

IN2P3 School of Statistics 2022

Computing Statistical Results

Classical interval estimation Limits, Systematics and beyond

Nicolas Berger (LAPP Annecy)

Lecture 1

Lecture Plan

Statistics basic concepts (Monday/Tuesday)

Basic ingredients (PDFs, etc.) **Parameter estimation** (maximum likelihood, least-squares, ...) **Model testing** (χ² tests, hypothesis testing, p-values, ...)

These lectures: Computing statistical results

Statistical modeling Review of model testing Computing results Confidence intervals Discovery Upper limits Systematics and profiling Bayesian techniques

See also the Hands-on tutorial yesterday covering both sets of lectures.

Statistical Modeling

Example 1: Z counting

Phys. Lett. B 759 (2016) 601

Measure the cross-section (event rate) of the $Z \rightarrow$ ee process

$\sigma^{\text{fid}} = 0.781 \pm 0.004 \text{ (stat)} \pm 0.018 \text{ (syst) nb}$

Fluctuations in the data counts

Other uncertainties (assumptions, parameter values)

"Single bin counting" : only data input is N_{data}.

Example 2: ttH→bb

arXiv:2111.06712

Event counting in different regions: *Multiple-bin counting*

Lots of information available

- \rightarrow Potentially higher sensitivity
- \rightarrow How to make optimal use of it ?

Example 3: unbinned modeling

ATLAS-CONF-2017-045

All modeling done using continuous distributions:

$$P_{\text{total}}(m_{\gamma\gamma}) = \frac{S}{S+B} P_{\text{signal}}(m_{\gamma\gamma}; m_H) + \frac{B}{S+B} P_{\text{bkg}}(m_{\gamma\gamma})$$

6 / 70

- \rightarrow In principle, binomial process
- \rightarrow In practice, **P** \ll **1**, **N** \gg **1**, \Rightarrow Poisson approximation.
- \rightarrow *i.e.* very rare process, but very many trials so still expect to see good events

- \rightarrow In principle, binomial process
- \rightarrow In practice, **P** \ll **1**, **N** \gg **1**, \Rightarrow Poisson approximation.
- \rightarrow *i.e.* **very rare** process, but **very many trials** so still expect to see good events

- \rightarrow In principle, binomial process
- \rightarrow In practice, **P** \ll **1**, **N** \gg **1**, \Rightarrow Poisson approximation.
- \rightarrow *i.e.* **very rare** process, but **very many trials** so still expect to see good events

- \rightarrow In principle, binomial process
- \rightarrow In practice, **P** \ll **1**, **N** \gg **1**, \Rightarrow Poisson approximation.
- \rightarrow *i.e.* **very rare** process, but **very many trials** so still expect to see good events

- \rightarrow In principle, binomial process
- \rightarrow In practice, **P** \ll **1**, **N** \gg **1**, \Rightarrow Poisson approximation.
- \rightarrow *i.e.* **very rare** process, but **very many trials** so still expect to see good events

- \rightarrow In principle, binomial process
- \rightarrow In practice, **P** \ll **1**, **N** \gg **1**, \Rightarrow Poisson approximation.
- \rightarrow *i.e.* **very rare** process, but **very many trials** so still expect to see good events

Statistical Model for Counting

Observable: number of events n

Typically both Signal and Background present:

$$P(n; S, B) = e^{-(S+B)} \frac{(S+B)^n}{n!}$$

Model has **parameters S** and **B**.

B can be known a priori or not (S usually not...)

 \rightarrow Example: **assume B is known**, use **measured n** to find out about **S**.

Multiple counting bins

Shapes f typically obtained from simulated events (*Monte Carlo*)

 \rightarrow HEP: typically excellent modeling from simulation, although some uncertainties need to be accounted for.

However not always possible to generate sufficiently large MC samples MC stat fluctuations can create artefacts, especially for $S \ll B$.

Model Parameters

Model typically includes:

• Parameters of interest (POIs) : what we want to measure

 \rightarrow S, m_w, ...

Nuisance parameters (NPs) : other parameters needed to define the model

 \rightarrow Background levels (B)

 \rightarrow For binned data, f^{sig} , f^{bkg}

NPs must be either:

- → Known a priori (within uncertainties) or
- \rightarrow Constrained by the data

Takeaways

Random data must be described using a statistical model:

Description	Observable	Likelihood
Counting	n	Poisson $P(n; S, B) = e^{-(S + B)} \frac{(S + B)^n}{n!}$
Binned shape analysis	n _i , i = 1 N _{bins}	Poisson product $P(\mathbf{n}_{i}; \mathbf{S}, \mathbf{B}) = \prod_{i=1}^{n_{\text{bins}}} e^{-(\mathbf{S} f_{i}^{\text{sig}} + \mathbf{B} f_{i}^{\text{bkg}})} \frac{(\mathbf{S} f_{i}^{\text{sig}} + \mathbf{B} f_{i}^{\text{bkg}})^{\mathbf{n}_{i}}}{\mathbf{n}_{i}!}$
Unbinned shape analysis	m _i , i = 1 n _{evts}	Extended Unbinned Likelihood $P(\mathbf{m}_i; \mathbf{S}, \mathbf{B}) = \frac{e^{-(\mathbf{S} + \mathbf{B})}}{\mathbf{n}_{\text{evts}}!} \prod_{i=1}^{\mathbf{n}_{\text{evts}}} \mathbf{S} P_{\text{sig}}(\mathbf{m}_i) + \mathbf{B} P_{\text{bkg}}(\mathbf{m}_i)$

Model can include multiple **categories**, each with a separate description Includes **parameters of interest** (POIs) but also **nuisance parameters** (NPs) **Next step**: use the model to obtain information on the POIs

Hypothesis Testing and discovery

Discovery Testing

We see an unexpected feature in our data, is it a signal for new physics or a fluctuation ?

e.g. Higgs discovery : **"We have 5σ" !**

GeV

Events/5 (02 02

15

10

Data

///// Syst.Unc.

Background ZZ^(*)

_√s = 7 TeV:∫Ldt = 4.8 fb⁻¹

√s = 8 TeV: ∫Ldt = 5.8 fb⁻¹

Background Z+jets, tt Signal (m_=125 GeV) ATLAS

 $H \rightarrow ZZ^{(*)} \rightarrow 4I$

Discovery Testing

Say we have a Gaussian measurement with a background **B=100**, and we measure **n=120**

Did we just discover something ? *Maybe :-)* (but not very likely)

The measured signal is S = 20.

Uncertainty on B is $\sqrt{B} = 10$ \Rightarrow Significance Z = 2 \Rightarrow we are $\sim 2\sigma$ away from S=0.

Gaussian quantiles :

Z = 2 happens $p_0 \sim 2.3\%$ of the time if S=0

P-value:

$$p_0 = 1 - \Phi(Z)$$

 \Rightarrow Rare, but not exceptional

 $S = n_{obs} - B$

Discovery Testing

n _{obs}	S	Z	р _о
105	5	0.5σ	31%
110	10	1σ	16%
120	20	2σ	2.3%
130	30	3σ	0.1%
150	50	5σ	3 10 -7

Straightforward in this Gaussian case Need to be able to do the same in more complex cases: • Determine S

Evidence

Discovery

• Compute Z and p₀ 15 /

What is PDF is for

Model describes the distribution of the observable: P(data; parameters) ⇒ Possible outcomes of the experiment, for given parameter values Can draw random events according to PDF : generate pseudo-data

What is PDF is also for: Likelihood

Model describes the distribution of the observable: P(data; parameters) ⇒ Possible outcomes of the experiment, for given parameter values We want the other direction: use data to get information on parameters

Likelihood: L(parameters) = P(data; parameters)

 \rightarrow same as the PDF, but seen as function of the parameters

Maximum Likelihood Estimation

To estimate a parameter μ , find the value $\hat{\mu}$ that maximizes L(μ)

Maximum Likelihood Estimator (MLE) **û**:

$$\hat{\mathbf{l}} = arg max L(\boldsymbol{\mu})$$

MLE: the value of μ for which **this data** was **most likely to occur The MLE is a function of the data** – itself an **observable** *No guarantee* it is the true value (data may be "unlikely") but sensible estimate

18 /

Gaussian case

Best-fit of Gaussian PDF mean to observed data

Gaussian case

Best-fit of Gaussian PDF mean to observed data

Gaussian case

Best-fit of Gaussian PDF mean to observed data

-2 log Likelihood:

$$\lambda(\mu) = -2 \log L(\mu) = \sum_{i=1}^{N_{\text{bins}}} \left(\frac{n_i - \mu_i}{\sigma_i}\right)^2$$

However typically need to perform non-linear minimization.

HEP practice:

- MINUIT (C++ library within ROOT, numerical gradient descent)
- **scipy.minimize** using NumPy/TensorFlow/PyTorch/... backends
 - \rightarrow Usual methods gradient-based, etc.

20 /

-2 log Likelihood:

$$\lambda(\mu) = -2 \log L(\mu) = \sum_{i=1}^{N_{\text{bins}}} \left(\frac{n_i - \mu_i}{\sigma_i} \right)^2$$

However typically need to perform non-linear minimization.

HEP practice:

- MINUIT (C++ library within ROOT, numerical gradient descent)
- **scipy.minimize** using NumPy/TensorFlow/PyTorch/... backends
 - \rightarrow Usual methods gradient-based, etc.

20 /

-2 log Likelihood:

$$\lambda(\mu) = -2 \log L(\mu) = \sum_{i=1}^{N_{\text{bins}}} \left(\frac{n_i - \mu_i}{\sigma_i}\right)^2$$

However typically need to perform non-linear minimization.

HEP practice:

- MINUIT (C++ library within ROOT, numerical gradient descent)
- **scipy.minimize** using NumPy/TensorFlow/PyTorch/... backends
 - \rightarrow Usual methods gradient-based, etc.

-2 log Likelihood:

$$\lambda(\mu) = -2 \log L(\mu) = \sum_{i=1}^{N_{\text{bins}}} \left(\frac{n_i - \mu_i}{\sigma_i} \right)^2$$

However typically need to perform non-linear minimization.

HEP practice:

- MINUIT (C++ library within ROOT, numerical gradient descent)
- **scipy.minimize** using NumPy/TensorFlow/PyTorch/... backends
 - \rightarrow Usual methods gradient-based, etc.

20 /

Hypothesis Testing

Null Hypothesis: assumption on POIs, say value of S (e.g. H₀ : S=0)

 \rightarrow Goal : decide if H₀ is favored or disfavored using a test based on the data

Possible outcomes:	Data disfavors H _o (Discovery claim)		Data favors H _o (Nothing found)		
H _o is false (New physics!)	Discovery!			Missed discovery	
H _o is true (Nothing new)	False discovery			No new physics, None found	Volume Provide Address of the second

"... the null hypothesis is never proved or established, but is possibly disproved, in the course of experimentation. Every experiment may be said to exist only to give the facts a chance of disproving the null hypothesis." – R. A. Fisher

Hypothesis Testing

Hypothesis: assumption on model parameters, say value of S (e.g. H_o: S=0)

	Data disfavors H _o (Discovery claim)	Data favors H _o (Nothing found)
H _o is false (New physics!)	Discovery!	Type-II error (Missed discovery)
H _o is true (Nothing new)	Type-I error (False discovery)	No new physics,

Lower Type-I errors ⇔ **Higher Type-II errors** and vice versa: cannot have everything!

 \rightarrow Goal: test that minimizes Type-II errors for a given level of Type-I error.

ROC Curves

more powerful Better discriminators "Receiver operating characteristic" (ROC) Curve: ිස \rightarrow Shows Type-I vs Type-II rates for different selections Better ε_{Type-I} (= \rightarrow All curves monotonically decrease from (0,1) to (1,0) \rightarrow Better discriminators more bent • towards (1,1) 0 $1 - \varepsilon_{\text{Type-II}} (= \varepsilon_{\text{S}})$ 0.4 S = 0**BSM** \rightarrow **Goal**: test that minimizes Type-II 0.35 0.3 errors for given level of Type-I error. 0.25 0.2 Type-I error 0.15 Type-I<mark>/</mark> Error p-value 0.1 \rightarrow Usually set predefined level of 0.05 0<u></u>5 acceptable Type-I error (e.g. "5 σ ") 5 23 2 -3 -2 0 3 4 _4 -1 Discriminant observable

Increasingly

ROC Curves

more powerful Better discriminators "Receiver operating characteristic" (ROC) Curve: ිස \rightarrow Shows Type-I vs Type-II rates for different selections Better ε_{Type-I} (= \rightarrow All curves monotonically decrease from (0,1) to (1,0) \rightarrow Better discriminators more bent • towards (1,1) 0 $1 - \varepsilon_{\text{Type-II}} (= \varepsilon_{\text{S}})$ 0.4 S = 0**BSM** \rightarrow **Goal**: test that minimizes Type-II 0.35 0.3 errors for given level of Type-I error. 0.25 0.2 Type-I error 0.15 Type-I/ Error p-value 0 \rightarrow Usually set predefined level of 0.05 acceptable Type-I error (e.g. "5 σ ") 23 -3 -2 0 2 3 4 5 -1 Discriminant observable

Increasingly

ROC Curves

more powerful Better discriminators "Receiver operating characteristic" (ROC) Curve: ිස \rightarrow Shows Type-I vs Type-II rates for different selections Better ε_{Type-I} (= \rightarrow All curves monotonically decrease from (0,1) to (1,0) \rightarrow Better discriminators more bent _ towards (1,1) 0 $1 - \varepsilon_{\text{Type-II}} (= \varepsilon_{\text{S}})$ 0.4 S = 0**BSM** \rightarrow **Goal**: test that minimizes Type-II 0.35 0.3 errors for given level of Type-I error. 0.25 0.2 Type-I error 0.15 Type-I/ Error p-value 0 \rightarrow Usually set predefined level of 0.05 acceptable Type-I error (e.g. "5 σ ") 23 -3 -2 0 2 3 4 5 Discriminant observable

Increasingly

Neyman-Pearson Lemma

When comparing two hypotheses H_0 and H_1 , the

optimal discriminator is the **Likelihood ratio** (LR)

$$L(S = 5; data)$$

e.g. $L(S = 0; data)$

Caveat: Strictly true only for *simple hypotheses* (no free parameters)

 $L(\mathbf{H}_{1}; data)$

 $L(\mathbf{H}_{0}; data)$

As for MLE, choose the hypothesis that is more likely given the data we have.

- \rightarrow **Minimizes Type-II uncertainties** for given level of Type-I uncertainties
- \rightarrow Always need an **alternate hypothesis** to test against the **null**.

 \rightarrow In the following: all tests based on LR, will focus on p-values (Type-I errors), trusting that Type-II errors are anyway as small as they can be...

Discovery: Test Statistic

Cowan, Cranmer, Gross & Vitells, Eur.Phys.J.C71:1554,2011

Discovery :

- H₀: background only (S = 0) against
- H₁: presence of a signal (S > 0)

 \rightarrow For H₁, any S > 0 is possible, which to use ? The one preferred by the data, \hat{S} .

 \Rightarrow Use Likelihood ratio:

$$\frac{L(S=0)}{L(\hat{S})}$$

$$\rightarrow \ln \text{ fact use the test statistic } q_0 = -2\log\frac{L(S=0)}{L(\hat{S})}$$

Note: for $\hat{S} < 0$, set $q_0 = 0$ to reject negative signals ("one-sided test statistic") $\frac{25}{7}$

Discovery p-value

Large values of
$$-2\log \frac{L(S=0)}{L(\hat{S})}$$
 if:

 \Rightarrow observed \hat{S} is far from 0

$$\Rightarrow$$
 H₀(S=0) *disfavored* compared to H₁(S≠0).

How large q_0 before we can exclude H_0 ? (and claim a discovery!)

 \rightarrow Need small Type-I rate (falsely rejecting H₀)

 \rightarrow Type-I error rate, a.k.a. the *p*-value : $p_0 = \int_{q_0^{obs}} f(q_0|S=0) dq_0$ = Fraction of outcomes that are

At least as extreme (signal-like) as data, when H_0 is true (no signal).

Asymptotic distribution of q₀

Gaussian regime for \hat{S} (e.g. large n_{evts} , Central-limit theorem) :

Wilk's Theorem: q_0 distributed as χ^2 (n_{par}) for S = 0

$$\Rightarrow$$
 n_{par} = 1 : $\sqrt{q_0}$ is distributed as a Gaussian

⇒ Can compute p-values from Gaussian quantiles

 $p_0 = 1 - \Phi(\sqrt{q_0})$

 \Rightarrow Even more simply, the significance is:

 $Z=\sqrt{q_0}$

Typically works well already for for event counts of O(5) and above \Rightarrow Widely applicable

(*) 1-line "proof": asymptotically L and S are Gaussian, so $L(S) = \exp\left[-\frac{1}{2}\left(\frac{S-\hat{S}}{\sigma}\right)^2\right] \Rightarrow q_0 = \left(\frac{\hat{S}}{\sigma}\right)^2 \Rightarrow \sqrt{q_0} = \frac{\hat{S}}{\sigma} \sim G(0,1) \Rightarrow q_0 \sim \chi^2(n_{dof}=1)$

Homework 1: Gaussian Counting

Count number of events n in data

- \rightarrow Assume n large enough so process is Gaussian
- \rightarrow Assume B is known, and we measure S

Likelihood:
$$L(S; n_{obs}) = e^{-\frac{1}{2} \left(\frac{n_{obs} - (S+B)}{\sqrt{S+B}} \right)^2}$$

- → Find the best-fit value (MLE) \hat{S} for the signal (can use λ = -2 log L instead of L for simplicity)
- \rightarrow Find the expression of q_0 for $\hat{S} > 0$.
- \rightarrow Find the expression for the significance

Homework 2: Poisson Counting

Same problem but now *not* assuming Gaussian behavior:

$$L(S;n) = e^{-(S+B)}(S+B)^n$$

 \rightarrow As before, compute \hat{S} , and q_0

(Can remove the n! constant since we're only dealing with L ratios)

 \rightarrow Compute Z = $\sqrt{q_0}$, assuming asymptotic behavior

Solution:

$$Z = \sqrt{2 \left[(\hat{S} + B) \log \left| 1 + \frac{\hat{S}}{B} \right| - \hat{S} \right]}$$

Exact result can be obtained using

pseudo-experiments \rightarrow close to $\sqrt{q_0}$ result

Asymptotic formulas justified by Gaussian regime, but remain valid even for small values of S+B (down to 5 events!)

Discovery Thresholds

Evidence : $3\sigma \Leftrightarrow p_0 = 0.3\% \Leftrightarrow 1$ chance in 300

Discovery: $5\sigma \Leftrightarrow p_0 = 3 \ 10^{-7} \Leftrightarrow 1 \ \text{chance in } 3.5\text{M}$

Why so high thresholds ? (from Louis Lyons):

 Look-elsewhere effect: searches typically cover multiple independent regions ⇒ Higher chance to have a fluctuation "somewhere"

 $N_{trials} \sim 1000 : local 5\sigma \Leftrightarrow O(10^{-4})$ more reasonable

 Mismodeled systematics: factor 2 error in syst-dominated analysis ⇒ factor 2 error on Z...

• **History**: 3σ and 4σ excesses do occur regularly, for the reasons above

Extraordinary claims require extraordinary evidence!

Takeaways

Given a statistical model P(data; μ), define likelihood L(μ) = P(data; μ)

To estimate a parameter, use the value $\hat{\mu}$ that maximizes $L(\mu) \rightarrow$ best-fit value

To decide between hypotheses H_0 and H_1 , use the likelihood ratio

To test for **discovery**, use

$$q_0 = -2\log\frac{L(S=0)}{L(\hat{S})} \quad \hat{S} \ge 0$$

For large enough datasets (n >~ 5),
$$Z=\sqrt{q_0}$$

For a Gaussian measurement,

For a **Poisson** measurement,

$$Z = \frac{\hat{S}}{\sqrt{B}}$$
$$Z = \sqrt{2\left[(\hat{S}+B)\log\left(1+\frac{\hat{S}}{B}\right)-\hat{S}\right]}$$

31

 $\frac{L(H_0)}{L(H_1)}$

Confidence Intervals

Confidence Intervals

Last lecture we saw how to estimate (=compute) the value of a parameter

Maximum Likelihood Estimator (MLE) **µ**:

$$\hat{\boldsymbol{\mu}} = arg max L(\boldsymbol{\mu})$$

However we also need to estimate the associated uncertainty.

The reported interval $n \pm \sigma$ will contain the true value of μ 68.3% of the time

/

The reported interval $n \pm \sigma$ will contain the true value of μ 68.3% of the time

The reported interval $n \pm \sigma$ will contain the true value of μ 68.3% of the time

/

Frequentist interpretation

If we would repeat the same experiment multiple times, with true value μ^* , then 68.3% of the 1 σ intervals would contain μ^* .

 \rightarrow Crucially, this works even if we do not know μ^* !

For each experiment, get the interval

The reported interval $n \pm \sigma$ will contain the true value of μ 68.3% of the time

Neyman Construction

General case: build 1σ intervals of observed values for each true value

⇒ Confidence belt

Neyman Construction

General case: build 1σ intervals of observed values for each true value

⇒ Confidence belt

General case: Intersect belt with given $\hat{\mu}$, get $P(\hat{\mu} - \sigma_{\mu}^{-} < \mu^{*} < \hat{\mu} + \sigma_{\mu}^{+}) = 68\%$

 \rightarrow Same as before for Gaussian, works also when P($\mu^{obs}|\mu$) varies with μ .

General case: Intersect belt with given $\hat{\mu}$, get $P(\hat{\mu} - \sigma_{\mu}^{-} < \mu^{*} < \hat{\mu} + \sigma_{\mu}^{+}) = 68\%$

 \rightarrow Same as before for Gaussian, works also when P($\mu^{obs}|\mu$) varies with μ .

General case: Intersect belt with given $\hat{\mu}$, get $P(\hat{\mu} - \sigma_{\mu}^{-} < \mu^{*} < \hat{\mu} + \sigma_{\mu}^{+}) = 68\%$

 \rightarrow Same as before for Gaussian, works also when P($\mu^{obs}|\mu$) varies with μ .

General case: Intersect belt with given $\hat{\mu}$, get $P(\hat{\mu} - \sigma_{\mu}^{-} < \mu^{*} < \hat{\mu} + \sigma_{\mu}^{+}) = 68\%$

 \rightarrow Same as before for Gaussian, works also when P($\mu^{obs}|\mu$) varies with μ .

General case: Likelihood Intervals

Confidence intervals from L(µ):

- Test various values μ using the Profile Likelihood Ratio t(μ)
- Minimum (=0) for $\mu = \hat{\mu}$, rises away from $\hat{\mu}$.
- Good properties thanks to the Neyman-Pearson lemma.

Probability to observe

the data for a given μ .

$$t(\mu) = -2\log\frac{L(\mu)}{L(\mu)}$$

Probability to observe the data for best-fit $\hat{\mu}$.

38

Gaussian L(µ):

$$L(\mu) = \exp\left[-\frac{1}{2}\left(\frac{n-\mu}{\sigma}\right)^2\right]$$

$$t(\boldsymbol{\mu}) = \left(\frac{\boldsymbol{n} - \boldsymbol{\mu}}{\boldsymbol{\sigma}}\right)^2$$

- t(μ) is parabolic, distributed as a χ^2
- Minimum occurs at $\mu = \hat{\mu}$
- 1 σ interval [μ_{μ} , μ_{μ}] given by **t**(μ_{\pm})= 1

General case: Likelihood Intervals

Confidence intervals from L(µ):

- Test various values μ using the Profile Likelihood Ratio t(μ)
- Minimum (=0) for $\mu = \hat{\mu}$, rises away from $\hat{\mu}$.
- Good properties thanks to the Neyman-Pearson lemma.

General case:

- Generally not a perfect parabola
- Minimum still at μ = μ̂

Asymptotic approximation

- Compute $t(\mu)$ using the exact $L(\mu)$
- Assume t(μ) ~ χ² as for Gaussian ("Wilks' Theorem")

1σ interval [μ₋, μ₊] given by $t(\mu_{\pm}) = 1_{39}$

$$t(\mu) = -2\log\frac{L(\mu)}{L(\hat{\mu})}$$

Homework 3: Gaussian Case

Consider a parameter m (e.g. Higgs boson mass) whose measurement is Gaussian with known width σ_m , and we measure m_{obs} :

$$L(m;m_{obs}) = e^{-\frac{1}{2}\left(\frac{m-m_{obs}}{\sigma_m}\right)^2}$$

- \rightarrow Compute the best-fit value (MLE) \hat{m}
- \rightarrow Compute t_m
- \rightarrow Compute the 1- σ (Z=1, ~68% CL) interval on m

Solution: $m = m_{obs} \pm \sigma_m$

- \rightarrow As expected!
- \rightarrow General method can be applied in the same way to more complex cases

2D Example: Higgs $\sigma_{_{VBF}}$ vs. $\sigma_{_{ggF}}$

ATLAS-CONF-2017-047

Reparameterization

Start with basic measurement in terms of e.g. $\sigma \times B$

→ How to measure derived quantities (couplings, parameters in some theory model, etc.) ?
 → just reparameterize the likelihood:

e.g. Higgs couplings: σ_{ggF} , σ_{VBF} sensitive to Higgs coupling modifiers κ_{V} , κ_{F} .

Upper Limits

- \rightarrow More interesting to **exclude large signals**
- ⇒ Upper limits on signal yield

 \rightarrow Typically report **95% CL** upper limit (p-value = 5%) : "S < S₀ @ 95% CL"

- \rightarrow More interesting to **exclude large signals**
- ⇒ Upper limits on signal yield

 \rightarrow Typically report **95% CL** upper limit (p-value = 5%) : "S < S₀ @ 95% CL"

- \rightarrow More interesting to **exclude large signals**
- ⇒ Upper limits on signal yield

 \rightarrow Typically report **95% CL** upper limit (p-value = 5%) : "S < S₀ @ 95% CL"

- \rightarrow More interesting to **exclude large signals**
- ⇒ Upper limits on signal yield

 \rightarrow Typically report **95% CL** upper limit (p-value = 5%) : "S < S₀ @ 95% CL"

Try to exclude values of S that are above Ŝ.

⇒ "One-sided" test : only interested in excluding above

Discovery is also onesided, for S>0 ! 45

Inversion : Getting the limit for a given CL

Procedure:

→ Compute $q(S_0)$ for some S_0 , get the exclusion p-value $p(S_0)$. Asymptotics: $p(S_0) = 1 - \Phi(\sqrt{q(S_0)})$

CL	р	Region
90%	10%	√q(S) > 1.28
95%	5%	$\sqrt{q(S)} > 1.64$
99%	1%	$\sqrt{q(S)} > 2.33$

 $\sqrt{q(S)} = 1.64$

→ Adjust S_0 to get the desired exclusion Asymptotics: need $\sqrt{q(S_{05})} = 1.64$ for 95% CL

Inversion : Getting the limit for a given CL

Procedure:

- → Compute $q(S_0)$ for some S_0 , get the exclusion p-value $p(S_0)$. Asymptotics: $p(S_0) = 1 - \Phi(\sqrt{q(S_0)})$
- → Adjust S_0 to get the desired exclusion Asymptotics: need $\sqrt{q(S_{05})} = 1.64$ for 95% CL

CL	р	Region
90%	10%	√q(S) > 1.28
95%	5%	√q(S) > 1.64
99%	1%	√q(S) > 2.33

√q(\$) = 1.64 (p = 5%)

Inversion : Getting the limit for a given CL

Procedure:

- → Compute $q(S_0)$ for some S_0 , get the exclusion p-value $p(S_0)$. Asymptotics: $p(S_0) = 1 - \Phi(\sqrt{q(S_0)})$
- → Adjust S_0 to get the desired exclusion Asymptotics: need $\sqrt{q(S_{05})} = 1.64$ for 95% CL

CL	р	Region
90%	10%	√q(S) > 1.28
95%	5%	$\sqrt{q(S)} > 1.64$
99%	1%	√q(S) > 2.33

√q(\$) = 1.64 (p = 5%)

Homework 4: Gaussian Example

Usual Gaussian counting example with known B:

$$L(S;n) = e^{-\frac{1}{2}\left(\frac{n-(S+B)}{\sigma_S}\right)^2}$$

$$\sigma_{\rm s} \sim \sqrt{B}$$
 for small S

Reminder: Significance: $Z = \hat{S}/\sigma_s$

 \rightarrow Compute q_{so}

 \rightarrow Compute the 95% CL upper limit on S, S_{up}, by solving $\sqrt{q_{s0}}$ = 1.64.

Solution: $S_{up} = \hat{S} + 1.64 \sigma_s$ at 95 % CL

47 /

 $=\frac{p(S_0)}{r}$

 p_{CL_s}

Usual p-value

for S=S_o

P-value

for S=0

48

Upper limits sometimes take negative values (exclude all S>0 !)

Known feature – to avoid, usual solution in HEP is to use **CL**[°] modified p-value"

⇒ Compute exclusion relative to that of S=0
→ Somewhat ad-hoc, but good properties...

 $\hat{\mathbf{S}} \sim \mathbf{0} \Rightarrow \mathbf{p}_{B} \sim O(1), \mathbf{p}_{CLS} \sim \mathbf{p}(\mathbf{S}_{0})$ no change

 $\hat{S} \ll 0 \Rightarrow p_{B} \ll 1, p_{CLs} \gg p(S_{0})$ no exclusion at S=0

Drawback: overcoverage

 \rightarrow limit is claimed to be 95% CL, but actually >95% CL for small p_R.

Homework 5: CL_s : Gaussian Case

Usual Gaussian counting example with known B:

$$L(S;n) = e^{-\frac{1}{2}\left(\frac{n-(S+B)}{\sigma_s}\right)^2} \qquad \sigma_s \sim \sqrt{B} \text{ for small S}$$

Reminder

CL_{s+b} limit: $S_{up} = \hat{S} + 1.64 \sigma_s$ at 95 % CL

CL_s upper limit :

- \rightarrow Compute p_{so} (same as for CLs+b)
- \rightarrow Compute 1-p_B (hard!)

Solution:

$$S_{up} = \hat{S} + \left[\Phi^{-1} \left(1 - 0.05 \Phi(\hat{S}/\sigma_s) \right) \right] \sigma_s$$
 at 95% CL
for $\hat{S} \sim 0$, $S_{up} = \hat{S} + 1.96 \sigma_s$ at 95% CL

Homework 6: CL_s Rule of Thumb for n_{obs}=0

Same exercise, for the Poisson case with $n_{obs} = 0$. Perform an exact computation of the

95% CLs upper limit based on the definition of the p-value:

p-value : sum probabilities of cases at least as extreme as the data

Hint: for n_{obs}=0, there are no "more extreme" cases (cannot have n<0 !), so

 $p_{so} = Poisson(n=0 | S_0+B) and 1 - p_B = Poisson(n=0 | B)$

Solution: $S_{up}(n_{obs}=0) = log(20) = 2.996 \approx 3$

 \Rightarrow Rule of thumb: when n_{obs} = 0, the 95% CL_s limit is 3 events (for any B)

50

Reparameterization: Limits

CMS Run 2 Monophoton Search: measured N_s in a counting experiment reparameterized according to various DM models

Generating Pseudo-data

Model describes the distribution of the observable: P(data; parameters) ⇒ Possible outcomes of the experiment, for given parameter values Can draw random events according to PDF : generate pseudo-data

Expected Limits: Toys

Expected results: median outcome under a given hypothesis

 \rightarrow usually B-only for searches, but other choices possible.

Two main ways to compute:

- → Pseudo-experiments (toys):
- Generate a pseudo-dataset in B-only hypothesis
- Compute limit

Phys. Lett. B 775 (2017) 105

Expected Limits: Asimov Datasets

Expected results: median outcome under a given hypothesis

 \rightarrow usually B-only for searches, but other choices possible.

Strictly speaking, Asimov dataset if Two main ways to compute: $\hat{\mathbf{X}} = \mathbf{X}_{0}$ for all parameters X, where X_0 is the generation value \rightarrow Asimov Datasets Generate a "perfect dataset" – e.g. for binned Gev data, set bin contents carefully, no fluctuations. Events / (0.5 Gives the median result immediately: 400 median(toy results) \leftrightarrow result(median dataset) Get bands from asymptotic formulas: 300 Band width 200 _ 7

100

Ť00

110

150

m,, (GeV)

160

54

$$\sigma_{S_0,A}^2 = \frac{S_0^2}{q_{S_0}(\text{Asimov})}$$

⊕ Much faster (1 "toy")⊖ Relies on Gaussian approximation

Toys: Example

ATLAS X \rightarrow Z γ Search: covers 200 GeV < m_x < 2.5 TeV

For $m_x > 1.6$ TeV, low event counts \Rightarrow derive results from toys

Upper Limit Examples

ATLAS 2015-2016 4I aTGC Search

Takeaways

Confidence intervals: use
$$t_{\mu_0} = -2\log \frac{L(\mu = \mu_0)}{L(\hat{\mu})}$$

 \rightarrow Crossings with $t_{\mu 0} = Z^2$ for $\pm Z\sigma$ intervals (in 1D) Gaussian regime: $\mu = \hat{\mu} \pm \sigma_{\mu}$ (1 σ interval)

Limits : use LR-based test statistic:

$$q_{S_0} = -2\log \frac{L(S=S_0)}{L(\hat{S})}$$
 $S_0 \ge \hat{S}$
 \rightarrow Use CL_s procedure to avoid negative limits
Gaussian regime, n~0: S < \hat{S} + 1.96 σ at 95% CL
Poisson regime, n=0 : S_{up} = 3 events at 95% CL

Extra Slides

Rare Processes ?

HEP : almost always use Poisson

distributions. Why ?

ATLAS :

• Event rate ~ 1 GHz

(L~10³⁴ cm⁻²s⁻¹~10 nb⁻¹/s, σ_{tot} ~10⁸ nb,)

Trigger rate ~ 1 kHz

(Higgs rate ~ 0.1 Hz)

⇒ p ~ 10⁻⁶ ≪ 1 ($p_{H \to \gamma\gamma}$ ~ 10⁻¹³)

A day of data: N ~ $10^{14} \gg 1$

⇒ Poisson regime! Similarly true in many other physics situations.

(Large N = design requirement, to get not-too-small λ =Np...)

Unbinned Shape Analysis

Observable: set of values $m_1 \dots m_n$, one per event

- \rightarrow Describe shape of the **distribution of m**
- \rightarrow Deduce the **probability to observe m**₁... m_n

Vormalized events per GeV

0.25

0.2

0.15

0.1

0.05

m

110 120

130

140

150

160

Signal

Assume Poisson distribution with B = 0: $P(n; S) = e^{-S} \frac{S^n}{n!}$ Say we observe n=5, want to infer information on the parameter S

- \rightarrow Try different values of S for a fixed data value n=5
- \rightarrow Varying parameter, fixed data: **likelihood**

$$L(S; n=5) = e^{-S} \frac{S^5}{5!}$$

Say we **observe n=5**, want to infer information on the parameter $s^{n} = e^{-s} \frac{S^{n}}{n!}$ \rightarrow Try different values of S for a fixed data use

- \rightarrow Varying parameter, fixed data: **likelihood**

Say we **observe n=5**, want to infer information on the parameter $s^n = e^{-s} \frac{S^n}{n!}$ \rightarrow Try different values of S for a fixed data we

- \rightarrow Varying parameter, fixed data: **likelihood**

Say we **observe n=5**, want to infer information on the parameter $s^n = e^{-s} \frac{S^n}{n!}$ \rightarrow Try different values of S for a fixed data we

- \rightarrow Varying parameter, fixed data: **likelihood**

61

Say we **observe n=5**, want to infer information on the parameter $s e^{-s} \frac{S^n}{n!}$ \rightarrow Try different values of S for a fixed bit

 \rightarrow Varying parameter, fixed data: **likelihood**

$$L(S; n=5) = e^{-S} \frac{S^5}{5!}$$

MLEs in Shape Analyses

Binned shape analysis:

$$L(\mathbf{S};\mathbf{n}_i) = P(\mathbf{n}_i;\mathbf{S}) = \prod_{i=1}^{N} \operatorname{Pois}(\mathbf{n}_i;\mathbf{S}f_i + B_i)$$

λT

Maximize global L(S) (each bin may prefer a different **S**) In practice easier to minimize

$$\lambda_{\text{Pois}}(\mathbf{S}) = -2\log L(\mathbf{S}) = -2\sum_{i=1}^{N} \log \text{Pois}(\mathbf{n}_i; \mathbf{S}f_i + B_i) \qquad \text{Needs a computer}$$

In the Gaussian limit

$$\lambda_{\text{Gaus}}(\mathbf{S}) = \sum_{i=1}^{N} -2\log G(\mathbf{n}_i; \mathbf{S}f_i + B_i, \sigma_i) = \sum_{i=1}^{N} \left| \frac{\mathbf{n}_i - (\mathbf{S}f_i + B_i)}{\sigma_i} \right|^2 \quad \chi^2 \text{ formula}$$

→ Gaussian MLE (min χ^2 or min λ_{Gaus}) : Best fit value in a χ^2 (Least-squares) fit → Poisson MLE (min λ_{Pois}) : Best fit value in a likelihood fit (in ROOT, fit option "L") In RooFit, λ_{Pois} ⇒ RooAbsPdf::fitTo(), λ_{Gaus} ⇒ RooAbsPdf::chi2FitTo().

In both cases, MLE ⇔ Best Fit

Classification BDT output

Н→үү

63

MLE Properties

• Asymptotically Gaussian $P(\hat{\mu}) \propto \exp\left(-\frac{(\hat{\mu}-\mu^*)^2}{2\sigma_{\hat{\mu}}^2}\right)$ for $n \rightarrow \infty$ and unbiased $\langle \hat{\mu} \rangle = \mu^*$ for $n \rightarrow \infty$ Standard deviation of the distribution of $\hat{\mu}$

for large enough datasets

- Asymptotically Efficient : σ_{μ} is the lowest possible value (in the limit $n \rightarrow \infty$) among consistent estimators.
 - \rightarrow MLE captures all the available information in the data
- Also **consistent**: $\hat{\mu}$ converges to the true value for large n,
- Log-likelihood : Can also minimize $\lambda = -2 \log L$
 - \rightarrow Usually more efficient numerically
 - \rightarrow For Gaussian L, λ is parabolic:
- Can drop multiplicative constants in L (additive constants in λ)

 $\hat{\mathbf{u}} \xrightarrow{n \to \infty} \mathbf{u}^*$

Extra: Fisher Information

Fisher Information:

$$I(\mu) = \left| \left(\frac{\partial}{\partial \mu} \log L(\mu) \right)^2 \right| = - \left| \frac{\partial^2}{\partial \mu^2} \log L(\mu) \right|^2$$

Measures the **amount of information** available in the measurement of μ .

For any estimator $\tilde{\mu}$.

- \rightarrow cannot be more precise than allowed by information in the measurement.
- **Efficient** estimators reach the bound : **e.g. MLE in the large dataset limit.**

Some Examples

Higgs Discovery: Phys. Lett. B 716 (2012) 1-29

High-mass X→γγ Search: JHEP 09 (2016) 1

Upper Limit Pathologies

Upper limit:
$$S_{up} \sim \hat{S} + 1.64 \sigma_{s}$$

Problem: for negative Ŝ, get **very** good observed limit.

 \rightarrow For \hat{S} sufficiently negative, even $S_{up} < 0$!

How can this be ?

→ Background modeling issue ?... Or:

→ This is a 95% limit \Rightarrow 5% of the time, the limit wrongly excludes the true value, e.g. S*=0.

Options

 \rightarrow live with it: sometimes report limit < 0

 \rightarrow Special procedure to avoid these cases, since if we assume S must be >0, we know a priori this is just a fluctuation.

The usual p-value under Usual solution in HEP : **CL**. \boldsymbol{p}_{S_0} H(S=S₀) (=5%) p_{CL_s} – \rightarrow Compute modified p-value The p-value computed \Rightarrow **Rescale** exclusion at S₀ by exclusion at S=0. under H(S=0) \rightarrow Somewhat ad-hoc, but good properties... ц ц 95% limit, CL_{s+b} **Ŝ compatible with 0** : $p_{B} \sim O(1)$ 95% limit, CL $p_{CLs} \sim p_{so} \sim 5\%$, no change. **Far-negative** $\hat{\mathbf{S}}$: 1 - $p_{R} \ll 1$ $p_{Cls} \sim p_{S0} / (1-p_B) \gg 5\%$ \rightarrow lower exclusion \Rightarrow higher limit, σ_s = 1 usually >0 as desired

Drawback: overcoverage

 \rightarrow limit is claimed to be 95% CL, but actually >95% CL for small 1-p_B.

CL: Gaussian Bands

Usual Gaussian counting example with known B: 95% CL_i upper limit on S:

$$S_{up} = \hat{S} + \left[\Phi^{-1} \left(1 - 0.05 \Phi(\hat{S}/\sigma_s) \right) \right] \sigma_s$$

Compute expected bands for S=0:

 \rightarrow Asimov dataset $\Leftrightarrow \hat{S} = 0$: \rightarrow <u>+</u> n σ bands:

$$S_{up,exp}^{0} = 1.96 \sigma_{s}$$

$$S_{up,exp}^{\pm n} = \left(\pm n + \left[1 - \Phi^{-1}(0.05 \Phi(\mp n))\right]\right) \sigma_{s}$$

with

 $\sigma_{s} = \sqrt{B}$

CLs :

 Positive bands somewhat reduced,

350

300

250

150

100

50

Events 150

Negative ones more so

 S^2 Band width from $\sigma_{s,A}^2 =$ $q_{\rm s}({\rm Asimov})$ depends on S, for non-Gaussian cases, different 69 values for each band...

Eur.Phys.J.C71:1554,2011

Ŝ

Comparison with LEP/TeVatron definitions

Likelihood ratios are not a new idea:

- **LEP**: Simple LR with NPs from MC
 - Compare μ =0 and μ =1
- **Tevatron**: PLR with profiled NPs

Both compare to $\mu=1$ instead of best-fit $\hat{\mu}$

 \rightarrow Asymptotically:

- **LEP/Tevaton**: q linear in $\mu \Rightarrow$ **~Gaussian**
- LHC: q quadratic in $\mu \Rightarrow -\chi 2$

 \rightarrow Still use TeVatron-style for discrete cases

$$q_{LEP} = -2\log\frac{L(\mu=0,\widetilde{\theta})}{L(\mu=1,\widetilde{\theta})}$$
$$q_{Tevatron} = -2\log\frac{L(\mu=0,\widehat{\theta}_0)}{L(\mu=1,\widehat{\theta}_1)}$$

70 /