look-elsewhere effect: searches typically cover 

multiple independent regions  Higher chance⇒

to have a fluctuation “somewhere”

N
trials

 ~ 1000 : local 5σ   O(10⇔ -4) more reasonable

• Mismodeled systematics: factor 2 error in 

syst-dominated analysis  factor 2 error on Z…⇒

• History: 3σ and 4σ excesses do occur regularly, for the reasons above

Extraordinary claims require extraordinary evidence!
30 
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https://arxiv.org/abs/1409.1903


Takeaways

Given a statistical model P(data; μ), define likelihood L(μ) = P(data; μ)

To estimate a parameter, use the value μ̂ that maximizes L(μ) → best-fit value

To decide between hypotheses H
0
 and H

1
, use the likelihood ratio

To test for discovery, use

For large enough datasets (n >~ 5), 

For a Gaussian measurement,

For a Poisson measurement,

L(H 0)

L(H 1)

q0 =−2 log
L(S=0)

L( Ŝ)
Ŝ ≥ 0

Z = √ q0

Z =
Ŝ

√B

Z = √ 2 [ ( Ŝ+B) log ( 1 +
Ŝ
B ) − Ŝ ] 31 
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Confidence Intervals

32 
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Confidence Intervals

Last lecture we saw how to estimate (=compute) the value of a parameter

However we also need to estimate the associated uncertainty.

What is the meaning of an 

uncertainty ?

We don’t know what the true 

value is, but there is a

68% chance that it is within 

the error bar

μ̂=argmax L(μ)Maximum Likelihood 

Estimator (MLE) μ̂:

33 
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Gaussian confidence intervals

P (μ − σ < n < μ + σ ) ≥ 68.3 %

P (n− σ < μ < n + σ) ≥ 68.3 %

The reported interval n ± σ will contain the true value of μ 68.3% of the time

Consider a Gaussian likelihood:

L(μ) = exp [− 1
2

( n−μ
σ )

2

]

Still a statement on n!

μ = n ± σ at 68% CL (“1σ”)

34 
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Gaussian confidence intervals

Experiment 6

Experiment 4

Experiment 3

Experiment 2

Experiment 5

Experiment 1

μ*–σ     μ*    μ*+σ

For each experiment, get the interval 

Frequentist interpretation

If we would repeat the same 

experiment multiple times,  

with true value μ*, then 68.3% 

of the 1σ intervals would 

contain μ*.

→ Crucially, this works even if 

we do not know μ* ! 

The reported interval n ± σ will contain the true value of μ 68.3% of the time

μ = n ± σ at 68% CL (“1σ”)
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Neyman Construction
Tr

u
e

 v
al

u
e

 μ
*

Observed value μ̂

68% intervals for  μ̂

P(μ; μ*)

Peak Position

General case: build 1σ intervals of observed values for each true value 

 ⇒ Confidence belt
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Inversion using the Confidence Belt
Tr

u
e 

va
lu

e 
μ

*

Observed value μ̂

General case: Intersect belt with given μ̂
 
, get 

→ Same as before for Gaussian, works also when P(μobs|μ) varies with μ.

P (μ̂ − σμ

-
< μ

*
< μ̂ + σμ

+
) = 68%
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+
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 μ̂ Observed value μ̂
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Inversion using the Confidence Belt
Tr

u
e 

va
lu

e 
μ

*

σ
μ

+

μ̂

σ
μ

-

 μ̂ Observed value μ̂

General case: Intersect belt with given μ̂
 
, get 

→ Same as before for Gaussian, works also when P(μobs|μ) varies with μ.

σ
μ
 comes from the model, 

not the data

→ data only provides .μ̂

σ
μ

+ from negative side of  intervalsμ̂

σ
μ

- from positive side of  intervalsμ̂

Problem: Doesn’t generalize well to many 

parameters in realistic models

P (μ̂ − σμ

-
< μ

*
< μ̂ + σμ

+
) = 68%
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General case: Likelihood Intervals

Confidence intervals from L(μ):

• Test various values μ using the Profile 

Likelihood Ratio t(μ)

• Minimum (=0) for μ= , rises away from .μ̂ μ̂

• Good properties thanks to the Neyman-

Pearson lemma.

Probability to observe 

the data for a given μ.

Probability to observe

the data for best-fit μ. ̂

ATLAS-CONF-2017-047 Gaussian L(μ):

● t(μ) is parabolic, distributed as a χ2

● Minimum occurs at μ = μ̂

● 1σ interval [μ
- 
, μ

+
] given by t(μ

±
)= 1

L (μ ) = exp [− 1
2

( n−μ
σ )

2

]

t (μ ) =−2 log
L(μ)

L(μ̂)

t (μ) = ( n−μ
σ )

2
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General case: Likelihood Intervals

ATLAS-CONF-2017-047 
General case:

● Generally not a perfect parabola

● Minimum still at μ = μ̂

Asymptotic approximation

● Compute t(μ) using the exact L(μ)

● Assume t(μ) ~ χ2 as for Gaussian (”Wilks’ 

Theorem”)

1σ interval [μ
- 
, μ

+
] given by t(μ

±
)= 1

t (μ ) =−2 log
L(μ)

L(μ̂)

Confidence intervals from L(μ):

• Test various values μ using the Profile 

Likelihood Ratio t(μ)

• Minimum (=0) for μ= , rises away from .μ̂ μ̂

• Good properties thanks to the Neyman-

Pearson lemma.

39 
/ 
70

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2017-047/


Consider a parameter m (e.g. Higgs boson mass)

whose measurement is Gaussian with known

width σ
m

, and we measure m
obs

:

→ Compute the best-fit value (MLE)  m̂
→ Compute t

m

→ Compute the 1-σ (Z=1, ~68% CL) interval on m

Solution:

→ As expected!

→ General method can be applied in the same way to more complex cases

m

σm

mobs

m = mobs ± σm

L(m;mobs) = e
−

1
2 (
m−mobs

σm )
2

Homework 3: Gaussian Case
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2D Example: Higgs σ
VBF

 vs. σ
ggF

ATLAS-CONF-2017-047 

By
 K

ris
hn

av
ed

al
a 

- O
wn

 w
or

k, 
CC

 BY
-SA

 3.
0, 

ht
tp

s:/
/c

om
m

on
s.w

iki
m

ed
ia

.o
rg

/w
/in

de
x.p

hp
?c

ur
id

=1
52

78
82

6

tggF,VBF

ggF

VBF

CL 68.3% (1σ) 95% 95.5% (2σ)

1D Z2 1.00 3.84 4.00

2D Z2 2.30 5.99 6.18

Z2

 t < 2.30
t < 5.99

Gaussian case: elliptic 

paraboloid surface

t =−2 log
L(X0,Y 0)

L( X̂ , Ŷ )
∼ χ

2
(N dof=2)
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Reparameterization

Start with basic measurement in terms of e.g. σ´B

→ How to measure derived quantities (couplings, parameters in some theory model, etc.) ?  
→ just reparameterize the likelihood:

e.g. Higgs couplings: σ
ggF

, σ
VBF

 sensitive to Higgs coupling modifiers κ
V
, κ

F
. 

L(σ ggF ,σVBF) L(σ ggF( κV ,κF) ,σVBF ( κV ,κF)) ≡ L'( κV ,κF)
σ ggF→σ ggF (κV , κF)

σVBF→σVBF (κV , κF)
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Upper Limits
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Hypothesis tests for Limits

If no signal in data, testing for discovery not very relevant (report 0.2σ excess ?)

→ More interesting to exclude large signals 

  ⇒ Upper limits on signal yield

→ Typically report 95% CL upper limit (p-value = 5%) : “S < S
0
 @ 95% CL”

?
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Hypothesis tests for Limits

If no signal in data, testing for discovery not very relevant (report 0.2σ excess ?)

→ More interesting to exclude large signals 

  ⇒ Upper limits on signal yield

→ Typically report 95% CL upper limit (p-value = 5%) : “S < S
0
 @ 95% CL”

Excluded
95% CL Upper limit
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Test Statistics for Limit-Setting

t (μ0)=−2 log
L(μ=μ0)

L(μ̂ )

S0

H0H1

q(S0) = { −2 log
L(S=S0)

L( Ŝ)
  S0 > Ŝ

       0                      S0 ≤ Ŝ

S0Ŝ

H0

μ
0

H1
H1

“Two-sided” test

Interval :

H
0
 : μ = μ

0

H
1
 : μ ≠ μ

0

Limit-setting

H
0
 : S = S

0

H
1
 : S < S

0

Try to exclude values of S that are above Ŝ.

 ⇒ “One-sided” test : only interested in excluding above

Discovery is also one-

sided, for S>0 !

Try to exclude μ values

away from .μ̂

μ̂ 
μ1 μ2
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Inversion : Getting the limit for a given CL

Procedure:

→ Compute q(S
0
) for some S

0
,

     get the exclusion p-value p(S
0
).

     Asymptotics:

→ Adjust S
0
 to get the desired exclusion

     Asymptotics: need √q(S
95

) = 1.64 for 95% CL

S1 : (too) strong exclusion 

CL p Region
90% 10% √q(S) > 1.28
95% 5% √q(S) > 1.64

99% 1% √q(S) > 2.33
p (S0) = 1 − Φ (√ q(S0) )

√qS1

p-value for qS1

√q(S) = 1.64
(p = 5%)
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Inversion : Getting the limit for a given CL

Procedure:

→ Compute q(S
0
) for some S

0
,

     get the exclusion p-value p(S
0
).

     Asymptotics:

→ Adjust S
0
 to get the desired exclusion

     Asymptotics: need √q(S
95

) = 1.64 for 95% CL

S1 : (too) strong exclusion S2 : no exclusion 

CL p Region

90% 10% √q(S) > 1.28

95% 5% √q(S) > 1.64

99% 1% √q(S) > 2.33p (S0) = 1 − Φ (√ q(S0) )

√qS2
√qS1

√q(S) = 1.64
(p = 5%)
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Inversion : Getting the limit for a given CL

Procedure:

→ Compute q(S
0
) for some S

0
,

     get the exclusion p-value p(S
0
).

     Asymptotics:

→ Adjust S
0
 to get the desired exclusion

     Asymptotics: need √q(S
95

) = 1.64 for 95% CL

S1 : (too) strong exclusion S2 : no exclusion S3 : 95% exclusion 

CL p Region

90% 10% √q(S) > 1.28

95% 5% √q(S) > 1.64

99% 1% √q(S) > 2.33p (S0) = 1 − Φ (√ q(S0) )

√qS2
√qS1

√q(S) = 1.64
(p = 5%)

√qS3
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Homework 4: Gaussian Example

Usual Gaussian counting example with known B:

Reminder: Significance: Z = Ŝ/σ
S

→ Compute q
S0

→ Compute the 95% CL upper limit on S, S
up

, by solving √q
S0

 = 1.64.

Solution:

S+B

σS 
n

Sup = Ŝ + 1.64σ S  at 95 %  CL

L(S ;n) = e
−

1
2 ( n−(S+ B)

σS )
2

σ
S
 ~ √B for small S
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CL
s

Upper limits sometimes take negative

values (exclude all S>0 !)

Known feature – to avoid, usual 

solution in HEP is to use CL
s 
”modified p-value” 

 ⇒ Compute exclusion relative to that of S=0

→ Somewhat ad-hoc, but good properties…

Ŝ ~ 0 ⇒ p
B
 ~ O(1), p

CLs 
~ p(S

0
) no change

Ŝ  0 ≪ ⇒ p
B
  1, ≪ p

CLs
  p(S≫

0
) no exclusion at S=0

 

pCLs
=
p(S0)

pB

A. Read, J.Phys. G28 (2002) 2693-2704

σS = 1

Usual p-value 
for S=S0

P-value 
for S=0 

Drawback: overcoverage 

→ limit is claimed to be 95% CL, but actually >95% CL for small p
B
.
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Usual Gaussian counting example with known B:

Reminder 

CL
s+b

 limit:  

CL
s
 upper limit :

→ Compute p
S0

 (same as for CLs+b)

→ Compute 1-p
B
 (hard!)

Solution: 

                      for Ŝ ~ 0,  

S+B

n
σS 

Sup = Ŝ + 1.64σ S  at 95 % CL

Sup = Ŝ + [ Φ−1 ( 1 − 0.05 Φ ( Ŝ / σ S ) ) ] σ S  at 95 %  CL

L(S ;n) = e
−

1
2 ( n−(S+B)

σS )
2

σ
S
 ~ √B for small S

Homework 5: CL
s
 : Gaussian Case

Sup = Ŝ + 1.96 σ S  at 95 %  CL

49 
/ 
70



Homework 6: CL
S
 Rule of Thumb for n

obs
=0

Same exercise, for the Poisson case with n
obs

 = 0. Perform an exact computation of the 

95% CLs upper limit based on the definition of the p-value: 

p-value : sum probabilities of cases at least as extreme as the data

Hint: for n
obs

=0, there are no “more extreme” cases (cannot have n<0 !), so

p
S0

 = Poisson(n=0 | S
0
+B) and 1 - p

B
 = Poisson(n=0 | B)

Solution:

 ⇒ Rule of thumb: when n
obs 

= 0, the 95% CL
s
 limit is 3 events (for any B)

Sup(nobs=0) = log(20) = 2.996 ≈ 3
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Reparameterization: Limits

CMS Run 2 Monophoton Search: measured 

N
S
 in a counting experiment reparameterized  

according to various DM models
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Generating Pseudo-data

Model describes the distribution of the observable: P(data; parameters)

Þ Possible outcomes of the experiment, for given parameter values

Can draw random events according to PDF : generate pseudo-data

Generate 

P ( λ=5) 2, 5, 3, 7, 4, 9, ….
Each entry = separate “experiment”

Unbinned
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Expected Limits: Toys

Expected results: median outcome under a given hypothesis

→ usually B-only for searches, but other choices possible.

Two main ways to compute:

→ Pseudo-experiments (toys):

• Generate a pseudo-dataset in B-only hypothesis

• Compute limit

• Repeat and histogram the results

• Central value = median, bands 
based on quantiles

Computed limit

95% of toys68% of toys

    R
epeat fo

r each mass

Nu
m

be
r o

f T
oy

s

Eur.Phys.J.C71:1554,2011

Phys. Lett. B 775 (2017) 105
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Expected Limits: Asimov Datasets

Expected results: median outcome under a given hypothesis

→ usually B-only for searches, but other choices possible.

Two main ways to compute:

→ Asimov Datasets

• Generate a “perfect dataset” – e.g. for binned
data, set bin contents carefully, no fluctuations.

• Gives the median result immediately:

median(toy results) ↔ result(median dataset) 

• Get bands from asymptotic formulas:
Band width

⊕ Much faster (1 “toy”)

⊖ Relies on Gaussian approximation

σ S0 , A
2

=
S0

2

qS0
(Asimov)

Strictly speaking, Asimov dataset if

 = XX̂
0
 for all parameters X, 

where X
0
 is the generation value
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Toys: Example  JHEP 10 (2017) 112

ATLAS X→Zγ Search: covers 200 GeV < m
X
 < 2.5 TeV

For m
X
 > 1.6 TeV, low event counts  derive results from toys⇒

Asimov results (in gray) give optimistic result compared to toys (in blue) 
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Upper Limit Examples
ATLAS 2015-2016 4l aTGC Search

Phys. Lett. B 775 (2017) 105

Phys. Re v. D 92 (2015) 0 12004 
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Takeaways

Confidence intervals: use

→ Crossings with t
μ0

 = Z2 for ±Zσ intervals (in 1D)

Gaussian regime: μ =  ± σμ̂
μ
 (1σ interval)

Limits : use LR-based test statistic:

→ Use CL
s
 procedure to avoid negative limits

Gaussian regime, n~0: S < Ŝ + 1.96σ at 95% CL

Poisson regime, n=0 : S
up

 = 3 events at 95% CL

qS0
= −2 log

L(S=S0)

L( Ŝ)
S0 ≥ Ŝ

tμ 0
=−2 log

L(μ=μ0)

L(μ̂ )
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Extra Slides
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Rare Processes ?

HEP : almost always use Poisson

distributions. Why ?

ATLAS : 

• Event rate ~ 1 GHz

(L~1034 cm-2s-1~10 nb-1/s, σ
tot

~108 nb, )

• Trigger rate ~ 1 kHz

(Higgs rate ~ 0.1 Hz)

 ⇒ p ~ 10-6  1 ≪ (p
H→γγ

 ~ 10-13)

A day of data: N ~ 1014  1 ≫

Þ Poisson regime! Similarly true in many 

other physics situations.

W.J. Stirling, private 
communication

(Large N = design requirement, to get not-too-small λ=Np...)
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Unbinned Shape Analysis

Observable: set of values m
1
... m

n
, one per event

→ Describe shape of the distribution of m

→ Deduce the probability to observe m
1
... m

n

H→γγ-inspired example:

• Gaussian signal 

• Exponential bkg

 ⇒ Total PDF for a single event:

 ⇒ Total PDF for a dataset

P signal(m) = G(m;mH ,σ)

P total (m) =
S

S+B
G (m;mH ,σ) +

B
S+B

α e−α m

P bkg(m) = α e−αm

slope α

mH

σ

Signal

Background

Total

P ({mi }i=1…n) = e−(S+B) (S+B)
n

n! ∏
i=1

n
S

S+B
G(mi ;mH ,σ) +

B
S+B

α e−αmi

Probability to observe
the value miProbability to observe n events

Expected yields : S, B
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Poisson Example

Assume Poisson distribution with B = 0 :
Say we observe n=5, want to infer information on the parameter S

→ Try different values of S for a fixed data value n=5

→ Varying parameter, fixed data: likelihood 

P (n ;S) = e−S
Sn

n!

L(S ;n=5)=e−S
S5

5!

Observed 
Value n=5

n 61 
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Poisson Example

Assume Poisson distribution with B = 0 :
Say we observe n=5, want to infer information on the parameter S

→ Try different values of S for a fixed data value n=5

→ Varying parameter, fixed data: likelihood 

P (n ;S) = e−S
Sn

n!

L(S ;n=5)=e−S
S5

5!

Observed 
Value n=5P(S = 0.5)

Low
likelihood

n

Read L(S; n=5) here
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Poisson Example

Assume Poisson distribution with B = 0 :
Say we observe n=5, want to infer information on the parameter S

→ Try different values of S for a fixed data value n=5

→ Varying parameter, fixed data: likelihood 

P (n ;S) = e−S
Sn

n!

L(S ;n=5)=e−S
S5

5!
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Value n=5

P(S = 5)
High
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Read L(S; n=5) here

61 
/ 
70



Poisson Example

Assume Poisson distribution with B = 0 :
Say we observe n=5, want to infer information on the parameter S

→ Try different values of S for a fixed data value n=5

→ Varying parameter, fixed data: likelihood 

P (n ;S) = e−S
Sn

n!

L(S ;n=5)=e−S
S5

5!

Observed 
Value n=5

P(S = 20)
Low

likelihood

P(S = 5)
High

likelihood

P(S = 0.5)
Low

likelihood

n

Read L(S; n=5) here
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Poisson Example

Assume Poisson distribution with B = 0 :
Say we observe n=5, want to infer information on the parameter S

→ Try different values of S for a fixed data value n=5

→ Varying parameter, fixed data: likelihood 

P (n ;S) = e−S
Sn

n!

L(S ;n=5)=e−S
S5

5!

Observed 
Value n=5

P(S = 5)
High

likelihood

P(S = 0.5)
Low

likelihood

n

L(S; n=5):
Likelihood 
of S for n=5

S

Read L(S; n=5) here
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MLEs in Shape Analyses

Binned shape analysis:

L(S ;ni) = P(ni ;S) =∏
i=1

N

Pois(ni ;S f i + Bi)

λPois(S) =−2 log L(S) =−2∑
i=1

N

log Pois(ni ;S f i + Bi)

λGaus(S) =∑
i=1

N

−2 logG (ni ;S f i + Bi ,σ i) =∑
i=1

N

( ni−(S f i + Bi)
σ i )

2

χ2 formula!

In both cases, MLE  ⇔ Best Fit

Maximize global L(S) (each bin may prefer a different S)
In practice easier to minimize 

In the Gaussian limit

→ Gaussian MLE (min χ2 or min λGaus) : Best fit value in a χ2 (Least-squares) fit
→ Poisson  MLE (min λPois) : Best fit value in a likelihood fit (in ROOT, fit option “L”)
In RooFit, λPois ⇒ RooAbsPdf::fitTo(), λGaus ⇒ RooAbsPdf::chi2FitTo().

Needs a computer...
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H→γγ

Estimate the MLE Ŝ of S ?

→ Perform (likelihood) best-fit of 
model to data
⇒ fit result for S is the desired Ŝ.

In particle physics, often use the 
MINUIT minimizer within ROOT. 

L(S ,B ;mi)=e
−(S + B) ∏

i=1

nevts

S Psig (mi)+B Pbkg(mi)

ATLAS-CONF-2017-045

Ŝ 
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MLE Properties

• Asymptotically Gaussian 
        and unbiased 

• Asymptotically Efficient : σμ̂ is the lowest possible value (in the limit n®¥) 
among consistent estimators.
→ MLE captures all the available information in the data

• Also consistent: μ̂ converges to the true value for large n,

• Log-likelihood : Can also minimize  λ = -2 log L
→ Usually more efficient numerically 

→ For Gaussian L, λ is parabolic: 
• Can drop multiplicative constants in L (additive constants in λ)

P (μ̂ ) ∝ exp (−
(μ̂−μ

*
)

2

2σ μ̂

2 )     for n → ∞

for large enough datasets

μ̂ →
n→∞

μ
*

Standard deviation of the distribution of μ̂ 

⟨ μ̂ ⟩ = μ
*  for n → ∞
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Extra: Fisher Information

Fisher Information:

Measures the amount of information available in the measurement of μ.

Gaussian likelihood:

→ smaller σ
Gauss

  more information.⇒

Cramer-Rao bound:

For any estimator . μ̃

→ cannot be more precise than allowed by information in the measurement.

Efficient estimators reach the bound : e.g. MLE in the large dataset limit.

I (μ) = ⟨ ( ∂
∂μ

log L(μ) )
2

⟩ =− ⟨ ∂
2

∂μ
2 log L(μ) ⟩

I (μ ) =
1

σGauss
2

Var(~μ ) ≥
1

I (μ )

Gaussian case: 
● For a Gaussian estimator μ̃ 

● MLE: Var(μ̂) = σμ̂
2 

P (~μ) ∝ exp (−
(~μ−μ

*
)

2

2σ~μ

2 )

Cramer-Rao: Var(μ̃) ≥ σGauss
2 = σμ̃

2  
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Some Examples
High-mass X→γγ Search: JHEP 09 (2016) 1

Higgs Discovery: Phys. Lett. B 716 (2012) 1-29

p0 = 1.8 ´ 10-9  Û  Z = 5.9σ

3.9σ
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Upper Limit Pathologies

Upper limit:   Sup ~ Ŝ + 1.64 σS.

Problem: for negative Ŝ, get very good 
observed limit. 
→ For Ŝ sufficiently negative, even Sup < 0 ! 

How can this be ?
→ Background modeling issue ?… Or:
→ This is a 95% limit ⇒ 5% of the time, the 
limit wrongly excludes the true value,
e.g. S*=0.

Options
→ live with it: sometimes report limit < 0
→ Special procedure to avoid these cases,
since if we assume S must be >0, we know 
a priori this is just a fluctuation.

σS = 1
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CL
s

Usual solution in HEP : CLs.
→ Compute modified p-value 

⇒ Rescale exclusion at S0 by exclusion at S=0.
→ Somewhat ad-hoc, but good properties…

Ŝ compatible with 0 : pB ~ O(1)
pCLs ~ pS0 ~ 5%, no change.

Far-negative Ŝ : 1 - pB ≪ 1
pCLs~ pS0/(1-pB) ≫ 5%
→ lower exclusion ⇒ higher limit, 
    usually >0 as desired

pCLs
=

pS0

(1 − pB)

A. Read, J.Phys. G28 (2002) 2693-2704

σS = 1

The usual p-value under 
H(S=S0) (=5%)

The p-value computed 
under H(S=0)

Drawback: overcoverage 
→ limit is claimed to be 95% CL, but actually >95% CL for small 1-pB. 68 
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http://inspirehep.net/record/599622?ln=en


CL
s
 : Gaussian Bands

Usual Gaussian counting example with known B:
95% CLs upper limit on S:

Compute expected bands for S=0:
→ Asimov dataset ⇔ Ŝ = 0 : 
→ ± nσ bands:  

Sup,exp
0

= 1.96 σ S

Sup = Ŝ + [ Φ−1

(1 − 0.05 Φ ( Ŝ / σ S) ) ] σ S

Sup,exp
±n

= (±n + [ 1 − Φ
−1

( 0.05 Φ(∓n) ) ] ) σ S

Ŝ 

n Sexp
±n

  /√B

+2 3.66
+1 2.72
  0 1.96
-1 1.41
-2 1.05

CLs : 
● Positive bands 

somewhat reduced,
● Negative ones more so

σS = √B
with

Band width from
depends on S, for
non-Gaussian cases,different
values for each band...

σ S , A
2

=
S2

qS(Asimov)

Eur.Phys.J.C71:1554,2011
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https://arxiv.org/abs/1007.1727


Comparison with LEP/TeVatron definitions

Likelihood ratios are not a new idea:

• LEP: Simple LR with NPs from MC

– Compare μ=0 and μ=1

• Tevatron: PLR with profiled NPs

Both compare to μ=1 instead of best-fit μ̂ 

→ Asymptotically:

• LEP/Tevaton: q linear in μ Þ ~Gaussian

• LHC: q quadratic in μ Þ  ~χ2 

→ Still use TeVatron-style for discrete cases

H0
H1

μ=1
H1

H0

qLEP=−2 log
L(μ=0,~θ)

L (μ=1,~θ)

qTevatron=−2 log
L(μ=0, ^̂θ0)

L(μ=1, ^̂θ1)

LEP/Tevatron
LHC

μ=0

Andrey Korytov , EPS 20 11
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