IN2P3 School of Statistics 2

Computing Statistical Results

Classical interval estimation

 Limits, Systematicsand beyond

Lecture Plan

Statistics basic concepts (Monday/Tuesday)
Basic ingredients (PDFs, etc.)
Parameter estimation (maximum likelihood, least-squares, ...)
Model testing (χ^{2} tests, hypothesis testing, p -values, ...)

These lectures: Computing statistical results
Statistical modeling
Review of model testing
Computing results
Confidence intervals
Discovery
Upper limits
Systematics and profiling
Bayesian techniques

See also the Hands-on tutorial yesterday covering both sets of lectures.

Statistical Modeling

Example 1: Z counting

Measure the cross-section (event rate) of the $Z \rightarrow$ ee process

$\sigma^{\text {fid }}=0.781 \pm 0.004$ (stat) ± 0.018 (syst) nb

Fluctuations in the data counts

Other uncertainties (assumptions, parameter values)

Example 2: ttH $\rightarrow \mathrm{bb}$

Event counting in different regions:
Multiple-bin counting

Lots of information available

\rightarrow Potentially higher sensitivity
\rightarrow How to make optimal use of it ?

Example 3: unbinned modeling

All modeling done using continuous distributions:

$$
\boldsymbol{P}_{\text {total }}\left(\boldsymbol{m}_{\gamma \gamma}\right)=\frac{S}{S+B} \boldsymbol{P}_{\text {signal }}\left(\boldsymbol{m}_{\gamma \gamma} ; \boldsymbol{m}_{H}\right)+\frac{B}{S+B} \boldsymbol{P}_{\mathrm{bkg}}\left(\boldsymbol{m}_{\gamma \gamma}\right)
$$

How to count

Common situation: produce many events N , select a (very) small fraction P
\rightarrow In principle, binomial process
\rightarrow In practice, $P \ll 1, N \gg 1, \Rightarrow$ Poisson approximation.
\rightarrow i.e. very rare process, but very many trials so still expect to see good events
Poisson distribution
$\lambda=0.5$

$$
P(n ; \lambda)=e^{-\lambda} \frac{\lambda^{n}}{n!}
$$

$$
\text { Mean = } \lambda
$$

$$
\text { Variance }=\lambda
$$

$$
\sigma=\sqrt{ } \lambda
$$

Central limit theorem :
becomes Gaussian for large λ :

$$
P(\lambda) \stackrel{\lambda \rightarrow \infty}{\rightarrow} G(\lambda, \sqrt{\lambda})
$$

How to count

Common situation: produce many events N , select a (very) small fraction P
\rightarrow In principle, binomial process
\rightarrow In practice, $P \ll 1, N \gg 1, \Rightarrow$ Poisson approximation.
\rightarrow i.e. very rare process, but very many trials so still expect to see good events
Poisson distribution

$P(n ; \lambda)=e^{-\lambda} \frac{\lambda^{n}}{n!}$
$\lambda=1$

$$
\begin{aligned}
& \text { (1-P })^{N-n ~} \stackrel{n \ll N}{\sim}\left(1-\frac{\lambda}{N}\right)^{N} \stackrel{N \gg 1}{\sim} e^{-\lambda} \\
& \text { Mean }=\lambda \\
& \text { Variance }=\lambda \\
& \sigma=\sqrt{ } \lambda
\end{aligned}
$$

Central limit theorem :
becomes Gaussian for large λ :

$$
P(\lambda) \xrightarrow{\lambda \rightarrow \infty} G(\lambda, \sqrt{\lambda})
$$

How to count

Common situation: produce many events N , select a (very) small fraction P
\rightarrow In principle, binomial process
\rightarrow In practice, $P \ll 1, N \gg 1, \Rightarrow$ Poisson approximation.
\rightarrow i.e. very rare process, but very many trials so still expect to see good events
Poisson distribution

$P(n ; \lambda)=e^{-\lambda} \frac{\lambda^{n}}{n!}$
$\lambda=3$

$$
\begin{aligned}
& \text { (1-P })^{N-n ~ n \ll N}\left(1-\frac{\lambda}{N}\right)^{N} \stackrel{N \gg 1}{\sim} e^{-\lambda} \\
& \text { Mean }=\lambda \\
& \text { Variance }=\lambda \\
& \sigma=\sqrt{ } \lambda
\end{aligned}
$$

Central limit theorem :
becomes Gaussian for large λ :

$$
P(\lambda) \xrightarrow{\lambda \rightarrow \infty} G(\lambda, \sqrt{\lambda})
$$

How to count

Common situation: produce many events N , select a (very) small fraction P
\rightarrow In principle, binomial process
\rightarrow In practice, $P \ll 1, N \gg 1, \Rightarrow$ Poisson approximation.
\rightarrow i.e. very rare process, but very many trials so still expect to see good events
Poisson distribution

$P(n ; \lambda)=e^{-\lambda} \frac{\lambda^{n}}{n!}$
$\lambda=5$

$$
\begin{aligned}
& \quad(1-P)^{N-n \stackrel{n}{\sim}}\left(1-\frac{\lambda}{N}\right)^{N} \stackrel{N \ngtr 1}{\approx} e^{-\lambda} \\
& \text { Mean }=\lambda \\
& \text { Variance }=\lambda \\
& \sigma=\sqrt{ } \lambda
\end{aligned}
$$

Central limit theorem :
becomes Gaussian for large λ :

$$
P(\lambda) \stackrel{\lambda \rightarrow \infty}{\rightarrow} G(\lambda, \sqrt{\lambda})
$$

How to count

Common situation: produce many events N , select a (very) small fraction P
\rightarrow In principle, binomial process
\rightarrow In practice, $P \ll 1, N \gg 1, \Rightarrow$ Poisson approximation.
\rightarrow i.e. very rare process, but very many trials so still expect to see good events

Poisson distribution
$\lambda=10$

$$
P(n ; \lambda)=e^{-\lambda} \frac{\lambda^{n}}{n!}
$$

L- $(1-P)^{N-n} n \ll N\left(1-\frac{\lambda}{N}\right)^{N} \stackrel{N \ngtr 1}{\approx} e^{-\lambda}$

$$
\text { Mean }=\lambda
$$

$$
\text { Variance }=\lambda
$$

$$
\sigma=\sqrt{ } \lambda
$$

Central limit theorem :
becomes Gaussian for large λ :

$$
P(\lambda) \stackrel{\lambda \rightarrow \infty}{\rightarrow} G(\lambda, \sqrt{\lambda})
$$

How to count

Common situation: produce many events N , select a (very) small fraction P
\rightarrow In principle, binomial process
\rightarrow In practice, $P \ll 1, N \gg 1, \Rightarrow$ Poisson approximation.
\rightarrow i.e. very rare process, but very many trials so still expect to see good events
Poisson distribution $\quad \boldsymbol{P}(n ; \lambda)=\boldsymbol{e}^{-\lambda} \frac{\lambda^{n}}{n!}$

$$
71
$$

Statistical Model for Counting

Observable: number of events \mathbf{n}
Typically both Signal and Background present:

$$
P(n ; S, B)=e^{-(s+B)} \frac{(S+B)^{n}}{n!}
$$

S:\# of events from signal process
B : \# of events from bkg. process(es)

Model has parameters S and B.
B can be known a priori or not (S usually not...)
\rightarrow Example: assume \mathbf{B} is known, use measured n to find out about \mathbf{S}.

Multiple counting bins

Count in bins of a variable \Rightarrow histogram $\mathrm{n}_{1} \ldots \mathrm{n}_{\mathrm{N}}$.
(N : number of bins)
Per-bin fractions (=shapes)
of Signal and Background
$\boldsymbol{P}\left(\left\{n_{i}\right\} ; S, B\right)=\prod_{i=1}^{N} \underbrace{-\left(s f_{s, i}+B f_{p, i}\right)} \frac{\left(\boldsymbol{S f}_{S, i}+\boldsymbol{B} f_{B, i}\right)^{n_{i}}}{n_{i}!}$
Poisson distribution in each bin

Shapes f typically obtained from simulated events (Monte Carlo)
\rightarrow HEP: typically excellent modeling from simulation, although some uncertainties need to be accounted for.

However not always possible to generate sufficiently large MC samples MC stat fluctuations can create artefacts, especially for $S \ll B$.

Model Parameters

Model typically includes:

- Parameters of interest (POIs) : what we want to measure
$\rightarrow \mathrm{S}, \mathrm{m}_{\mathrm{w}}, \ldots$
- Nuisance parameters (NPs) : other parameters needed to define the model
\rightarrow Background levels (B)
\rightarrow For binned data, frig $_{\mathrm{ig}}^{\mathrm{i}}, \mathrm{ffkg}_{\mathrm{i}}$

NPs must be either:
\rightarrow Known a priori (within uncertainties) or
\rightarrow Constrained by the data

Takeaways

Random data must be described using a statistical model:

Description	Observable	Likelihood
Counting	n	Poisson $P(\boldsymbol{n} ; \boldsymbol{S}, \boldsymbol{B})=e^{-(s+\boldsymbol{B})} \frac{(\boldsymbol{S}+\boldsymbol{B})^{n}}{n!}$
Binned shape analysis	$\mathrm{n}_{\mathrm{i}}, \mathrm{i}=1 . . \mathrm{N}_{\text {bins }}$	Poisson product $P\left(n_{i} ; \boldsymbol{S}, \boldsymbol{B}\right)=\prod_{i=1}^{n_{\mathrm{bins}}} e^{-\left(\boldsymbol{S} f_{i}^{\mathrm{sig}}+\boldsymbol{B} f_{i}^{\mathrm{kgs})}\left(\boldsymbol{S} \boldsymbol{f}_{i}^{\mathrm{sig}}+\boldsymbol{B} f_{i}^{\mathrm{bkg}}\right)^{n_{i}}\right.} \underset{n_{i}!}{ }$
Unbinned shape analysis	$m_{i}, \mathrm{i}=1 . . \mathrm{n}_{\text {evts }}$	Extended Unbinned Likelihood $P\left(\boldsymbol{m}_{i} ; \boldsymbol{S}, \boldsymbol{B}\right)=\frac{e^{-(\boldsymbol{s}+\boldsymbol{B})}}{\boldsymbol{n}_{\mathrm{evvs}}!} \prod_{i=1}^{n_{\mathrm{ves}}} \boldsymbol{S} P_{\mathrm{sig}}\left(\boldsymbol{m}_{i}\right)+\boldsymbol{B} P_{\mathrm{bkg}}\left(\boldsymbol{m}_{i}\right)$

Model can include multiple categories, each with a separate description Includes parameters of interest (POIs) but also nuisance parameters (NPs) Next step: use the model to obtain information on the POIs

Hypothesis Testing and discovery

Discovery Testing

We see an unexpected feature in our data, is it a signal for new physics or a fluctuation ?
e.g. Higgs discovery : "We have 5 σ^{\prime} !

Phys. Lett. B 716 (2012) 1-29

Discovery Testing

Say we have a Gaussian measurement with a background $\mathbf{B = 1 0 0}$, and we measure $\mathbf{n}=120$

Did we just discover something ? Maybe :-) (but not very likely)

$$
B=100
$$

The measured signal is $S=20$.

$$
\mathrm{S}=\mathrm{n}_{\text {obs }}-\mathrm{B}
$$

Uncertainty on B is $\sqrt{ } \mathrm{B}=10$
\Rightarrow Significance Z $=2$
\Rightarrow we are $\sim 2 \sigma$ away from $S=0$.

Gaussian quantiles :

$Z=2$ happens $p_{0} \sim 2.3 \%$ of the time if $S=0$
P-value:

$$
p_{0}=1-\Phi(Z)
$$

\Rightarrow Rare, but not exceptional

14

Discovery Testing

$n_{\text {obs }}$	s	z	p_{0}
105	5	0.5σ	31%
110	10	1σ	16%
120	20	2σ	2.3%
130	30	3σ	0.1%
150	50	5σ	310^{-7}

Straightforward in this Gaussian case

Need to be able to do the same in more complex cases:

- Determine S

Evidence - Compute Z and p_{0}
Discovery

$$
B=100 \quad n
$$

15

What is PDF is for

Model describes the distribution of the observable: P(data; parameters)
\Rightarrow Possible outcomes of the experiment, for given parameter values
Can draw random events according to PDF : generate pseudo-data

$$
P(\lambda=5)
$$

2, 5, 3, 7, 4, 9 ,
Each entry = separate "experiment"

What is PDF is also for: Likelihood

Model describes the distribution of the observable: P(data; parameters)
\Rightarrow Possible outcomes of the experiment, for given parameter values
We want the other direction: use data to get information on parameters

$$
P(\lambda=?)
$$

2

Estimate

Likelihood: L(parameters) = P(data; parameters)
\rightarrow same as the PDF, but seen as function of the parameters

Maximum Likelihood Estimation

To estimate a parameter μ, find the value $\hat{\boldsymbol{\mu}}$ that maximizes $L(\mu)$
Maximum Likelihood

$$
\hat{\mu}=\arg \max L(\mu)
$$

MLE: the value of μ for which this data was most likely to occur The MLE is a function of the data - itself an observable No guarantee it is the true value (data may be "unlikely") but sensible estimate

Gaussian case

Gaussian case

Gaussian case

Multiple Gaussian bins

-2 log Likelihood:

$$
\begin{aligned}
& \qquad \lambda(\mu)=-2 \log L(\mu)=\sum_{i=1}^{N_{\text {bins }}}\left(\frac{n_{i}-\mu_{i}}{\sigma_{i}}\right)^{2} \\
& \text { Maximum likelihood } \Leftrightarrow \\
& \Leftrightarrow \text { Minimum } \chi^{2} \\
& \\
& \text { Least-squares } \\
& \text { minimization }
\end{aligned}
$$

However typically need to perform non-linear minimization.

HEP practice:

- MINUIT (C++ library within ROOT, numerical gradient descent)
- scipy.minimize - using NumPy/TensorFlow/PyTorch/... backends
\rightarrow Usual methods - gradient-based, etc.

Multiple Gaussian bins

-2 log Likelihood:

$$
\begin{aligned}
& \qquad \lambda(\mu)=-2 \log L(\mu)=\sum_{i=1}^{N_{\text {bins }}}\left(\frac{n_{i}-\mu_{i}}{\sigma_{i}}\right)^{2} \\
& \text { Maximum likelihood } \Leftrightarrow \text { Minimum } \chi^{2} \\
& \Leftrightarrow \\
& \\
& \\
& \text { Least-squares } \\
& \text { minimization }
\end{aligned}
$$

However typically need to perform non-linear minimization.

HEP practice:

- MINUIT (C++ library within ROOT, numerical gradient descent)
- scipy.minimize - using NumPy/TensorFlow/PyTorch/... backends
\rightarrow Usual methods - gradient-based, etc.

Multiple Gaussian bins

-2 log Likelihood:

$$
\begin{aligned}
& \qquad \lambda(\mu)=-2 \log L(\mu)=\sum_{i=1}^{N_{\text {bins }}}\left(\frac{n_{i}-\mu_{i}}{\sigma_{i}}\right)^{2} \\
& \text { Maximum likelihood } \Leftrightarrow \text { Minimum } \chi^{2} \\
& \Leftrightarrow \\
& \\
& \\
& \text { Least-squares } \\
& \text { minimization }
\end{aligned}
$$

However typically need to perform non-linear minimization.

HEP practice:

- MINUIT (C++ library within ROOT, numerical gradient descent)
- scipy.minimize - using NumPy/TensorFlow/PyTorch/... backends
\rightarrow Usual methods - gradient-based, etc.

Multiple Gaussian bins

-2 log Likelihood:

$$
\begin{aligned}
& \qquad \lambda(\mu)=-2 \log L(\mu)=\sum_{i=1}^{N_{\text {bins }}}\left(\frac{n_{i}-\mu_{i}}{\sigma_{i}}\right)^{2} \\
& \text { Maximum likelihood } \Leftrightarrow \text { Minimum } \chi^{2} \\
& \Leftrightarrow \\
& \\
& \\
& \text { Least-squares } \\
& \text { minimization }
\end{aligned}
$$

However typically need to perform non-linear minimization.

HEP practice:

- MINUIT (C++ library within ROOT, numerical gradient descent)
- scipy.minimize - using NumPy/TensorFlow/PyTorch/... backends
\rightarrow Usual methods - gradient-based, etc.

Hypothesis Testing

Null Hypothesis: assumption on POIs, say value of $S\left(\right.$ e.g. $\mathbf{H}_{\mathbf{0}}: \mathbf{S}=\mathbf{0}$)
\rightarrow Goal : decide if H_{0} is favored or disfavored using a test based on the data

| Possible
 outcomes: | Data disfavors H_{0}
 (Discovery claim) | Data favors H_{0}
 (Nothing found) |
| :--- | :--- | :--- | :--- |
| H_{0} is false
 (New physics!) | Discovery! | Missed
 discovery |
| H_{0} is true
 (Nothing new) | False
 discovery | No new physics, |
| | | None found |

"... the null hypothesis is never proved or established, but is possibly disproved, in the course of experimentation. Every experiment may be said to exist only to give the facts a chance of disproving the null hypothesis." - R. A. Fisher

Hypothesis Testing

Hypothesis: assumption on model parameters, say value of $S\left(e . g . H_{0}: S=0\right)$

	Data disfavo (Discovery c	Data favors H_{0} (Nothing found)	
H_{0} is false (New physics!)	Discovery!	Type-II error (Missed discovery)	
H_{0} is true (Nothing new)	Type-I error (False discovery)	No new physics, none found	

Lower Type-I errors \Leftrightarrow Higher Type-II errors and vice versa: cannot have everything!
\rightarrow Goal: test that minimizes Type-II errors for a given level of Type-I error.

"Receiver operating characteristic" (ROC) Curve:
\rightarrow Shows Type-I vs Type-II rates for different selections
\rightarrow All curves monotonically decrease from $(0,1)$ to $(1,0)$
\rightarrow Better discriminators more bent towards (1,1)
\rightarrow Goal: test that minimizes Type-II errors for given level of Type-l error.
\rightarrow Usually set predefined level of acceptable Type-I error (e.g. " 5σ ")

"Receiver operating characteristic" (ROC) Curve:
\rightarrow Shows Type-I vs Type-II rates for different selections
\rightarrow All curves monotonically decrease from $(0,1)$ to $(1,0)$
\rightarrow Better discriminators more bent towards (1,1)

\rightarrow Goal: test that minimizes Type-II errors for given level of Type-l error.
\rightarrow Usually set predefined level of acceptable Type-I error (e.g. " 5σ ")

ROC Curves

"Receiver operating characteristic" (ROC) Curve:
\rightarrow Shows Type-I vs Type-II rates for different selections
\rightarrow All curves monotonically decrease from $(0,1)$ to $(1,0)$
\rightarrow Better discriminators more bent towards (1,1)

\rightarrow Goal: test that minimizes Type-II errors for given level of Type-l error.
\rightarrow Usually set predefined level of acceptable Type-I error (e.g. " 5σ ")

Hypothesis Testing with Likelihoods

Neyman-Pearson Lemma

When comparing two hypotheses H_{0} and H_{1}, the optimal discriminator is the Likelihood ratio (LR)
$\frac{L\left(H_{1} ; \text { data }\right)}{L\left(H_{0} ; \text { data }\right)}$
$L(S=5 ;$ data $)$
e.g. $L(S=0 ;$ data $)$

Caveat: Strictly true only for simple hypotheses (no free parameters)

As for MLE, choose the hypothesis that is more likely given the data we have.
\rightarrow Minimizes Type-II uncertainties for given level of Type-I uncertainties
\rightarrow Always need an alternate hypothesis to test against the null.
\rightarrow In the following: all tests based on LR, will focus on p-values (Type-I errors), trusting that Type-II errors are anyway as small as they can be...

Discovery: Test Statistic

Discovery :

- H_{0} : background only $(\mathrm{S}=0)$ against

- \mathbf{H}_{1} : presence of a signal ($\mathbf{S} \mathbf{> 0}$)
\rightarrow For H_{1}, any $\mathrm{S}>0$ is possible, which to use ? The one preferred by the data, $\hat{\mathbf{s}}$.
\Rightarrow Use Likelihood ratio: $\frac{L(S=0)}{L(\hat{S})}$
$\rightarrow \operatorname{In}$ fact use the test statistic $q_{0}=-2 \log \frac{L(S=0)}{L(\hat{S})}$
Note: for $\hat{s}<0$, set $\mathrm{q}_{0}=0$ to reject negative signals ("one-sided test statistic") ${ }_{1}^{25}$

Discovery p-value

Large values of $-2 \log \frac{L(S=0)}{L(\hat{S})}$ if:

data
\Rightarrow observed S is far from 0
$\Rightarrow \mathrm{H}_{0}(\mathrm{~S}=0)$ disfavored compared to $\mathrm{H}_{1}(\mathrm{~S} \neq 0)$.

How large q_{0} before we can exclude H_{0} ? (and claim a discovery!)
\rightarrow Need small Type-I rate (falsely rejecting H_{0})

= Fraction of outcomes that are
At least as extreme (signal-like) as data, when H_{0} is true (no signal).

Asymptotic distribution of q_{0}

Gaussian regime for $\hat{\mathbf{S}}$ (e.g. large $\mathrm{n}_{\text {evts }}$, Central-limit theorem) :
Wilk's Theorem: \mathbf{q}_{0} distributed as $\chi^{2}\left(n_{\text {par }}\right)$ for $S=0$
$\Rightarrow \mathrm{n}_{\mathrm{par}}=1: \sqrt{ } \mathrm{q}_{0}$ is distributed as a Gaussian
\Rightarrow Can compute p -values from Gaussian quantiles

$$
p_{0}=1-\Phi\left(\sqrt{q_{0}}\right)
$$

\Rightarrow Even more simply, the significance is:

$$
Z=\sqrt{q_{0}}
$$

Typically works well already for for event counts of O(5) and above \Rightarrow Widely applicable

Homework 1: Gaussian Counting

Count number of events \mathbf{n} in data

\rightarrow Assume n large enough so process is Gaussian
\rightarrow Assume B is known, and we measure S

Likelihood :

$$
L\left(S ; \boldsymbol{n}_{\mathrm{obs}}\right)=\boldsymbol{e}^{-\frac{1}{2}\left(\frac{n_{\mathrm{abs}}-(S+B)}{\sqrt{S+B})^{2}}\right.}
$$

\rightarrow Find the best-fit value (MLE) Ŝ for the signal (can use $\lambda=-2 \log L$ instead of L for simplicity)
\rightarrow Find the expression of q_{0} for $\hat{\mathrm{s}}>0$.
\rightarrow Find the expression for the significance

$$
Z=\frac{\hat{S}}{\sqrt{B}}
$$

Homework 2: Poisson Counting

Same problem but now not assuming Gaussian behavior:

$$
L(S ; n)=e^{-(S+B)}(S+B)^{n}
$$

\rightarrow As before, compute $\hat{\mathrm{S}}$, and q_{0}
(Can remove the n ! constant since we're only dealing with L ratios)
\rightarrow Compute $\mathrm{Z}=\sqrt{ } \mathrm{a}_{0}$, assuming asymptotic behavior

Solution:

$$
Z=\sqrt{2\left\lfloor\left.(\hat{S}+B) \log \left(1+\frac{\hat{S}}{B}\right)-\hat{S} \right\rvert\,\right.}
$$

Exact result can be obtained using pseudo-experiments \rightarrow close to $\sqrt{ } \mathrm{q}_{0}$ result

Asymptotic formulas justified by Gaussian regime, but remain valid even for small values of S+B (down to 5 events!)

Eur.Phys.J.C71:1554,2011

Discovery Thresholds

Evidence : $3 \sigma \Leftrightarrow p_{0}=0.3 \% \Leftrightarrow 1$ chance in 300

Discovery: $5 \sigma \Leftrightarrow p_{0}=310^{-7} \Leftrightarrow 1$ chance in 3.5 M
Why so high thresholds? (from Louis Lyons):

- Look-elsewhere effect: searches typically cover multiple independent regions \Rightarrow Higher chance to have a fluctuation "somewhere"
$N_{\text {trials }} \sim 1000$: local $5 \sigma \Leftrightarrow \mathrm{O}\left(10^{-4}\right)$ more reasonable
- Mismodeled systematics: factor 2 error in syst-dominated analysis \Rightarrow factor 2 error on Z...

- History: 3σ and 4σ excesses do occur regularly, for the reasons above

Takeaways

Given a statistical model $P($ data; $\mu)$, define likelihood $L(\mu)=P($ data $; \mu)$
To estimate a parameter, use the value $\hat{\boldsymbol{\mu}}$ that maximizes $\mathrm{L}(\mu) \rightarrow$ best-fit value
To decide between hypotheses H_{0} and H_{1}, use the likelihood ratio $\frac{L\left(H_{0}\right)}{L\left(H_{1}\right)}$
To test for discovery, use $\quad \boldsymbol{q}_{0}=-2 \log \frac{L(S=0)}{L(\hat{\boldsymbol{S}})} \quad \hat{S} \geq 0$
For large enough datasets ($\mathrm{n}>\sim 5$), $\quad \mathbf{Z}=\sqrt{\boldsymbol{q}_{\mathbf{0}}}$
For a Gaussian measurement, $\quad Z=\frac{\hat{\boldsymbol{S}}}{\sqrt{\boldsymbol{B}}}$

For a Poisson measurement,

$$
Z=\sqrt{2\left\{(\hat{S}+B) \log \left(1+\frac{\hat{S}}{B}\right)-\hat{S}\right]}
$$

Confidence Intervals

Confidence Intervals

Last lecture we saw how to estimate (=compute) the value of a parameter

Maximum Likelihood Estimator (MLE) $\hat{\boldsymbol{\mu}}$:
$\hat{\mu}=\arg \max L(\mu)$

However we also need to estimate the associated uncertainty.

What is the meaning of an uncertainty?

We don't know what the true value is, but there is a 68% chance that it is within the error bar

Gaussian confidence intervals

Consider a Gaussian likelihood:

$$
\begin{gathered}
L(\mu)=\exp \left[-\frac{1}{2}\left(\frac{n-\mu}{\sigma}\right)^{2}\right] \\
P(\mu-\sigma<n<\mu+\sigma) \geq 68.3 \% \\
P(n-\sigma<\mu<n+\sigma) \geq 68.3 \% \\
\text { Still a statement on } n! \\
\left.\mu=n \pm \sigma \text { at } 68 \% \text { CL (" } 1 \sigma^{\prime \prime}\right)
\end{gathered}
$$

The reported interval $\mathrm{n} \pm \sigma$ will contain the true value of $\mu 68.3 \%$ of the time

Gaussian confidence intervals

Consider a Gaussian likelihood:

$$
\begin{gathered}
L(\mu)=\exp \left[-\frac{1}{2}\left(\frac{n-\mu}{\sigma}\right)^{2}\right] \\
P(\mu-\sigma<n<\mu+\sigma) \geq 68.3 \% \\
P(n-\sigma<\mu<n+\sigma) \geq 68.3 \% \\
\text { Still a statement on } n! \\
\left.\mu=n \pm \sigma \text { at } 68 \% \text { CL (" } 1 \sigma^{\prime \prime}\right)
\end{gathered}
$$

The reported interval $\mathrm{n} \pm \sigma$ will contain the true value of $\mu 68.3 \%$ of the time

Gaussian confidence intervals

Consider a Gaussian likelihood:

$$
\begin{gathered}
L(\mu)=\exp \left[-\frac{1}{2}\left(\frac{n-\mu}{\sigma}\right)^{2}\right] \\
P(\mu-\sigma<n<\mu+\sigma) \geq 68.3 \% \\
P(n-\sigma<\mu<n+\sigma) \geq 68.3 \% \\
\text { Still a statement on } n! \\
\left.\mu=n \pm \sigma \text { at } 68 \% \text { CL (" } 1 \sigma^{\prime \prime}\right)
\end{gathered}
$$

The reported interval $\mathrm{n} \pm \sigma$ will contain the true value of $\mu 68.3 \%$ of the time

Gaussian confidence intervals

Frequentist interpretation

If we would repeat the same experiment multiple times, with true value μ^{*}, then 68.3% of the 1σ intervals would contain μ^{*}.
\rightarrow Crucially, this works even if we do not know μ^{*} !

For each experiment, get the interval
$\mu=n \pm \sigma$ at $68 \% \mathrm{CL}$ (" $1 \sigma^{\prime \prime}$)

The reported interval $\mathrm{n} \pm \sigma$ will contain the true value of $\mu 68.3 \%$ of the time

Neyman Construction

General case: build 1σ intervals of observed values for each true value
\Rightarrow Confidence belt

Neyman Construction

General case: build 1σ intervals of observed values for each true value
\Rightarrow Confidence belt

Inversion using the Confidence Belt

General case: Intersect belt with given $\hat{\boldsymbol{\mu}}$, get $\boldsymbol{P}\left(\hat{\mu}-\sigma_{\mu}^{-}<\mu^{*}<\hat{\mu}+\sigma_{\mu}^{+}\right)=\mathbf{6 8 \%}$
\rightarrow Same as before for Gaussian, works also when $\mathrm{P}\left(\mu^{\mathrm{obs}} \mid \mu\right)$ varies with μ.

Inversion using the Confidence Belt

General case: Intersect belt with given $\hat{\boldsymbol{\mu}}$, get $\boldsymbol{P}\left(\hat{\mu}-\sigma_{\mu}^{-}<\mu^{*}<\hat{\mu}+\sigma_{\mu}^{+}\right)=68 \%$
\rightarrow Same as before for Gaussian, works also when $\mathrm{P}\left(\mu^{\mathrm{obs}} \mid \mu\right)$ varies with μ.

Inversion using the Confidence Belt

General case: Intersect belt with given $\hat{\mu}$, get $P\left(\hat{\mu}-\sigma_{\mu}^{-}<\mu^{*}<\hat{\mu}+\sigma_{\mu}^{+}\right)=68 \%$
\rightarrow Same as before for Gaussian, works also when $\mathrm{P}\left(\mu^{\mathrm{obs}} \mid \mu\right)$ varies with μ.

Inversion using the Confidence Belt

General case: Intersect belt with given $\hat{\mu}$, get $P\left(\hat{\mu}-\sigma_{\mu}^{-}<\mu^{*}<\hat{\mu}+\sigma_{\mu}^{+}\right)=68 \%$
\rightarrow Same as before for Gaussian, works also when $\mathrm{P}\left(\mu^{\mathrm{obs}} \mid \mu\right)$ varies with μ.

General case: Likelihood Intervals

Probability to observe

Confidence intervals from $L(\mu)$:

- Test various values μ using the Profile Likelihood Ratio $t(\mu)$
- Minimum (=0) for $\mu=\hat{\mu}$, rises away from $\hat{\mu}$.
- Good properties thanks to the NeymanPearson lemma.

$$
\text { the data for a given } \mu \text {. }
$$

$$
t(\mu)=-2 \log \frac{L(\mu)}{L(\hat{\mu})}
$$

Probability to observe the data for best-fit $\hat{\mu}$.

Gaussian L(μ):

$$
\begin{gathered}
L(\mu)=\exp \left[-\frac{1}{2}\left(\frac{n-\mu}{\sigma}\right)^{2}\right] \\
t(\mu)=\left(\frac{n-\mu}{\sigma}\right)^{2}
\end{gathered}
$$

- $t(\mu)$ is parabolic, distributed as a χ^{2}
- Minimum occurs at $\boldsymbol{\mu}=\hat{\boldsymbol{\mu}}$
- 1σ interval $\left[\mu_{-}, \mu_{+}\right]$given by $t\left(\mu_{ \pm}\right)=1$

General case: Likelihood Intervals

Confidence intervals from $L(\mu)$:

- Test various values μ using the Profile Likelihood Ratio $t(\mu)$

$$
t(\mu)=-2 \log \frac{L(\mu)}{L(\hat{\mu})}
$$

- Minimum (=0) for $\mu=\hat{\mu}$, rises away from $\hat{\mu}$.
- Good properties thanks to the NeymanPearson lemma.

ATLAS-CONF-2017-047

General case:

- Generally not a perfect parabola
- Minimum still at $\boldsymbol{\mu}=\hat{\boldsymbol{\mu}}$

Asymptotic approximation

- Compute $\mathrm{t}(\mu)$ using the exact $\mathrm{L}(\mu)$
- Assume $t(\mu) \sim \chi^{2}$ as for Gaussian ("Wills' Theorem")
1σ interval $\left[\mu_{_}, \mu_{+}\right]$given by $t\left(\mu_{ \pm}\right)=1_{39}$

Homework 3: Gaussian Case

Consider a parameter m (e.g. Higgs boson mass) whose measurement is Gaussian with known width σ_{m}, and we measure $\mathrm{m}_{\text {obs }}$:

$$
L\left(\boldsymbol{m} ; \boldsymbol{m}_{\mathrm{obs}}\right)=\boldsymbol{e}^{-\frac{1}{2}\left(\frac{m-\boldsymbol{m}_{\mathrm{oss}}}{\sigma_{m}}\right)^{2}}
$$

m
\rightarrow Compute the best-fit value (MLE) $\hat{\mathrm{m}}$
\rightarrow Compute t_{m}
\rightarrow Compute the 1- $\sigma(\mathrm{Z}=1, \sim 68 \% \mathrm{CL})$ interval on m
Solution: $m=m_{\mathrm{obs}} \pm \sigma_{m}$
\rightarrow As expected!
\rightarrow General method can be applied in the same way to more complex cases

2D Example: Higgs $\sigma_{\text {VBF }}$ Vs. σ_{ggF}

\square

$$
\text { 骨 } 40 E — \text { Combined } 68 \% \mathrm{CL} \dagger<2.30 \text { ATLAS Preliminary }
$$

$$
t=-2 \log \frac{L\left(X_{0}, Y_{0}\right)}{L(\hat{X}, \hat{Y})}
$$

$$
\sum_{0}^{\frac{u}{\infty}}
$$

$$
\sim \chi^{2}\left(N_{\mathrm{dof}}=2\right)
$$

$$
\dagger_{\text {ggFVBF }}
$$

N (dot

$$
\uparrow z^{2}
$$

Gaussian case: elliptic
paraboloid surface

Reparameterization

Start with basic measurement in terms of e.g. $\sigma \times B$
\rightarrow How to measure derived quantities (couplings, parameters in some theory model, etc.) ?
\rightarrow just reparameterize the likelihood:
e.g. Higgs couplings: $\sigma_{\mathrm{ggF}}, \sigma_{\mathrm{VBF}}$ sensitive to Higgs coupling modifiers $\mathrm{K}_{\mathrm{V}}, \mathrm{K}_{\mathrm{F}}$.

Upper Limits

Hypothesis tests for Limits

If no signal in data, testing for discovery not very relevant (report 0.2σ excess ?)
\rightarrow More interesting to exclude large signals
\Rightarrow Upper limits on signal yield
\rightarrow Typically report 95\% CL upper limit (p-value =5\%) : "S < S @ 95\% CL"

Hypothesis tests for Limits

If no signal in data, testing for discovery not very relevant (report 0.2σ excess ?)
\rightarrow More interesting to exclude large signals
\Rightarrow Upper limits on signal yield
\rightarrow Typically report 95\% CL upper limit (p-value = 5\%) : "S < So @ 95\% CL"

Hypothesis tests for Limits

If no signal in data, testing for discovery not very relevant (report 0.2σ excess ?)
\rightarrow More interesting to exclude large signals
\Rightarrow Upper limits on signal yield
\rightarrow Typically report 95\% CL upper limit (p-value =5\%) : "S < S @ 95\% CL"

Hypothesis tests for Limits

If no signal in data, testing for discovery not very relevant (report 0.2σ excess ?)
\rightarrow More interesting to exclude large signals
\Rightarrow Upper limits on signal yield
\rightarrow Typically report 95\% CL upper limit (p-value =5\%) : "S < S @ 95\% CL"

Test Statistics for Limit-Setting

Interval :

$H_{0}: \mu=\mu_{0}$
$H_{1}: \mu \neq \mu_{0}$

$$
\mathrm{H}_{1} \xrightarrow{\substack{\mu_{0} \\ \mathrm{H}_{0}}} \mathrm{H}_{1}
$$

Try to exclude μ values away from $\hat{\mu}$.

$$
t\left(\mu_{0}\right)=-2 \log \frac{L\left(\mu=\mu_{0}\right)}{L(\hat{\mu})}
$$

"Two-sided" test

Limit-setting
$\mathrm{H}_{0}: \mathrm{S}=\mathrm{S}_{\mathrm{o}}$
$\mathrm{H}_{1}: \mathrm{S}<\mathrm{S}_{0}$

$$
\begin{aligned}
H_{1} & \xrightarrow{S_{0}} H_{0} \\
q\left(S_{0}\right) & =\left(\begin{array}{cl}
-2 \log \frac{L\left(S=S_{0}\right)}{L(\hat{S})} & S_{0}>\hat{S} \\
0 & S_{0} \leq \hat{S}
\end{array}\right.
\end{aligned}
$$

Try to exclude values of S that are above \hat{S}.
\Rightarrow "One-sided" test : only interested in excluding above

Discovery is also onesided, for $\mathrm{S}>0$!

Inversion : Getting the limit for a given CL

Procedure:

\rightarrow Compute $\mathrm{q}\left(\mathrm{S}_{0}\right)$ for some S_{0}, get the exclusion p-value $p\left(S_{0}\right)$.

$$
\text { Asymptotics: } \quad p\left(S_{0}\right)=1-\Phi\left(\sqrt{q\left(S_{0}\right)}\right)
$$

CL	p	Region
90%	10%	$\sqrt{ } \mathrm{q}(\mathrm{S})>1.28$
95%	5%	$\sqrt{ } \mathrm{q}(\mathrm{S})>1.64$
99%	1%	$\sqrt{\mathrm{q}(\mathrm{S})>2.33}$

\rightarrow Adjust S_{0} to get the desired exclusion Asymptotics: need $\sqrt{ } \mathbf{q}\left(\mathrm{S}_{95}\right)=1.64$ for $95 \% \mathrm{CL}$

$$
\sqrt{q}(S)=1.64
$$

$$
(p=5 \%)
$$

Inversion : Getting the limit for a given CL

Procedure:

\rightarrow Compute $\mathrm{q}\left(\mathrm{S}_{0}\right)$ for some S_{0}, get the exclusion p-value $p\left(S_{0}\right)$.

$$
\text { Asymptotics: } \quad p\left(S_{0}\right)=1-\Phi\left(\sqrt{q\left(S_{0}\right)}\right)
$$

CL	p	Region
90%	10%	$\sqrt{ } \mathrm{q}(\mathrm{S})>1.28$
95%	5%	$\sqrt{ } \mathrm{q}(\mathrm{S})>1.64$
99%	1%	$\sqrt{ } \mathrm{q}(\mathrm{S})>2.33$

\rightarrow Adjust S_{0} to get the desired exclusion Asymptotics: need $\sqrt{ } \mathbf{q}\left(\mathrm{S}_{95}\right)=1.64$ for $95 \% \mathrm{CL}$
$\sqrt{q}(S)=1.64$
($p=5 \%$)

Inversion : Getting the limit for a given CL

Procedure:

\rightarrow Compute $\mathrm{q}\left(\mathrm{S}_{0}\right)$ for some S_{0}, get the exclusion p-value $p\left(S_{0}\right)$.

$$
\text { Asymptotics: } \quad p\left(S_{0}\right)=1-\Phi\left(\sqrt{q\left(S_{0}\right)}\right)
$$

CL	p	Region
90%	10%	$\sqrt{ } \mathrm{q}(\mathrm{S})>1.28$
95%	5%	$\sqrt{\mathrm{q}(\mathrm{S})>1.64}$
99%	1%	$\sqrt{\mathrm{q}(\mathrm{S})>2.33}$

\rightarrow Adjust S_{0} to get the desired exclusion Asymptotics: need $\sqrt{ } \mathbf{q}\left(\mathrm{S}_{95}\right)=1.64$ for $95 \% \mathrm{CL}$
$\sqrt{q}(S)=1.64$
($p=5 \%$)

Homework 4: Gaussian Example

Usual Gaussian counting example with known B:

$$
L(S ; \boldsymbol{n})=e^{-\frac{1}{2}\left(\frac{n-(S+B)}{\sigma_{s}}\right)^{2}} \quad \sigma_{\mathrm{s}} \sim \text { V } \text { b for small } S
$$

$S+B$
Reminder: Significance: Z = $\hat{S} / \sigma_{\mathrm{s}}$
\rightarrow Compute $\mathrm{q}_{\mathrm{s} 0}$
\rightarrow Compute the 95% CL upper limit on $\mathrm{S}, \mathrm{S}_{\mathrm{up}}$, by solving $\mathrm{V}_{\mathrm{s} 0}=1.64$.

Solution: $\quad S_{\text {up }}=\hat{S}+1.64 \sigma_{S}$ at 95% CL

Upper limits sometimes take negative values (exclude all S>0!)

Known feature - to avoid, usual

$$
p_{C L_{s}}=\frac{p\left(S_{0}\right)}{p_{B}} \sim \begin{aligned}
& \text { Usual } \mathrm{P} \text {-value } \\
& \text { for } \mathrm{S}=\mathrm{S}_{0}
\end{aligned}
$$

\Rightarrow Compute exclusion relative to that of $\mathrm{S}=0$
\rightarrow Somewhat ad-hoc, but good properties...
$\hat{S} \sim 0 \Rightarrow p_{B} \sim O(1), p_{c\llcorner s} \sim p\left(S_{0}\right)$ no change
$\hat{S} \ll 0 \Rightarrow p_{B} \ll 1, p_{\text {cls }} \gg p\left(S_{0}\right)$ no exclusion at $S=0$

Drawback: overcoverage

\rightarrow limit is claimed to be $95 \% \mathrm{CL}$, but actually $>95 \%$ CL for small p_{B}.

Homework 5: CL_{s} : Gaussian Case

Usual Gaussian counting example with known B :

$$
L(S ; n)=e^{-\frac{1}{2}\left(\frac{n-(S+B)}{\sigma_{S}}\right)^{2}}
$$

$\sigma_{\mathrm{s}} \sim \sqrt{ } \mathrm{B}$ for small S

Reminder

$\mathrm{CL}_{\mathrm{s}+\mathrm{b}}$ limit: $\quad S_{\mathrm{up}}=\hat{\boldsymbol{S}}+\mathbf{1 . 6 4} \sigma_{\mathrm{s}}$ at $\mathbf{9 5} \% \mathbf{C L}$

CL_{s} upper limit :
\rightarrow Compute $\mathrm{p}_{\mathrm{s} 0}$ (same as for CLs+b)
\rightarrow Compute 1- p_{B} (hard!)
Solution:

$$
\begin{aligned}
& S_{\mathrm{up}}=\hat{S}+\left[\Phi^{-1}\left(\mathbf{1}-\mathbf{0 . 0 5} \Phi\left(\hat{S} / \sigma_{S}\right)\right)\right] \sigma_{S} \text { at } 95 \% \mathrm{CL} \\
& \text { for } \hat{S} \sim 0, \quad S_{\mathrm{up}}=\hat{S}+\mathbf{1 . 9 6} \sigma_{S} \text { at } 95 \% \mathrm{CL}
\end{aligned}
$$

Homework 6: CL_{s} Rule of Thumb for $\mathrm{n}_{\text {obs }}=0$

Same exercise, for the Poisson case with $\mathrm{n}_{\mathrm{obs}}=0$. Perform an exact computation of the 95% CLs upper limit based on the definition of the p-value:
p-value : sum probabilities of cases at least as extreme as the data

Hint: for $\mathrm{n}_{\mathrm{obs}}=0$, there are no "more extreme" cases (cannot have $\mathrm{n}<0$!), so
$p_{s 0}=\operatorname{Poisson}\left(n=0 \mid S_{0}+B\right)$ and $1-p_{B}=\operatorname{Poisson}(n=0 \mid B)$

Solution: $\quad S_{\mathrm{up}}\left(n_{\mathrm{obs}}=0\right)=\log (20)=2.996 \approx 3$
\Rightarrow Rule of thumb: when $n_{\text {obs }}=0$, the $95 \% \mathrm{CL}_{\mathrm{s}}$ limit is 3 events (for any B)

Reparameterization: Limits

CMS Run 2 Monophoton Search: measured N_{s} in a counting experiment reparameterized according to various DM models

Generating Pseudo-data

Model describes the distribution of the observable: P(data; parameters)
\Rightarrow Possible outcomes of the experiment, for given parameter values
Can draw random events according to PDF : generate pseudo-data

$$
P(\lambda=5)
$$

$$
2,5,3,7,4,9, \ldots .
$$

Each entry = separate "experiment"

Expected Limits: Toys

Expected results: median outcome under a given hypothesis \rightarrow usually B-only for searches, but other choices possible.

Two main ways to compute:
\rightarrow Pseudo-experiments (toys):

- Generate a pseudo-dataset in B-only hypothesis
- Compute limit

Phys. Lett. B 775 (2017) 105

- Repeat and histogram the results
- Central value = median, bands based on quantiles

Expected Limits: Asimov Datasets

Expected results: median outcome under a given hypothesis
\rightarrow usually B-only for searches, but other choices possible.

Two main ways to compute:
\rightarrow Asimov Datasets

Strictly speaking, Asimov dataset if
$\hat{\mathbf{X}}=X_{0}$ for all parameters X, where X_{0} is the generation value

- Generate a "perfect dataset" - e.g. for binned data, set bin contents carefully, no fluctuations.
- Gives the median result immediately: median(toy results) \leftrightarrow result(median dataset)
- Get bands from asymptotic formulas: Band width

$$
\sigma_{S_{0}, A}^{2}=\frac{S_{0}^{2}}{q_{S_{0}}(A \operatorname{simov})}
$$

\oplus Much faster (1 "toy")

Θ Relies on Gaussian approximation

Toys: Example

ATLAS X \rightarrow Z γ Search: covers $200 \mathrm{GeV}<\mathrm{m}_{\mathrm{x}}<2.5 \mathrm{TeV}$

For $m_{x}>1.6 \mathrm{TeV}$, low event counts \Rightarrow derive results from toys

Asimov results (in gray) give optimistic result compared to toys (in blue)

Upper Limit Examples

ATLAS 2015-2016 4l aTGC Search

Takeaways

Confidence intervals: use $\quad t_{\mu_{0}}=-2 \log \frac{L\left(\mu=\mu_{0}\right)}{L(\hat{\mu})}$
\rightarrow Crossings with $t_{\mu 0}=Z^{2}$ for $\pm Z \sigma$ intervals (in 1D)
Gaussian regime: $\mu=\hat{\mu} \pm \sigma_{\mu}$ (1σ interval)

Limits : use LR-based test statistic:

$$
q_{S_{0}}=-2 \log \frac{L\left(S=S_{0}\right)}{L(\hat{S})} \quad S_{0} \geq \hat{S}
$$

\rightarrow Use CL_{s} procedure to avoid negative limits
Gaussian regime, $\mathrm{n} \sim 0: \mathrm{S}<\mathbf{S}+1.96 \sigma$ at $95 \% \mathrm{CL}$ Poisson regime, $n=0: S_{u p}=3$ events at $95 \% \mathrm{CL}$

Extra Slides

Rare Processes?

HEP : almost always use Poisson distributions. Why ?

ATLAS :

- Event rate ~ 1 GHz

$$
\left(\mathrm{L} \sim 10^{34} \mathrm{~cm}^{-2} \mathrm{~s}^{-1} \sim 10 \mathrm{nb}^{-1} / \mathrm{s}, \sigma_{\mathrm{tot}} \sim 10^{8} \mathrm{nb},\right)
$$

- Trigger rate ~ 1 kHz
(Higgs rate $\sim 0.1 \mathrm{~Hz}$)
$\Rightarrow \mathrm{p} \sim 10^{-6} \ll 1\left(\mathrm{p}_{\mathrm{H} \rightarrow \mathrm{W}} \sim 10^{-13}\right)$
A day of data: $\mathrm{N} \sim 10^{14} \gg 1$
\Rightarrow Poisson regime! Similarly true in many other physics situations.

Unbinned Shape Analysis

Observable: set of values $m_{1} \ldots m_{n}$, one per event
\rightarrow Describe shape of the distribution of m
\rightarrow Deduce the probability to observe $m_{1} \ldots m_{n}$

$\mathrm{H} \rightarrow \mathrm{\gamma} \mathrm{\gamma}$-inspired example:

- Gaussian signal $\quad P_{\text {signal }}(m)=G\left(m ; m_{H}, \sigma\right)$
- Exponential bkg $\quad \boldsymbol{P}_{\text {bkg }}(m)=\alpha \boldsymbol{e}^{-\alpha m}$

Expected yields: S, B
\Rightarrow Total PDF for a single event:
$P_{\text {total }}(m)=\frac{S}{S+B} G\left(m ; m_{H}, \sigma\right)+\frac{B}{S+B} \alpha e^{-\alpha m}$
\Rightarrow Total PDF for a dataset
Probability to observe the value m_{i}

Probability to observe n events
$P\left(\left(m_{i}\right\}_{i=1 . \ldots . .}\right)=e^{-(s+b)} \frac{\downarrow}{d} \frac{(S+B)^{n}}{n!} \prod_{i=1}^{n} \frac{S}{S+B} G$

Poisson Example

Assume Poisson distribution with $\mathrm{B}=0: \quad \underset{\text { Say we observe } \mathrm{n}=5 \text {, want to infer information on the parameter } \mathrm{S}}{\boldsymbol{P}(n ; S)=} e^{-s} \frac{\boldsymbol{S}^{\boldsymbol{n}}}{n!}$
\rightarrow Try different values of S for a fixed data value $\mathrm{n}=5$
\rightarrow Varying parameter, fixed data: likelihood

$$
L(S ; n=5)=e^{-S} \frac{S^{5}}{5!}
$$

Poisson Example

Assume Poisson distribution with $\mathrm{B}=0: \quad \underset{\text { As }}{\text { Say we observe } \mathrm{n}=5 \text {, want to infer information on the parameter } \mathrm{S}} \mathrm{e}^{-s} \frac{\boldsymbol{S}^{n}}{n!}$
\rightarrow Try different values of S for a fixed data value $n=5$
\rightarrow Varying parameter, fixed data: likelihood

$$
L(S ; n=5)=e^{-s} \frac{S^{5}}{5!}
$$

Poisson Example

$\begin{aligned} & \text { Assume Poisson distribution with } \mathrm{B}=0: \\ & \text { Say we observe } \mathrm{n}=5 \text {, want to infer information on the parameter } \mathrm{S}\end{aligned} \quad \boldsymbol{P}(n ; S)=\boldsymbol{S}^{-s}$
\rightarrow Try different values of S for a fixed data value $\mathrm{n}=5$
\rightarrow Varying parameter, fixed data: likelihood

$$
L(S ; n=5)=e^{-s} \frac{S^{5}}{5!}
$$

61

Poisson Example

Assume Poisson distribution with $\mathrm{B}=0: \quad \underset{\text { Sation on the parameter } S}{\boldsymbol{S}} \mathrm{e}^{-s} \frac{S^{n}}{n!}$
\rightarrow Try different values of S for a fixed data value $n=5$
\rightarrow Varying parameter, fixed data: likelihood

$$
L(S ; n=5)=e^{-s} \frac{S^{5}}{5!}
$$

61

Poisson Example

Assume Poisson distribution with $B=0$: Say we observe $n=5$, want to infer information on the parameter $S \quad e^{-s} \frac{S^{n}}{n!}$
\rightarrow Try different values of S for a fixed data value $n=5$
\rightarrow Varying parameter, fixed data: likelihood

$$
L(S ; n=5)=e^{-s} \frac{S^{5}}{5!}
$$

MLEs in Shape Analyses

Binned shape analysis:

$$
L\left(\boldsymbol{S} ; \boldsymbol{n}_{\boldsymbol{i}}\right)=P\left(\boldsymbol{n}_{i} ; \boldsymbol{S}\right)=\prod_{i=1}^{N} \operatorname{Pois}\left(\boldsymbol{n}_{i} ; \boldsymbol{S} \boldsymbol{f}_{i}+B_{i}\right)
$$

Maximize global L(S) (each bin may prefer a different \mathbf{S}) In practice easier to minimize

$$
\lambda_{\text {Pis }}(S)=-2 \log L(S)=-2 \sum_{i=1}^{N} \log \operatorname{Pois}\left(n_{i} ; \boldsymbol{S} f_{i}+B_{i}\right) \quad \text { Needs a computer... }
$$ In the Gaussian limit

$$
\lambda_{\text {Gas }}(\boldsymbol{S})=\sum_{i=1}^{N}-2 \log G\left(\boldsymbol{n}_{i} ; \boldsymbol{S} f_{i}+B_{i}, \sigma_{i}\right)=\sum_{i=1}^{N}\left|\frac{\boldsymbol{n}_{i}-\left(\boldsymbol{S} f_{i}+B_{i}\right)}{\sigma_{i}}\right|^{2} \quad x^{2} \text { formula! }
$$

\rightarrow Gaussian MLE (min x^{2} or min $\lambda_{\text {Gauss }}$) : Best fit value in a x^{2} (Least-squares) fit \rightarrow Poisson MLE (min $\lambda_{\text {polis }}$: Best fit value in a likelihood fit (in ROOT, fit option "L") In RooFit, $\boldsymbol{\lambda}_{\text {Pis }} \Rightarrow$ RooAbsPdf: :fyi to(), $\boldsymbol{\lambda}_{\text {Gus }} \Rightarrow$ RooAbsPdf::chi2FitTo().

$\mathrm{H} \rightarrow \mathrm{\gamma} \gamma$

$$
L\left(\boldsymbol{S}, \boldsymbol{B} ; \boldsymbol{m}_{i}\right)=e^{-(\boldsymbol{s}+\boldsymbol{B})} \prod_{i=1}^{n_{\text {vs }}} \boldsymbol{S} P_{\text {sig }}\left(\boldsymbol{m}_{i}\right)+\boldsymbol{B} P_{\text {bkg }}\left(\boldsymbol{m}_{\boldsymbol{i}}\right)
$$

Estimate the MLE \hat{S} of ?
\rightarrow Perform (likelihood) best-fit of model to data
\Rightarrow fit result for S is the desired $\hat{\mathbf{S}}$.

In particle physics, often use the MINUIT minimizer within ROOT.

MLE Properties

- Asymptotically Gaussian and unbiased $\langle\hat{\mu}\rangle=\mu^{*}$ for $n \rightarrow \infty$ $\underset{\operatorname{P}(\hat{\mu})}{ } \propto \exp \left|-\frac{\left(\hat{\mu}-\mu^{*}\right)^{2}}{2 \sigma_{\hat{\mu}}^{2}}\right|$ for $n \rightarrow \infty$
Standard deviation of the distribution of $\hat{\mu}$ for large enough datasets
- Asymptotically Efficient : σ_{p} is the lowest possible value (in the limit $\mathrm{n} \rightarrow \infty$) among consistent estimators.
\rightarrow MLE captures all the available information in the data
- Also consistent: $\hat{\mu}$ converges to the true value for large n ,

- Log-likelihood: Can also minimize $\lambda=-2 \log \mathrm{~L}$
\rightarrow Usually more efficient numerically
\rightarrow For Gaussian L, λ is parabolic:
- Can drop multiplicative constants in L(additive constants in λ)

Extra: Fisher Information

Fisher Information:

$$
I(\mu)=\left|\left|\frac{\partial}{\partial \mu} \log L(\mu)\right|^{2}\right|=-\left|\frac{\partial^{2}}{\partial \mu^{2}} \log L(\mu)\right|
$$

Measures the amount of information available in the measurement of μ.

Gaussian likelihood: $\quad I(\mu)=\frac{1}{\sigma_{\text {Gauss }}^{2}}$
\rightarrow smaller $\sigma_{\text {Gauss }} \Rightarrow$ more information.

$$
\operatorname{Var}(\tilde{\mu}) \geq \frac{1}{I(\mu)}
$$

Cramer-Rao bound: $\quad \operatorname{Var}(\tilde{\mu}) \geq \frac{1}{I(\mu)}$

Gaussian case:

- For a Gaussian estimator $\tilde{\mu}$

$$
P(\widetilde{\mu}) \propto \exp \left(-\frac{\left(\tilde{\mu}-\mu^{*}\right)^{2}}{2 \sigma_{\widetilde{\mu}}^{2}}\right)
$$

- MLE: $\operatorname{Var}(\hat{\mu})=\sigma_{\hat{\mu}}{ }^{2}$

Cramer-Rao: $\operatorname{Var}(\tilde{\mu}) \geq \sigma_{G a u s s}^{2}=\sigma_{\tilde{\mu}}{ }^{2}$ For any estimator $\tilde{\mu}$.
\rightarrow cannot be more precise than allowed by information in the measurement.
Efficient estimators reach the bound : e.g. MLE in the large dataset limit.

Some Examples

High-mass X $\boldsymbol{\text { WY S Search: JHEP } 0 9 \text { (2016) } 1}$

Higgs Discovery: Phys. Lett. B 716 (2012) 1-29

Upper Limit Pathologies

Upper limit: $\quad \mathrm{S}_{\mathrm{up}} \sim \hat{\mathbf{S}}+1.64 \sigma_{\mathrm{s}}$.
Problem: for negative Ŝ, get very good observed limit.
\rightarrow For \widehat{S} sufficiently negative, even $\mathrm{S}_{\mathrm{up}}<0$!

How can this be ?
\rightarrow Background modeling issue ?... Or:
\rightarrow This is a 95% limit $\Rightarrow 5 \%$ of the time, the limit wrongly excludes the true value, e.g. $S^{*}=0$.

Options

\rightarrow live with it: sometimes report limit < 0
\rightarrow Special procedure to avoid these cases, since if we assume S must be >0, we know a priori this is just a fluctuation.

Usual solution in HEP : CL_{s}.
\rightarrow Compute modified p-value

$$
\begin{aligned}
& \boldsymbol{p}_{C L_{s}}={\frac{\boldsymbol{p}_{S_{0}}}{\left(1-\boldsymbol{p}_{B}\right)}}_{\substack{\text { The usual } \mathrm{p} \text {-value under } \\
\mathrm{H}\left(\mathrm{~S}=\mathrm{S}_{0}\right)(=5 \%)}}^{\text {The } \mathrm{p} \text {-value computed }} \text { under } \mathrm{H}(\mathrm{~S}=0)
\end{aligned}
$$

\Rightarrow Rescale exclusion at S_{0} by exclusion at $\mathrm{S}=0$.
\rightarrow Somewhat ad-hoc, but good properties...
Ŝ compatible with $0: p_{B} \sim O(1)$
$p_{\mathrm{cls}} \sim p_{\mathrm{so}} \sim 5 \%$, no change.

Far-negative \widehat{S} : $1-p_{B} \ll 1$
$p_{\mathrm{Cls}} \sim \mathrm{p}_{\mathrm{s} 0} /\left(1-\mathrm{p}_{\mathrm{B}}\right) \gg 5 \%$
\rightarrow lower exclusion \Rightarrow higher limit, usually >0 as desired

Drawback: overcoverage
\rightarrow limit is claimed to be $95 \% \mathrm{CL}$, but actually $>95 \% \mathrm{CL}$ for small $1-\mathrm{p}_{\mathrm{B}}$.

CL_{s} : Gaussian Bands

Usual Gaussian counting example with known B: $95 \% \mathrm{CL}_{\mathrm{s}}$ upper limit on S :

$$
S_{\mathrm{up}}=\hat{\boldsymbol{S}}+\left[\boldsymbol { \Phi } ^ { - 1 } \left(\mathbf{1 - 0 . 0 5 \Phi (\hat { S } / \sigma _ { S }))] \sigma _ { S }} \begin{array}{c}
\text { with } \\
\sigma_{S}=\sqrt{B}
\end{array}\right.\right.
$$

Compute expected bands for $\mathrm{S}=0$:
\rightarrow Asimov dataset $\Leftrightarrow \hat{\mathbf{s}}=\mathbf{0}$:

$$
S_{\mathrm{up}, \mathrm{exp}}^{0}=1.96 \sigma_{s}
$$

$\rightarrow \pm$ no bands:

$$
S_{\mathrm{up}, \mathrm{exp}}^{ \pm n}=\left(\pm n+\left[1-\Phi^{-1}(0.05 \Phi(\mp n))\right]\right) \sigma_{s}
$$

n	$S_{\text {exp }}{ }^{ \pm n} / \sqrt{\text { B }}$
+2	3.66
+1	2.72
0	1.96
-1	1.41
-2	1.05

CLs :

- Positive bands somewhat reduced,
- Negative ones more so

Band width from $\sigma_{s, A}^{2}=\frac{S^{2}}{\boldsymbol{q}_{s}(\text { Asimov })}$
depends on S, for non-Gaussian cases,different values for each band...

Comparison with LEP/TeVatron definitions

Likelihood ratios are not a new idea:

- LEP: Simple LR with NPs from MC

$$
\begin{aligned}
q_{L E P} & =-2 \log \frac{L(\mu=0, \widetilde{\theta})}{L(\mu=1, \widetilde{\theta})} \\
q_{\text {Tevarron }} & =-2 \log \frac{L\left(\mu=0, \hat{\hat{\theta}_{0}}\right)}{L\left(\mu=1, \hat{\hat{\theta}_{1}}\right)}
\end{aligned}
$$

- Compare $\mu=0$ and $\mu=1$
- Tevatron: PLR with profiled NPs

Both compare to $\boldsymbol{\mu}=\mathbf{1}$ instead of best-fit $\hat{\boldsymbol{\mu}}$

LEP/Tevatron LHC

\rightarrow Asymptotically:

- LEP/Tevaton: q linear in $\mu \Rightarrow \sim$ Gaussian
- LHC: q quadratic in $\mu \Rightarrow \sim$ र2
\rightarrow Still use TeVatron-style for discrete cases

