

INTRODUCTION TO MACHINE LEARNING

INTRODUCTION

TAXONOMY

Supervision Incremental/batch learning Model / Instance based

MACHINE LEARNING CHALLENGES

Data challenges Algorithms challenges

TEST AND VALIDATION

Measuring performance

FROM MACHINE TO DEEP LEARNING

AND NOW SOME FUN

Statistical Learning Empirical Risk Minimization

CONCLUSION

INTRODUCTION

Definitions

"A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P if its performance at tasks in T, as measured by P, improves with experience E." a

"Machine learning is the field of study that gives computers the ability to learn without being explicitly programmed" $^{\rm b}$

^aTom Mitchell (1997). Machine Learning. McGraw Hill.

^bArthur L Samuel (1959). Some studies in machine learning using the game of checkers. In: IBM Journal of research and development, pp 210-229

WHY LEARNING?

Learning is used when	with a comparison of the compa
• Human expertise does not exist	
0	
0	2.00
0	and the second sec
0	BALL DO DO CONCERNA
0	A MARTINE AND A MARTINE
0	

WHY LEARNING?

Learning is used when	JZ AW PRO
 Human expertise does not exist Humans are unable to explain their expertise 	й Н XM % 0 G W D 2 * в в в р • с и в с с с с с с с с с с с с с с с с с

WHY LEARNING?

Learning is used when	QLA FAIT LONGTEMPS QUE VOLIS N'AVIEZ PAS VUI DE MEDECIN P
 Human expertise does not exist Humans are unable to explain their expertise Amount of knowledge is too large for explicit encoding 	
0	The start
0	- If and
0	
0	

WHY LEARNING?

WHY LEARNING?

WHY LEARNING?

Machine learning is programming computers to optimize a performance criterion using example data or past experience.

Learning is used when

- Human expertise does not exist
- Humans are unable to explain their expertise
- Amount of knowledge is too large for explicit encoding
- Solution changes in time
- Relationships can be hidden within large amounts of data
- Solution needs to be adapted to particular cases

WHY LEARNING?

Machine learning is programming computers to optimize a performance criterion using example data or past experience.

Learning is used when

- Human expertise does not exist
- Humans are unable to explain their expertise
- Amount of knowledge is too large for explicit encoding
- Solution changes in time
- Relationships can be hidden within large amounts of data
- Solution needs to be adapted to particular cases
- New knowledge is constantly being discovered by humans

AN ILLUSTRATIVE EXAMPLE

AN ILLUSTRATIVE EXAMPLE

AN ILLUSTRATIVE EXAMPLE

Spam detection: Machine Learning approach A ML spam filter automatically learns relevant patterns Automatic adaptation Can help humans to learn → Data Mining

AN ILLUSTRATIVE EXAMPLE

DIFFERENT TYPES OF MACHINE LEARNING ALGORITHMS

Several criteria, non exhaustive and combinable

- 1 Supervised of not
- ² Incremental of batch learning
- ³ Instance-based or model-based algorithms

TAXONOMY USING SUPERVISION

SUPERVISED LEARNING

SUPERVISED LEARNING

Workflow

SUPERVISED LEARNING

- K-nearest neighbors (K-nn).
- Support Vector Machines (SVM/SVR)
- Linear/logistic regression
- Decision Trees
- Random forests
- Neural networks (shallow and deep)

INTRODUCTION	TAXONOMY	MACHINE LEARNING CHALLENGES	TEST AND VALIDATION	FROM MACHINE TO DEEP LEARNING	AND NOW
0000	000000000000000000000000000000000000000	000000000000	0000000	0	000000
SUPERVISION					

SUPERVISED LEARNING

Main algorithms:

	K-nearest neighbors (K-nn).		
	Support Vector Machines (SVM/SVR)		- 영화관 : 그 영화관
	Linear/logistic regression	-14	a la la de de de de de la ^{col} la las de de de de de de
	Decision Trees		
	Random forests	min	$\ w\ ^{2}$
►	Neural networks (shallow and deep)	$\mathbf{w} \in \mathbb{R}^{\mathbf{d}}$	
		wrt	$y_i(\mathbf{w}^T \mathbf{x_i}) \ge 1, 1 \le i \le n$

el la

SUPERVISED LEARNING

- K-nearest neighbors (K-nn).
- Support Vector Machines (SVM/SVR)
- Linear/logistic regression
- Decision Trees
- Random forests
- Neural networks (shallow and deep)

INTRODUCTION	TAXONOMY	MACHINE LEARNING CHALLENGES	TEST AND VALIDATION	FROM MACHINE TO DEEP LEARNING	AND NOW
0000	000000000000000000000000000000000000000	000000000000	0000000	0	000000
SUPERVISION					

SUPERVISED LEARNING

- K-nearest neighbors (K-nn).
- Support Vector Machines (SVM/SVR)
- Linear/logistic regression
- Decision Trees
- Random forests
- Neural networks (shallow and deep)

SUPERVISED LEARNING

- K-nearest neighbors (K-nn).
- Support Vector Machines (SVM/SVR)
- Linear/logistic regression
- Decision Trees
- Random forests
- Neural networks (shallow and deep)

SUPERVISED LEARNING

- K-nearest neighbors (K-nn).
- Support Vector Machines (SVM/SVR)
- Linear/logistic regression
- Decision Trees
- Random forests
- Neural networks (shallow and deep)

UNSUPERVISED LEARNING

SUPERVISION

UNSUPERVISED LEARNING

- Clustering
 - K-means and variants
 - o Hierarchical cluster analysis
 - o EM algorithm
- Visualization
 - Linear methods (PCA, ICA,...)
 - Manifold Learning (ISOMAP, LLE, tSNE,...)
- Association rules

SUPERVISION

UNSUPERVISED LEARNING

Main algorithms:

Clustering

- K-means and variants
- Hierarchical cluster analysis
- o EM algorithm
- Visualization
 - Linear methods (PCA, ICA,...)
 - Manifold Learning (ISOMAP, LLE, tSNE,...)

Association rules

SUPERVISION

UNSUPERVISED LEARNING

- Clustering
 - K-means and variants
 - o Hierarchical cluster analysis
 - EM algorithm
- Visualization
 - Linear methods (PCA, ICA,...)
 - Manifold Learning (ISOMAP, LLE, tSNE,...)
- Association rules

SUPERVISION

UNSUPERVISED LEARNING

Main algorithms:

- Clustering
 - K-means and variants
 - o Hierarchical cluster analysis
 - EM algorithm
- Visualization
 - Linear methods (PCA, ICA,...)
 - Manifold Learning (ISOMAP, LLE, tSNE,...)
- Association rules

re-compositive principale

 INTRODUCTION
 Taxonomy
 Machine Learning Challenges
 Test and Validation
 From Machine to Deep Learning
 And now

 00000
 000000
 0000000
 0000000
 0000000
 0000000

SUPERVISION

UNSUPERVISED LEARNING

- Clustering
 - K-means and variants
 - o Hierarchical cluster analysis
 - o EM algorithm
- Visualization
 - Linear methods (PCA, ICA,...)
 - Manifold Learning (ISOMAP, LLE, tSNE,...)
- Association rules

 INTRODUCTION
 Taxonomy
 Machine Learning Challenges
 Test and Validation
 From Machine to Deep Learning
 And now

 00000
 000000
 0000000
 0000000
 0000000
 0000000

SUPERVISION

UNSUPERVISED LEARNING

Main algorithms:

Clustering

- K-means and variants
- o Hierarchical cluster analysis
- EM algorithm

Visualization

- o Linear methods (PCA, ICA,...)
- Manifold Learning (ISOMAP, LLE, tSNE,...)
- Association rules

INTRODUCTION	TAXONOMY	MACHINE LEARNING CHALLENGES	TEST AND VALIDATION	FROM MACHINE TO DEEP LEARNING	AND NOW
0000	00000000000000	000000000000	0000000	0	000000
a					

SUPERVISION

SEMI-SUPERVISED LEARNING

- Mix between supervised and unsupervised learning
- Some training examples contain outputs, but some do not
- Use the labeled training subset to label the unlabeled portion of the training set, which are then also utilized for model training

SUPERVISION

REINFORCEMENT LEARNING

INCREMENTAL/BATCH LEARNING

INCREMENTAL/BATCH LEARNING

INCREMENTAL/BATCH LEARNING

ONLINE LEARNING

Learning new data / Forgetting the old one

- too often: instability/ sensitivity to outliers
- too rarely: no adaptation

\Rightarrow Learning rate

GENERALISATION

Generalisation

Capacity of an algorithm to predict relevant values/labels on unseen data.

When building an algorithm, 2 strategies are possible:

1 Instance-based algorithm: only relying on the training set

- Easy to learn by heart
- How to allow generalization ?
- 2 Model-based: use of a parametric model
 - What kind of model ?
 - How to tune parameters ?
GENERALISATION

INTRODUCTION

Two things can go wrong

1 Bad data

NOT ENOUGH DATA

Not enough data

- A child can learn (and generalize) what is an apple with only few examples
- A machine learning algorithm needs thousands of examples

NOT ENOUGH DATA

Not enough data

- A child can learn (and generalize) what is an apple with only few examples
- A machine learning algorithm needs thousands of examples

Few data \rightarrow a simple algorithm.

DATA CHALLENGES

UNREPRESENTATIVE DATA

POOR QUALITY DATA

Clean the data

- Remove or correct outliers
- Missing values:
 - Ignore the feature
 - Ignore the individual
 - Impute values
 - Combine...

POOR QUALITY DATA

Clean the data

- Remove or correct outliers
- Missing values:
 - o Ignore the feature
 - Ignore the individual
 - Impute values
 - Combine...

Unsignificant features

- Feature selection (from the original ones)
- Feature extraction (linear/non linear dimension reduction)
- Collect new features

UNDER/OVERFITTING

ALGORITHMS CHALLENGES

UNDER/OVERFITTING

Problem: Linear Least square problem.

The model is...

- Too simple: underfitting
- Too complex: overfitting

TRAINING AND TEST SETS

Don't trust a priori... Once the model is trained, there is a need to test if it is reliable and performs well. $Z = Z_L \cup Z_T$ Z_L : training set (training error) Z_T : test set (generalization error) Predictive

TRAINING, TEST AND VALIDATION SETS

Comparing several models.

Need for an additional set when comparing several algorithms $Z = Z_L \cup Z_T \cup Z_V$

- Z_L: training set (training error)
- Z_T: test set (generalization error)
- \triangleright Z_V: validation set (hyperparameters tuning)

Risk: learning Z_V .

Solution: Cross validation.

- Use different partitions $Z = Z_L \cup Z_T \cup Z_V$
- keep the best model

TRAINING, TEST AND VALIDATION SETS

MEASURING PERFORMANCE

PERFORMANCE MEASURE

Measuring the performance of a classifier is generally harder than for a regression algorithm.

- cross validation (can be difficult if the classes are non equilibrated)
- confusion matrix (binary and multiclass cases)

INTRODUCTION	TAXONOMY	MACHINE LEARNING CHALLENGES	TEST AND VALIDATION	FROM MACHINE TO DEEP LEARNING	AND NOW
0000	000000000000000000000000000000000000000	000000000000	0000000	0	000000

MEASURING PERFORMANCE

PERFORMANCE MEASURE

$$C = \begin{pmatrix} C_{1,1} & C_{1,2} \\ C_{2,1} & C_{2,2} \end{pmatrix}$$

Example: binary confusion matrix C

- \blacktriangleright $C_{1,1}$: true positives (TP)
- \blacktriangleright $C_{2,2}$: true negatives (TN)
- $C_{1,2}$: false positives (FP)
- \blacktriangleright $C_{2,1}$: false negatives (FN)

MEASURING PERFORMANCE

PERFORMANCE MEASURE

$$C = \begin{pmatrix} C_{1,1} & C_{1,2} \\ C_{2,1} & C_{2,2} \end{pmatrix}$$

Example: binary confusion matrix C

- $C_{1,1}$: true positives (TP)
- \blacktriangleright $C_{2,2}$: true negatives (TN)
- $C_{1,2}$: false positives (FP)
- $C_{2,1}$: false negatives (FN)

Precision / Recall

• precision
$$P = \frac{TP}{TP + FP}$$
:

• recall
$$\frac{TP}{TP+FN}$$

INTRODUCTION	TAXONOMY	MACHINE LEARNING CHALLENGES	TEST AND VALIDATION	FROM MACHINE TO DEEP LEARNING	AND NOW
0000	000000000000000000000000000000000000000	000000000000	0000000	0	000000

MEASURING PERFORMANCE

PERFORMANCE MEASURE

F_1 score

$$F_1 = 2\frac{P.R}{P+R} = \frac{TP}{TP + \frac{FN + FP}{2}}$$

MEASURING PERFORMANCE

PERFORMANCE MEASURE

F_1 score

$$F_1 = 2\frac{P.R}{P+R} = \frac{TP}{TP + \frac{FN + FP}{2}}$$

Harmonic mean

Good performances for classifiers with similar P and R values

INTRODUCTION	TAXONOMY	MACHINE LEARNING CHALLENGES	TEST AND VALIDATION	FROM MACHINE TO DEEP LEARNING	AND NOW
0000	000000000000000000	000000000000	0000000	0	000000

MEASURING PERFORMANCE

PERFORMANCE MEASURE

 F_1 score

$$F_1 = 2\frac{P.R}{P+R} = \frac{TP}{TP + \frac{FN + FP}{2}}$$

Harmonic mean

Good performances for classifiers with similar P and R values

P/R compromise

- ln general, improving P lowers R and vice versa.
- Decision function, returning a value compared to a threshold

MEASURING PERFORMANCE

PERFORMANCE MEASURE

ROC curves

AND NOW, SOME MATHS...

INTRODUCTION	TAXONOMY	MACHINE LEARNING CHALLENGES	TEST AND VALIDATION	FROM MACHINE TO DEEP LEARNING	AND NOW
0000	000000000000000000	000000000000	0000000	0	00000

STATISTICAL LEARNING

STATISTICAL LEARNING THEORY

Learning Model (Vapnik)

- 1 A generator (G) of random vectors $x \in D$, i.i.d, P(x) fixed but unknown;
- ² A supervisor (S) giving for each input x a value $y \in C$ drawned from P(y|x) fixed but unknown;

³ A Learning Machine (LM) implementing a set of functions \mathcal{F} .

STATISTICAL LEARNING

STATISTICAL LEARNING THEORY

Problem statement

Find $f \in \mathcal{F}$ that best fit the supervisor S

Training Set

$$Z = \{(x_1, y_1), \dots, (x_l, y_l)\}\$$

l observations i.i.d from P(x, y) = P(x) P(y|x).

Find $f: D \to C$ such as $R(f) = P(y \neq f(x))$ is minimal.

STATISTICAL LEARNING

LOSS FUNCTION AND ERROR

Loss function

$$L\left(y,f\left(x\right)\right) = \mathbb{1}_{y \neq f\left(x\right)}$$

Difference between S(y) and LM (f(x))

Risk or Error

$$R(f) = \int L(y, f(x)) dP(x, y) = P(y \neq f(x))$$

 \Rightarrow Expected value of the loss function = probability that f predicts a different value of S.

INTRODUCTION	TAXONOMY	MACHINE LEARNING CHALLENGES	TEST AND VALIDATION	FROM MACHINE TO DEEP LEARNING	AND NOW
0000	000000000000000000000000000000000000000	000000000000	0000000	0	00000

STATISTICAL LEARNING

CLASSIFICATION, REGRESSION AND DENSITY ESTIMATION

Problem statement

Knowing Z, find $f \in \mathcal{F}$ such that

$$f = Arg\min_{g \in \mathcal{F}} R\left(g\right)$$

Some comments

Depending on L, this formulation allows to address classification, regression and density estimation problems, e.g.

- Classification: $L(y, f(x)) = \mathbb{1}_{y \neq f(x)}$
- Regression: $L(y, f(x)) = (y f(x))^2$
- Density estimation: L(y, f(x)) = -log(f(x))

STATISTICAL LEARNING

MINIMUM RISK FUNCTION: BAYES' FUNCTION

For classification problem, 3 a minimum risk function

$$f_{Bayes}\left(x\right) = Arg\max_{y} P\left(y|x\right)$$

 f_{Bayes} : "Ideal" function to reach (no hypothesis on the underlying distributions)

Problem statement

Knowing Z, approximate f_{Bayes} with $f \in \mathcal{F}^a$.

^{*a*}a priori $f_{Bayes} \notin \mathcal{F}$

INTRODUCTION	TAXONOMY	MACHINE LEARNING CHALLENGES	TEST AND VALIDATION	FROM MACHINE TO DEEP LEARNING	AND NOW
0000	000000000000000000	000000000000	0000000	0	00000

STATISTICAL LEARNING

MINIMUM RISK FUNCTION: BAYES' FUNCTION

Let suppose there exists $f_{opt} \in \mathcal{F}$ of minimal risk:

$$0 \le R\left(f_{Bayes}\right) \le R\left(f_{opt}\right) = \underbrace{R\left(f_{Bayes}\right)}_{\text{non-deterministic}} + \underbrace{\left(R\left(f_{opt}\right) - R\left(f_{Bayes}\right)\right)}_{\text{structural error}}$$

$\text{Choice of } \mathcal{F}$

- ► Using expressive \mathcal{F} spaces to allow $R(f_{opt}) \approx R(f_{Bayes})$
- Not too rich, otherwise risk of overfitting

EMPIRICAL RISK

Natural idea: find $f \in \mathcal{F}$ that best classify Z

Empirical risk

$$R_{emp}\left(f\right) = \frac{1}{l}\sum_{i=1}^{l} L\left(y_{i}, f\left(x_{i}\right)\right) = \frac{Card\left\{i|f\left(x_{i}\right) \neq y_{i}\right\}}{l}$$

Empirical Risk Minimization(ERM)

Find $f \in \mathcal{F}$ (f_{emp}) minimizing $R_{emp}(f)$

 $R(f_{emp}) = R(f_{Bayes}) + (R(f_{opt}) - R(f_{Bayes})) + (R(f_{emp}) - R(f_{opt}))$

EMPIRICAL RISK

One cannot expect to compute f_{emp} is a reasonable time \rightarrow Approximation f_{approx} of f_{emp} .

EMPIRICAL RISK MINIMIZATION

EMPIRICAL RISK

At least four reasons altering the results of a classification method:

- Nature of the problem : minimum ⇒ Bayes and can be important;
- ▶ *low expressivity of F* : structural error;
- Non consistancy of ERM principle : do we get close to f_{opt} with Z? (be careful: learning by heart !!);
- Minimization can be computationaly hard/unstable.

INTRODUCTION	TAXONOMY	MACHINE LEARNING CHALLENGES	TEST AND VALIDATION	FROM MACHINE TO DEEP LEARNING	AND NOW
0000	000000000000000000	000000000000	0000000	0	00000

EMPIRICAL RISK MINIMIZATION

UNIFORM CONVERGENCE OF THE EMPIRICAL RISK

ERM does not necesserally get close to rhe real risk (Z is randomly drawned)

Serious problem !! • f_{opt} close to $f_{bayes} \Rightarrow \text{rich}\mathcal{F}$ • To find f_{opt} by ERM, \mathcal{F} not too rich....

INTRODUCTION	TAXONOMY	MACHINE LEARNING CHALLENGES	TEST AND VALIDATION	FROM MACHINE TO DEEP LEARNING	AND NOW
0000	000000000000000000	000000000000	0000000	0	00000

EMPIRICAL RISK MINIMIZATION

UNIFORM CONVERGENCE OF THE EMPIRICAL RISK

ERM does not necesserally get close to rhe real risk (Z is randomly drawned)

INTRODUCTION	TAXONOMY	MACHINE LEARNING CHALLENGES	TEST AND VALIDATION	FROM MACHINE TO DEEP LEARNING	AND NOW
0000	000000000000000000	000000000000	0000000	0	000000

EMPIRICAL RISK MINIMIZATION

UNIFORM CONVERGENCE OF THE EMPIRICAL RISK

ERM does not necesseraly get close to rhe real risk (Z is randomly drawned)

Bias-variance tradefoff

- Biais \approx distance between f_{bayes} and f_{opt}
- Variance \approx distance between f_{opt} and f_{emp}

EMPIRICAL RISK MINIMIZATION

Some results

Definition

The Empirical risk uniformly converges (in probability) to the real risk in ${\cal F}$ iff

$$\left(\forall \epsilon > 0\right) \lim_{l \to \infty} \Pr\left\{Max_{f \in \mathcal{F}} \left| R_{emp}^{l}\left(f\right) - R\left(f\right) \right| \ge \epsilon\right\} = 0$$

EMPIRICAL RISK MINIMIZATION

Some results

Proposition:

If the empirical risk uniformly converges to the real risk then a LM based on ERM converges in probability to f_{opt} :

$$\lim_{l \to \infty} \Pr\left\{ \left| R\left(f_{emp}^l \right) - R\left(f_{opt} \right) \right| \ge \epsilon \right\} = 0$$

The VP dimension D_f allows to precise some points: if $D_f < \infty$, and |Z| = l, then with probability at least $1 - \eta$:

$$\left|R_{emp}^{l}\left(f\right)-R\left(f\right)\right| \leq \sqrt{\frac{D_{f}}{l}\left(1+ln\left(\frac{2l}{D_{f}}\right)\right)-\frac{1}{l}log\frac{\eta}{4}}$$

 \Rightarrow if $D_f < \infty$, ERM allows to converge to a function of minimum risk in \mathcal{F} .

