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General introduction

Statistics and probability are everywhere in science and in everyday life.

Attempt to extract quantitative information from the “non fully certain”

• single realisation of a measurement

• complex systems and/or dynamics (from the forecast, to a flipping coin)

• ...

Goals of the lecture

• recap the basics needed for the SOS

• learn how to be critical with statistics (in science, but not only)

• focus on meaning and (mis)intuition rather than mathematical rigour

2
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General introduction

Statistics versus probability (according to Persi Diaconis)

The problems considered by probability and statistics are inverse to

each other. In probability theory we consider some underlying process

which has some randomness [...] and we figure out what happens. In

statistics we observe something that has happened, and try to figure

out what underlying process would explain those observations.

Few personal tips for this lecture

• keywords/concepts will be listed at the end of each section

→ make sure you know the ideas behind them!

• statistics is almost like a language: you need practice to learn it!

→ compute/code as much as simple examples as you can by yourself!

3
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Some references
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Content

1. Statistics

2. Probability

3. Statistical model

4. The two big schools

5. Parameter estimation and hypothesis testing
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Statistics



Descriptive statistics

Definitions:

• Descriptive statistics ∼“summarize” a sample

• sample = set of observations S ≡ {x1, x2, ..., xn}

Sample caracterisation:

• What if the sample would be replaced by a single value?

• arithmetic mean: x = 1
n

∑
xi

• median: value that separates the sample in half

• How well this single value actually represents the sample?

• variance: vx = (x − x)2 ; σx ≡
√

vx - dispersion

• Skewness: γx =
(

x−x
σx

)3

- asymmetry

• Kurtosis: βx =
(

x−x
σx

)4

- importance of tails
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Sample caracterisation - illustrations

blue: xi , red: mean. black: median, green: σx

Skewness and Kurtosis (using probability functions)

Right plot: Kurtosis γ =∞ (red), 2 (blue), 1, 1/2, 1/4, 1/8, and 1/16 (gray), 0 (black)
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Sample caracterisation - comments

Notion of estimator (more on this later)

• e.g.: sample mean 6= “true mean”

• sample mean ≡ estimator of the true mean

• estimators can be biased - they don’t converge to the true value

→ sample variance vx is a biased

estimator of the true variance.

But 1
n−1

∑
(xi − x)2 is unbiased.

Statistical moments (more on this later)

• Order-r moment: mr =
(

x−x
σx

)r
(relates directly to the mean of x r )

• probability theory: all truth moments ≡ exact underlying probability

• first moments ≡“main” features of the sample

8
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Correlations

Multidimensional sample

• single observation i = several numbers: xi → (x
(1)
i , x

(2)
i , ...x

(p)
i )

• e.g. biological dataset: person size, weight, age and genre

Previous description applies to each variable x
(j)
i but one can now explore

how variables behave wrt each other.

Covariance and correlations between two variables a and b:

covab ≡ (a− a)(b − b) ; ρab ≡
covab
σaσb

• probes if fluctuations around the mean are coherent for a and b

• covariance (and correlation) are symetric - fortunate

• covariance of x with itself is the variance

• ρa,b ∈ [−1, 1]; 0 = uncorrelated (6= indep!), (-)1 = (anti-)correlated

9
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More on correlations

Covariance matrix or error matrix

• Cij = ρij × σiσj - real and symmetric.

• ρij is the correlation matrix - symmetric with 1’s on diagonal.

Why is this object so important?

• find pattern in a dataset (e.g. is age correlated to weight?)

• encode the ’effective’ amount of information in a dataset
• having many correlated variables doesn’t bring much information

• error propagation (measuring two correlated variables ∼ measuring twice the same thing)

• find directions which are uncorrelated (Principal Component Analysis)

• x1 and x2 both have a large σ

• but, they are highly correlated

• most of the information is in y1 (largest σ)

→ idea of dimension reduction

→ idea of pre-processing in ML

10



More on correlations

Covariance matrix or error matrix

• Cij = ρij × σiσj - real and symmetric.

• ρij is the correlation matrix - symmetric with 1’s on diagonal.

Why is this object so important?

• find pattern in a dataset (e.g. is age correlated to weight?)

• encode the ’effective’ amount of information in a dataset
• having many correlated variables doesn’t bring much information

• error propagation (measuring two correlated variables ∼ measuring twice the same thing)

• find directions which are uncorrelated (Principal Component Analysis)

• x1 and x2 both have a large σ

• but, they are highly correlated

• most of the information is in y1 (largest σ)

→ idea of dimension reduction

→ idea of pre-processing in ML

10



More on correlations

Covariance matrix or error matrix

• Cij = ρij × σiσj - real and symmetric.

• ρij is the correlation matrix - symmetric with 1’s on diagonal.

Why is this object so important?

• find pattern in a dataset (e.g. is age correlated to weight?)

• encode the ’effective’ amount of information in a dataset
• having many correlated variables doesn’t bring much information

• error propagation (measuring two correlated variables ∼ measuring twice the same thing)

• find directions which are uncorrelated (Principal Component Analysis)

• x1 and x2 both have a large σ

• but, they are highly correlated

• most of the information is in y1 (largest σ)

→ idea of dimension reduction

→ idea of pre-processing in ML

10



More on correlations

Covariance matrix or error matrix

• Cij = ρij × σiσj - real and symmetric.

• ρij is the correlation matrix - symmetric with 1’s on diagonal.

Why is this object so important?

• find pattern in a dataset (e.g. is age correlated to weight?)

• encode the ’effective’ amount of information in a dataset
• having many correlated variables doesn’t bring much information

• error propagation (measuring two correlated variables ∼ measuring twice the same thing)

• find directions which are uncorrelated (Principal Component Analysis)

• x1 and x2 both have a large σ

• but, they are highly correlated

• most of the information is in y1 (largest σ)

→ idea of dimension reduction

→ idea of pre-processing in ML

10



Correlation and dependence

Correlation ≡ linear dependence ⇒ dependence

BUT

Non-correlation dosen’t imply independence (matter of vocabulary)
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NEVER confuse correlation and causality

Correlation between observations doesn’t (necessarily) imply causality
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Keywords and concepts

Part I

descriptive statistics – sample – mean – (co)variance – (de)correlation
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Some definitions

Caution: what follows is not mathematically rigorous

Random variable and associated probability

• a random variable X describes an observable which is not certain

• all possible outcomes - realisations - of X form a set Ω

• a probability Pi is associated to each realisation i of Ω

• {Pi} must satisfy Pi ∈ [0, 1] and
∑

Pi = 1

Simple concrete example: a flippin coin

• X = result of tossing the coin

• Ω = {head, tail} ≡ {0, 1}
• P0 = 1/2 and P1 = 1/2

→ these notions can be defined and manipulated without any sample

14
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Coming back to estimators - I

Previously: sample mean 6= “true mean”. What is the true mean?

µ =
∑

Ω

Pixi ; σ2 =
∑

Ω

Pi × (xi − µ)2 ; mr =
∑

Ω

Pi ×
(

xi − µ
σ

)r

→ These quantities can be computed without any sample.

→ Estimators connect actual (finite) observations - a sample - and these true

quantities, usually not known. Ultimate goal: find Pi

→ This “connection” can more or less good (cf. later).

Note: the “true mean” is called expected value and noted E(x)

E.g. of the flipping coin

• µ = 1/2, σ = 1/2, mr = 1 if r is even and 0 if r is odd

15
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Conditional probabilities and bias theorem

Bias theorem - math version

P(A|B) = P(A)× P(B|A)

P(B)

Bias theorem - meaningful version (to me, at least)

P(hypothesis|evidence) = P(hypothesis)× P(evidence|hypothesis)

P(evidence)

• hypothesis: the event we are interested in (e.g. theory)

• evidence: what we observed (e.g. measurement)

Comments

• many ways to understand this fundamental equation

• in some case, each of these term has a clear meaning

• these two posts are quit interesting post 1 and post 2

16

https://www.freecodecamp.org/news/bayes-rule-explained/
https://towardsdatascience.com/understanding-bayes-theorem-7e31b8434d4b
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Understanding Bias theorem

Example: hypothesis = fire and evidence = smoke

P(fire|smoke) = P(fire)× P(smoke|fire)

P(smoke)

• P(hypothesis|evidence): proba that there is a fire if there is smoke

→ difficult to assess (many sources of smoke), that’s the posterior

• P(hypothesis): proba that there is a fire

→ this our prior knowledge about the hypothesis (often arbitrary)

• P(evidence|hypothesis): proba that there is smoke if there is fire

→ easy to assess (fire produces smoke)

→ That is the interst of bias theorem

• P(evidence): proba that there is smoke somewhere

→ the evidence is rare (valuable) to observe or not (indifferent)

N.B.: P(evidence) is independent from the hypothesis, and is sometime

impossible to compute. It is often seen as a “normalization factor” and dropped

while comparing different hypothesis.

17
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Everyday life questions are often bayesian

Few examples:

• I’m not feeling so well → Am I sick ?

• There are clouds → will it rain?

• I go out in a bar → will I end up drunk?

• I attend to a school statistics → will I learn something?

Always the same thinking:

1. you observe a fact

2. you wonder the probability of something, given you this fact happened

3. you have (somtimes rough/wrong) prior, based on past knowledge

4. your brain applies Bias theorem, even you don’t know it!
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Continous random variables

Generalization to the continuous case

• There is a whole continuum of outcome (realization) for X

• Probability described by a density probability function (PDF), f (x):

P(x ∈ [x1, x2]) =

∫ x2

x1

f (x)dx ;

∫
Ω

f (x)dx = 1

Moments definitions

µ =

∫
Ω

x f (x)dx ; σ2 =

∫
Ω

(x−µ)2 f (x)dx ; mr =

∫
Ω

(
x − µ
σ

)r

f (x)dx

Characteristic function of a PDF

• Fourier transform of the PDF: ϕx(t) = E(e itx) =
∫

f (x)e itxdx

• many manipulations easier in Fourier space - as in many other fields

• e itx =
∑ (itx)n

n!
⇒ ϕx(t) ∼ linear combination of all moments

• knowing all moments ≡ knowing the full PDF

• moments are the Taylor expension coefficients: mr = (−i)r drϕX
dtr

∣∣
t=0
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Important PDF examples
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Cumulative distribution and quantiles
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Multidimensional PDF

How to describe several random variables simulataneously?

• X and Y are two random variables → PDF is fXY ,

• several questions can be asked about X , Y or both.

• Probability that X ∈ [x , x + dx ] and

Y ∈ [y + dy ]:

d2P(x , y) = fXY (x , y)dxdy

• Probability that X ∈ [x , x + dx ]

dP(x) =
(∫

y
fXY (x , y)dy

)
dx

→ this is the marginal PDF

Independent variables → fXY (x , y) = fX (x)× fY (y)

• Why? Because marginal PDF is independent from Y behaviour

→ dP(x) =
(∫

y
fXY (x , y)dy

)
dx =

(∫
y

fY (y)dy

)
︸ ︷︷ ︸

=1

fX (x)dx
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Multidimensional normal distribution

f (~x ; ~µ,Σ) =
1√

(2π)n det Σ
exp

(
−1

2
(~x − ~µ)T Σ−1 (~x − ~µ)

)

• ~µ mean position of ~x , Σ covariance matrix

• Σ encodes correlations between xi and xj : if Σ = diag(σi ), then

f (~x ; ~µ,Σ) =
∏

i N (xi ;µi , σi ) - indep. xi )
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Central limit theorem

Caution: what follows is not mathematically rigorous

If n random variables {Xi} are distributed according to the same PDF fX with a

defined mean µx and a std σx , then the random variable Y = 1
n

(X1 + ...+ Xn)

is following a normal distribution of mean µx and std σx/
√

n.

For 2 variables Y = X1 + X2

• The PDF of Y is fY (y) =
∫

fX1 (x1)× fX2 (y − x1)dx1 → convolution!

• Caracteristic function: ϕY (t) = ϕX1 (t)× ϕX2 (t) = ϕX (t)2 - same PDF!

• 1st and 2nd moments known : ϕx(t) ∼ 2nd order Taylor expansion

Generalizing for sum of n variables:

• ϕY (t) = ϕx(t)n ∼
(

1− t2

n

)n
→ e−t/2 for n→∞

• going back to real space, a normal distribution is obtained

N.B. this reasonning doesn’t explain why σY = σx/
√
n, this needs to properly re-scale Y .
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Central limit theorem – continued

One way to understand why it works
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Central limit theorem – continued

One way to understand why it works
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Central limit theorem - homework

Proof

Proove that σY = σX/
√

n with the proper scalings to define Y .

Application

Proove, using the CLT, that a Poisson distribution P(n;λ) tends to a

normal distribution for large numbers.

Hint: N = 1 + 1 + 1....+ 1 N-times
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Function of random variables

Final observable is very often a combination of (random) variable.

• O = g(X1,X2, ...,Xn) ≡ g(~X ). O is also a random variable

• what is the PDF of O, knowing f~X ? Not trival (think about a sum)!

• What can we say about O then? Do we need to know the full f~X ?

Taylor expension around the mean ~µ:

O ≈ g(~µ) +
∑
i

∂g

∂Xi

∣∣∣∣
~X=~µ

(Xi − µi )

→ O ≈ g(~µ) since Xi − µi = 0

→ σ2
O ≈

∑
i,j

∂g
∂Xi

∂g
∂Xj

(~µ)× cov(i , j) since (Xi − µi )(Xj − µj ) = cov(i , j)

Comments:

• these equations are known as error propagation

• this procedure is not exact and relies on Taylor expansion

• only 1st and 2nd moments of ~X are needed (or their estimators)
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Error propagation formula is not exact

(Counter) example with one variable

• X follows a normal distribution (σX = 1, µX = 0), Y = eX

• approximate formula gives: Y = eµX = 1 and σY = eµXσX = 1

• correct result (from estimator) is Y = 1.6 and σY = 2.2

28
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Keywords and concepts

Part I: statistics

descriptive statistics – sample – mean – (co)variance – (de)correlation

Part II: probability

Bias theorem – prior – posterior – random variable – (marginal) PDF –

moments – caracteristic function – (in)dependent variables –

CLT – error propagation
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Statistical model



Statistical model: what, why, how

What? missing piece between the “sample”

and “probablity”

Why? because a measurement is always one

realization of a random variable.

N.B. Statistical methods will be introduced in the

next sections

How? physical model + fluctuation model = statistical model

Statistical model ingredients:

• (pseudo-)observations, written ~x (or x)

• parameters we want: parameter(s) of interest, written ~µ or µ (POI)

• parameters we don’t care about: nuisance parameters, written ~θ or θ

A statistical model is also called likelihood function L(~µ, ~θ;~x). It can be seen
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Statistical model: what, why, how

What? missing piece between the “sample”

and “probablity”

Why? because a measurement is always one

realization of a random variable.
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Statistical model: particle physics experiment - I

Model ingredients:

• collisions are performed and detected with an efficiency ε = 0.10.

• what is measured is a number of events N for a given final state

• the physics model tells us Nexp(σ) = σ × L× ε
• σ: cross-section of the studied final state, parameter of interest

• L: integrated luminosity (∼ amount of collisions)

• ε: detection efficiency

• the fluctuation model tells us P(N; Nexp) is a Poisson distribution.

Statistical model

L(σ; N) = e−σLε
(σLε)N

N!
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Illustration of the Likelihood

Given a value of σ, what’s the “probability” to observe N ?

Anticipation: frequentist “usage” of the likelihood
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Illustration of the Likelihood

If we observed a value for N, what’s the “probability” that σ = X?

Anticipation: bayesian “usage” of the likelihood
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Statistical model: particle physics experiment - II

Model ingredients:

• the physics model tells us Nexp(σ) = σ × L× ε
• σ: cross-section of the studied final state, parameter of interest

• L: integrated luminosity, with a known uncertainty δL

• ε: detection efficiency, with a uncertainty δε

• the fluctuation model tells us P(N; Nexp) is a Poisson distribution.

Systematic uncertainties turn numbers into new random variables.

They PDFs depends on parameters, we don’t really care about: nuisances

parameters. Example of systematic parametrization:

P(L; Ltruth) = N (L;µ = Ltruth, σ = δL)

Statistical model

L(σ, Ltruth, εtruth; N) = e−σLε
(σLε)N

N!
× P(L; Ltruth)× P(ε; εtruth)
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More realistic statistical model

In realistic experiment:

• histograms are used - not only event counts

• several samples can be considered simultaneously

• Many processes are usually needed to describe data

• Some are known (backgrounds), others are to be measured (signals)

Statistical model (without systematics)

L(~µ;~x) =
∏

bin i region j

PPoisson(xi,j |
∑
bkg

Nbkg
i,j +

∑
sig

Nsig
i,j (µsig ))

• ~µ = (σsig1 , .., σsign): signal x-sec to be measured (e.g. several Higgs prod.)

• xi,j : observed number of events in the bin i of the region j

Questions for the audience. From a statistical point of view:

• What is more relvant: more regions or more bins?

• Does the order of bins in histograms matters for the result?

• Why do we multiply terms?
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A first discussion on uncertainties

Caution

Systematic uncertainty estimation and treatment is not an exact science.

(While statistics deals with the non-certain, systematic uncertainties says we don’t exactly know

the PDF quantifying the non-certain)

Two big classes of uncertainties

• with a statistical nature (typically coming from a measurement)

• without a statistical nature (typically coming from calculation)

• in general: both are present at the same time

• difficult to statistically treat/interpret in the same way

Implications:

• arbitrariness (and a loooot of discussion that go with it)

• always check the robustness of the conclusion wrt to those

• that’s the way it is, no choice! → be smartly practical!
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Keywords and concepts

Part I: statistics

descriptive statistics – sample – mean – (co)variance – (de)correlation

Part II: probability

Bias theorem – prior – posterior – random variable – (marginal) PDF –

moments – caracteristic function – (in)dependent variables –

CLT – error propagation

Part III: statistical model

Likelihood – nuisance parameter – parameter of interest –

systematic uncertainties
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The two big schools



Fequentist versus bayesian

Frequentist Bayesian

probability frequency of occurence degree of belief

parameters fixed (once chosen) uncertain

observation fluctuates certain (once observed)

The two approaches in a nutshell:

• frequenstist → probability of observation, given a model

• bayesian → probability of a model, given an observation

Methodologies

• frequenstist: estimates frequencies, by emulating repetitions of the

experiment (toys) for a given parameter, using the likelihood as PDF

• bayesian: exploits the Bayes theorem to compute the posterior

P(para|obs), using the prior P(para) and P(obs|para) - the likelihood
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Is a flipping coin tricked?

The experiment:

We toss a coin 113 times and we got ’tail’ 68 times. Is the coin tricked?

Statistical Model assuming N = 113 is large enough to apply CLT

L(p; Ntail) =
1√

2πN
e
− 1

2

(
pN−Ntail√

N

)2

• N (known parameter): number of tosses

• Ntail (observation): number of time tail is obtained

• p (parameter): balance between the two sides (tricked p 6= 1/2).

Let’s try to analyze the same experiment with both

frequentist and bayesian approaches

42
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Is a flipping coin tricked? Frequentist approach

Toys with a normal coin

14.1% of pseudo-experiments using an

normal coin would lead to Ntail ≥ 68

Toys with a tricked coin

36.8% of pseudo-experiments using

an tricked coin with p = 0.57 would

lead to Ntail ≥ 68

In the end, is the coin tricked?

• we can only state confidence levels for each scenario

• according to you, is p = 0.57 more probable than p = 0.50?

→ this question has no sense in frequentist
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Is a flipping coin tricked? Bayesian approach

P(p|Ntail) = Prior(p)× P(Ntail |p)

P(Ntail)

Flat prior

Most probable value is

p = 0.60

Wide center prior

Most probable value is

p = 0.55

Narrow centerd prior

Most probable value is

p = 0.51

In the end, is the coin tricked?

• we can only state credibility interval for p, which is prior-dependent

• according to you, is p = 0.57 more probable than p = 0.50?

→ this question has now a clear answer in bayesian!

→ expect it depends on the choice of the prior ...
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Is a flipping coin tricked? Bayesian approach
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So ... Is this coin tricked or not?

Well ... statistics can’t say for sure (science of handling the “not fully certain”).

The unambiguous answer exists only in the limit of infinite number of

measurements. What both methods say in that case?

Frequentist

1 measurement 10 measurements 100 measurements

Frequentists say “Yes, the coin is tricked!”

Certainty comes from the extremely low fraction of pseudo-experiments of a

normal coin, that would lead the observed result.
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Frequentist v.s. Bayesian: what to take away

1. Both approaches handle differently the “non fully certain”

2. Final conlusions should be compatible, even if the question they adress

are not exaclty the same.

3. Both approaches get unifed when

• there is an infinite number of measurements

• the prior is uniform: P(par |obs) = A× L(par ; obs)

(same equation, but its meaning and the question it addresses are different)

You cannot be wrong or right choosing one or the other approach. It’s

matter of taste (and history)

One thing I like from the two approaches

• probability intepretation from the frequentist

• ranking two theories using their probability, called Bias factors
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Keywords and concepts

Part I: statistics

descriptive statistics – sample – mean – (co)variance – (de)correlation

Part II: probability

Bias theorem – prior – posterior – random variable – (marginal) PDF –

moments – caracteristic function – (in)dependent variables –

CLT – error propagation

Part III: statistical model

Likelihood – nuisance parameter – parameter of interest –

systematic uncertainties

Part IV: The two big school

Frequentist – occurence frequency – pseudo-data (toys) – bayesian –

degree of belief
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Content

1. Statistics

2. Probability

3. Statistical model

4. The two big schools

5. Parameter estimation and hypothesis testing
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Parameter estimation and hypothesis

testing



Program of this section

Baics of parameter estimation in both frequentist and bayesian,

explained on a simple linear fit.

The last fundamental aspect of this lecture is the notion of

uncertainty of the parameter of interest.

1. Frequentist

• coming back on the notion of estimator, again

• Maximum likelihood (ML) and χ2 estimators

• uncertainty: confidence interval, notion of coverage

2. Bayesian

• from the posterior to the parameter of interest

• uncertainty: credibility interval

• impact of priors of parmater

3. Coming back on nuisance parameters (i.e. uncertainties on the model)
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Frequentist approach: estimators

Definition: random variable which gives a ’good’ estimate of your parameter of

interest (µ̂ = 1
N

∑
i xi as estimator of E[X ]). Estimator depends on observation

µ̂(x1, ..., xn) and is not constant. Nmeas needed to assess its quality.

Properties: when Nmeas →∞
1. consistency: “P(µ̂ 6= µtruth)→ 0” (rigorously: P(|µ̂− µtruth| > ε)→ 0, ∀ε > 0)

2. bias: b ≡ E[µ̂]− µtruth = 0

3. efficiency: smallest variance vµ̂ ≡ Rao-Cramér-Fréchet (RCF) limit

vµ̂ ≥ −

(
1 + ∂b

∂µ

)2

E
[
∂2 lnL
∂µ2

]
Two important examples of estimators

1. Maximum likelihood estimator (MLE): µ̂ which maximizes L(µ; x)

→ numerically easier to minimze −2 lnL(µ; x) - negative log likelihood (NLL)

2. χ2 estimator: µ̂ which minimizes χ2(µ) ≡
∑

i wi (X pred
i (µ)− xi )

2
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Frequentist approach: estimators

Definition: random variable which gives a ’good’ estimate of your parameter of

interest (µ̂ = 1
N

∑
i xi as estimator of E[X ]). Estimator depends on observation

µ̂(x1, ..., xn) and is not constant. Nmeas needed to assess its quality.

Question 1 for the audience:

In frequentist, we sayed that the parameters are fixed (once chosen), while here

were are talking about P(µ̂) or E[µ̂] ... So in the end, is there in frequentist a

probability associated to the parameter or not?

Question 2 for the audience:

Why consistency and bias of an estimator are different?
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Example: linear fit

Model Npred(p0, p1; t) = p0 + p1t

4 estimators (or “cost function”) are used:

−2 logLpoisson

χ2(p0, p1) =
∑
i

(Npred
i (p0, p1)− Ni )

2

χ2
Pearson(p0, p1) =

∑
i

Npred
i (p0, p1)− Ni√

Npred
i (p0, p1)

2

χ2
Neyman(p0, p1) =

∑
i

(
(Npred

i (p0, p1)− Ni )
2

√
Ni

)2
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Example: linear fit

Comments:

• χ2
pearson ≡ −2 logLGauss ≈ −2 logLPoiss for large numbers

•
√

Ni ≈
√

Npred
i , justifing Neyman’s approx (simpler to compute)

• Interpreting χ2: distance, in unit of error, between data and model

• Doing a fit is always possible. Is the result statisfying?

→ goodness-of-fit is possible to evaluate since χ2 PDF is known
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The basics of goodness-of-fit

χ2
min = 6.7 with 10 data points (nDoF = 10) → blue PDF tells us this is

a good fit, even if not a point is on the line.

We can actually compute the fraction of pseudo-data that would lead to

a higher χ2 (p-value), to quantify this statement.
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Food for thought

1. Perform a fit of an histogram in ROOT, with quite wide binning. Do

you recover the true value? Does the result depends on the number of

bins? How to solve it?

2. Imagine you have one dataset, but you want to fit simultaneously two

distributions of these events. How to write the χ2?
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Frequentist parameter uncertainty
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Frequentist parameter uncertainty

Confidence interval and level µ ∈ [µmin, µmax ] @ αCL

• ≡ the true value is in [µmin, µmax ] in α% of all possible realisations

• µmin (µmax) is the lower (upper) bound

• α is the confidence level

• µmin and µmax are random variables (as µhat): fluctuate with data

How to get confidence interval? Not trivial in general! Need approx

• simplest approx → use the variance of µ estimator:

µmin/max = µ̂± n
√

vµ̂

n is called “number of σ” and α(n) is known for a normal PDF:

• α(1) = 68%

• α(1.64) = 90%

• α(1.95) = 95%

• α(2) = 95.4%

• α(3) = 99.7%

• α(5) = 99.99994%
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Frequentist parameter uncertainty

Quality of a given confidence interval

• CI ≡ random variable: consider the limit of ∞ number of meas.

• Coverage ≡ probability P that the true parameter actually is in C

• “Confidence level = what we target” while “coverage = what we get”

The 3 cases

1. P = α : perfect coverage → ideal

2. P > α : over-coverage → acceptable (conservative conclusions)

3. P < α : under-coverage → dangerous (agressive conclusions)

In practice: estimating coverage can be done using toys experiment

(CPU-intensive for realistic models).
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Frequentist parameter uncertainty

Example: binomial distribution, with parameter of interest p

Take away messages:

• notation µ = X +Y
−Z (assuming 68% C.L.) is sometimes only indicative

• only object which contains the full information is likelihood

• OK to manipulate these approximate quanties - just know what they

are(n’t)
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Bayesian parameter estimation

From the posterieur to the final value: given f (µ) ≡ P(µ|data)

• few options for the central value

• most probable value (MPV) or mode: µ̂ for which f (µ) is max

• mean: µ̂ =
∫
µf (µ)dµ

• median: µ̂ such as P(µ > µ̂) = P(µ < µ̂) = 1/2

• few options for the credibility interval of credibility degree α

• symetric around the mean: [E[µ]− a,E[µ] + a], with∫ E[µ]+a

E[µ]−a

µf (µ)dµ = α

• probability symetric around the mean [a, b] such as∫ E[µ]

a

µf (µ)dµ =

∫ b

E[µ]

µf (µ)dµ = α/2

• Replace E[µ] by the mode, or the median ...
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Bayesian parameter estimation

Take away messages:

• as in frequentist, the notation µ = X +Y
−Z is sometimes only indicative

• the only object which contains the full information is the posterior

Few reminders

• impact of the prior decreases with the number of measurements

• frequentist ≈ bayesien with flat prior (numbers are = but meaning is 6=)

• questions: (1) why there is no coverage in bayesian?

(2) Why the 3 properties of frequentist estimator are defined in baysien?
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Coming back to model uncertainties - I

Frequentist approach imagine you measure energy response rE of a

detector using a dedicated data dE

• this measure is described by a likelihood Lenergy (rE , dE )

• the parameter of interest will be better known with more data

• this unknown can be added to the stat model using the full likelihood

L(µ, rE ; data, dE ) = L(µ, ; data)Lenergy (rE , dE )

• this is notion of auxiliary measurement.

• Lenergy (rE , dE ) is usally too complex to be implemented.

• One uses its approximation (Taylor Expension of order 2 of NLL

around the min, leading to a gaussian likelihood)

67



Coming back to model uncertainties - II

Bayesian approach imagine you have a calculation with some

approximations, to which an uncertainty is associated.

• this uncertainty is closer to a degree of beleif

• a prior π(θ) is required to quantify, were the true value of θ is more

likely to be

• this unknown can be added to the stat model using the full likelihood

L(µ, θ; data) = L(µ, ; data)π(θ)

• this final likelihood is marginalized over θ:

Lm(µ; data) =

∫
L(µ, θ; data)π(θ)dθ

• Interpretation: average all possible situations (defined by a θ value),

accounting for the probability to actually have this value
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Coming back to model uncertainties - III

Example of marginalization

What’s the proper way to implement uncertainties?

• no absolute answer to this question → arbitrariness

• make your choice depending on the context (ease interpretation or

calculation, or ...?)

• always check the robustness of your conclusion wrt these choices
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Test of Hypothesis

Why it is relevant

Most emblematic question: is there a signal in my data?

Formalism

• 2 hypothesis: H1 =there is signal and H0: there is no signal

→ test statistics t ≡ random variable, discrimating H1 from H0

Most naive approch: event count as test statistics t = N

• e.g . H1 predicts N1 = 110, while H0 predicts N1 = 100

• observation Nobs = 112: do I reject the signal hypothesis?

• Steps of test hypothesis

• find distribution of t in both hypothesis f (t|H0) and f (t|H1)

• check where tobs fall wrt to f (t|H0) and f (t|H1)

• conclude with a confidence level (p−value)
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Test of Hypothesis

Quantitative agreement with an hypothsis: p-value
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Test of Hypothesis

How to find exclusion limit

→ Increase the signal until the signal hypothesis get rejected (at a given

confidence level).
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Test of Hypothesis

Pearson-Neyman Lemma (1933)

• the most powerful statistical test is Negative Log Likelihood ratio

NLL ≡ −2 log
L(H1|data)

L(H0|data)

→ an otpimal test statistics exists and we know it.

→ this always turns any n-dim problem into a 1-dim problem

e.g. imagine you have two event counts (N1,N2), instead of one N

In practice: hunders or thousands of event counts!
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Keywords and concepts

Part I: statistics

descriptive statistics – sample – mean – (co)variance – (de)correlation

Part II: probability

Bias theorem – prior – posterior – random variable – (marginal) PDF –

moments – caracteristic function – (in)dependent variables –

CLT – error propagation

Part III: statistical model

Likelihood – nuisance parameter – parameter of interest –

systematic uncertainties

Part IV: The two big school

Frequentist – occurence frequency – pseudo-data (toys) – bayesian –

degree of belief

Part VI: Parameter estimation & hypothesis testing

estimator and its properties – χ2 – confidence/credibility level/interval –

coverage – p-value – LLR
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Concluding remarks

Statistics deals with the ’not fully known’

→ not a single way → some arbitrariness

1. Statistics ≡ link between measurement and conclusion

2. Want to understand a method? Make sure to properly identify the

question it addresses!

3. Don’t restrict yourself to one method/approach

4. All these warnings, subtelties and arbitrariness don’t matter any more

when ’the peak is clear’
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Thanks for you attention !
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