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PDFs are of paramount importance because...

The uncertainties in PDFs are the dominant theoretical uncertainties in

Higgs couplings, αs and the mass of the W boson

Beyond the LHC, PDFs play an important role,

for instance in astroparticle physics, such as for

the accurate predictions for signal and

background events at ultra–high energy neutrino

telescopes (ANITA, IceCube, Pierre Auger

Observatory)

PDFs will keep playing an important role for

any future high energy collider involving hadrons

in the initial state. Therefore improving our

understanding of PDFs also strengthens the

physics potential of such future colliders

Gao, Harland-Lang, Rojo (2018)
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Uncertainties in PDFs

With the recent impressive development of NNLO higher-order calculations

that have provided the Higgs gluon fusion cross section at N3LO, with scale

uncertainties down to 2%

PDF uncertainties are now dominant for a number of crucial LHC processes

Quoting Anastasiou et al “Finally, the computation of the hadronic

cross-section relies crucially on the knowledge of the strong coupling

constant and the parton densities. After our calculation, the uncertainty

coming from these quantities has become dominant. Further progress in the

determination of parton densities must be anticipated in the next few years

due to the inclusion of LHC data in the global fits and the impressive

advances in NNLO computations, improving the theoretical accuracy of

many standard candle processes.”

Phys.Rev.Lett. 114 (2015) 212001
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PDF uncertainties and BSM Physics

The uncertainty on the PDFs is rapidly becoming one of the limiting factors

in searches for new physics.
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The relative size of the NLL corrections for gluino pair production was
computed.The error in the relative size of the NLL corrections grows very
quickly as the gluino mass is increased, mostly as a consequence of the large
PDF errors at large values of x. Beenakker et al. (2016)
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Defining Parton Distribution Functions (PDFs)

QCD αs(Mz) = 0.1181 ± 0.0011

pp –> jets
e.w. precision fits (N3LO)  
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Scale-dependent coupling constant

A key property of QCD is asymptotic

freedom.

Interactions between partons become

arbitrarily weak at higher and higher

energies or shorter and shorter distances.

Perturbation theory can make predictions about the rate of change

(evolution) of PDFs when the energy scale Q2 changes.

The QCD evolution equations were discovered by Dokshitzer (1977),

Gribov, Lipatov (1972), Altarelli and Parisi (1977) and are called the

DGLAP equations.

The x dependence of the PDFs can not be predicted by perturbation theory.
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From DIS to PDFs via factorization

The measurement of PDFs is made possible due to factorization theorems

Intuitively, factorization theorems tell us that the same universal

non-perturbative objects (the PDFs), representing long distance physics,

can be combined with many short-distance calculations in QCD to give the

cross-sections of various processes

σ = f ⊗H

I f are the PDFs, H is the hard perturbative part and ⊗ is convolution.

I PDFs truly characterize the hadronic target

I PDFs are essentially non-perturbative
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Lattice?

gluon quark

a

The natural ab-initio method to

study QCD non-perturbatively is on

the lattice. But ...

PDFs are defined as an expectation

value of a bilocal operator evaluated

along a light-like line.

Clearly, we can not evaluate this on

a Euclidean set-up.
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Lattice traditionally & global PDF fits

q(x)=
1

4π

∞∫

−∞

dω−e−ixP
+ω−〈P |ψ̄(ω−)W (ω−, 0)γ+ψ(0)|P 〉

Light cone PDF

where W (ω−, 0) = Pe−ig0
∫ ω−
0

dy−A+(y−)
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Lattice traditionally & global PDF fits

q(x)=
1

4π

∞∫

−∞

dω−e−ixP
+ω−〈P |ψ̄(ω−)W (ω−, 0)γ+ψ(0)|P 〉

Light cone PDF

Mellin moments 〈xk〉q =
∫ 1

−1
dx xk q(x) related to local matrix elements of

twist-2 operators

〈P |ψ̄(0)γ{µ1Dµ2 ...Dµk}ψ(0)|P 〉 = 2〈xk〉q(Pµ1 ...Pµk − traces)
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Lattice traditionally & global PDF fits

Not an issue if every moment were accessible because a probability

distribution is completely determined once all its moments are known.

These studies are limited to the first few (three) moments due to

I Bad signal to noise ratio

I Power-divergent mixing on the lattice (discretized space-time does not

possess the full rotational symmetry of the continuum).
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Lattice traditionally & global PDF fits

Mellin moments
Constantinou (2015)
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Lattice traditionally & global PDF fits

Mellin moments
Constantinou (2015)

Global fits

Usual determination of PDFs is performed by fitting experimental data

from several hard scattering cross sections (l-p and p-p collisions)

Combining the most PDF-sensitive data and the highest precision QCD

and EW calculations (always assuming that SM holds) and employing a

statistically robust fitting methodology

Can achieve high precision for the cases that data are abundant

Savvas Zafeiropoulos Lattice studies of PDFs 8/56

https://inspirehep.net/record/1325811


Lattice traditionally & global PDF fits

Mellin moments
Constantinou (2015)

Global fits
Lin et al. (2018)
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Large-x discrepancies for the nucleon and the pion

The nucleon
JLab 12-GeV measurements of the ratio

of the PDFs for the d and u quarks at

large momentum fraction x

In yellow the projected uncertainty in

measurements under several theoretical

assumptions

The pion

Model/theory large x

QCD parton model (1− x)2

pQCD (1− x)2+γ

Light-front holographic QCD (1− x)0

Nambu-Jona-Lasino/duality (1− x)1

ū quark distribution of π− extracted

@FNAL E615

Large-x of pion PDF is the goal

@JLab-C12-15-006, @COMPASS-CERN.

Large-x of kaon PDF is the goal

@JLab-C12-15-006A

An ab-initio non-perturbative QCD calculation is timely and imperative!
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Experimental Research Facilities
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Experimental Research Facilities

JLAB 12 GeV upgrade
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Experimental Research Facilities
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The Ji Idea

Lattice QCD computes equal time matrix elements

Displace quarks in space-like interval

Boost states to “infinite” momentum

On the frame of the proton displacement becomes lightlike

But infinite momentum not possible on the lattice

Use perburbative matching from finite momentum X. Ji (2013)

One needs to deal with the divergences
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PDFs from the lattice: Pseudo-PDFs Formalism

Starting point: the equal time hadronic matrix element with the quark and

anti-quark fields separated by a finite distance Radyushkin (2017)

Mα(z, p) ≡ 〈p|ψ̄(0) γα Ê(0, z;A)τ3ψ(z)|p〉

Lorentz inv. Mα(z, p) = 2pαMp(−(zp),−z2)︸ ︷︷ ︸
Leading twist

+ zαMz(−(zp),−z2)︸ ︷︷ ︸
Higher twist

z = (0, 0, 0, z3)

p = (p0, 0, 0, p)
α = 0

The Lorentz invariant quantity ν = −(zp), is the ”Ioffe time”

Ioffe time PDFs M(ν, z2
3) defined at a scale µ2 = 4e−2γE/z2

3 (at leading

log level) are the Fourier transform of regular PDFs f(x, µ2) Balitsky, Braun

(1988), Braun et al. (1995)

M(ν, z2
3) =

∫ 1

−1

dx f(x, 1/z2
3)eixν
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Formalism

The quasi-PDF Q(x, p2) is related to Mp(ν, z
2
3) by

Q(x, p2) =
1

2π

∫ ∞

−∞
dν e−ixνMp(ν, [ν/p]

2)

Quasi PDF mixes invariant scales until pz is effectively large enough

While the pseudo-PDF has fixed invariant scale dependence

P (x, z2
0) =

1

2π

∫ ∞

−∞
dν e−ixνMp(ν, z

2
0)

ν

z23

p3 →∞

−z2
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Lattice QCD requirements

Largest momentum on the lattice aPmax = π/2 ∝ O(1)

a = 0.1fm → Pmax = 10Λ where Λ = 300 MeV

a = 0.05fm → Pmax = 20Λ

Large momentum is required to suppress high twist effects (quasi-PDFs) and

to provide a wide coverage of the Ioffe time ν

Pmax = 3 GeV easily achievable with moderate values of the lattice spacing

but still demanding due to statistical noise

Pmax = 6 GeV exponentially harder requiring very fine values of the lattice

spacing

Savvas Zafeiropoulos Lattice studies of PDFs 16/56



Signal to Noise

N̄
π

π

π

〈|CN (t)|2〉 ∼ e−3mπt

N

〈CN (t)〉 ∼ e−mN t

N N

Statistical accuracy drops exponentially with increasing momentum P

StN(O) =
〈O〉√
var(O)

∝ e−[EN (P )−3/2mπ ]t

G. Parisi (1984) P. Lepage (1989) Statistical accuracy drops exponentially with the increasing

momentum limiting the maximum achievable momentum.
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Obtaining the Ioffe time PDF

z3 → 0⇒Mp(ν, z
2
3) =M(ν, z2

3) +O(z2
3)

But.... large O(z2
3) corrections prohibit the extraction.

Conservation of the vector current implies Mp(0, z
2
3) = 1 +O(z2

3) ,

but in a ratio z2
3 corrections might cancel Radyushkin (2017)

M(ν, z2
3) ≡ Mp(ν, z

2
3)

Mp(0, z2
3)

Much smaller O(z2
3) corrections and therefore this ratio could be used to

extract the Ioffe time PDFs

All UV singularities are exactly cancelled and when computed in lattice

QCD it can be extrapolated to the continuum limit

M(ν, z2) =

∫ 1

0

dα C(α, z2µ2, αs(µ))Q(αν, µ) +

∞∑

k=1

Bk(ν)(z2)k ,

µ is the factorization scale and Q(ν, µ) is the Ioffe time PDF
Savvas Zafeiropoulos Lattice studies of PDFs 18/56
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Renormalization

In a series of articles Dotsenko Nucl.Phys. B169 (1980) 527, Ishikawa et al. Phys. Rev. D 96, 094019 (2017), Chen et al.

Nucl.Phys. B915 (2017) and A. V. Radyushkin Phys.Lett. B781 (2018) 433-442 the one loop renormalizability of

Mα(z, p, a) has been discussed

by analyzing the pertinent diagrams one can see that there is a linear

divergence from the link self-energy contribution and a logarithmic

divergence associated to the anomalous dimension 2γend due to two

end-points of the link.

z t1z t2z 0• •• • z tz 0

z1
k

• • •

•

z tz 0

z1
k

• • •

•
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Renormalization

M has been shown to renormalize multiplicatively as

MR(ν, z2, µ) = Z−1
j Z−1

j̄
e−δm|z|MB(ν, z2, a), where δm = CF

αs
2π

π
a , is an

effective mass counterterm removing power divergences in the Wilson line

and Z−1
j , Z−1

j̄
are renormalization constants (RCs) associated with the

endpoints of the Wilson line independent of z, p.

The entire renormalization is independent of the external momentum

Forming the ratio, the RCs cancel and thus the reduced Ioffe time

distribution has a great potential to reduce systematic effects related to

renormalization.The UV divergences generated by the link-related and

quark-self-energy diagrams cancel in the ratio.
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Numerical implementation

First case study in an unphysical setup Karpie, Orginos, Radyushkin SZ, Phys.Rev. D96 (2017) no.9, 094503

Quenched approximation

323 × 64 lattices with a = 0.093fm.

mπ = 601MeV and mN = 1411MeV

Now employing dynamical ensembles

a(fm) Mπ(MeV) β L3 × T
0.127(2) 415 6.1 243 × 64

0.127(2) 415 6.1 323 × 96

0.094(1) 390 6.3 323 × 64

0.094(1) 280 6.3 323 × 64

0.094(1) 172 6.3 643 × 128

Table: Parameters for the lattices generated by the JLab/W&M collaboration using 2+1 flavors of clover Wilson
fermions and a tree-level tadpole-improved Symanzik gauge action. The lattice spacings, a, are estimated using the
Wilson flow scale w0. Stout smearing implemented in the fermion action makes the tadpole corrected tree-level clover
coefficient cSW used, to be very close to the value determined non-pertubatively with the Schrödinger functional method
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Results for the Re and Im parts of M(ν, z2
3)
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Curves represent Re and Im Fourier transforms of qv(x)= 315
32

√
x(1− x)3.

Considering CP even and odd combinations

I even: q−(x) = f(x) + f(−x) = q(x)− q̄(x) = qv(x)

I odd: q+(x) = f(x) = f(−x) = q(x) + q̄(x) = qv(x) + 2q̄(x)
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Results for the Im part of M(ν, z2
3)
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Curves represent the Im Fourier transforms of qv(x) = q(x)− q̄(x) and

q+(x) = q(x) + q̄(x) = qv(x) + 2q̄(x) respectively.

The agreement with the data is strongly improved if we use a non-vanishing

antiquark contribution, namely q̄(x) = ū(x) + d̄(x) = 0.07[20x(1− x)3].
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Results for the Re and Im parts of M(ν, z2
3)
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Data as function of the Ioffe time. A residual z3-dependence can be seen.

This is more visible when, for a particular ν we have several data points

corresponding to different values of z3.

Different values of z2
3 for the same ν correspond to the Ioffe time

distribution at different scales.
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Residual z3-dependence

Is the residual scatter in the data points consistent with evolution? By

solving the evolution equation at LO, the Ioffe time PDF at z′3 is related to

the one at z3 by

M(ν, z′
2
3)=M(ν, z2

3) − 2

3

αs
π

ln(z′3
2
/z2

3)

∫ 1

0

duB(u)M (uν, z2
3)

Only applicable at small z3
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Before and after evolution
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The ratio M(ν, z2
3) for for z3/a = 1, 2, 3, and 4. LHS: Data before evolution.

RHS: Data after evolution. The reduction in scatter indicates that evolution
collapses all data to the same universal curve.
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Before and after evolution
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RHS: Data after evolution. The reduction in scatter indicates that evolution
collapses all data to the same universal curve.
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Comparison to global fits
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Karpie, Orginos, Radyushkin, S.Z. (2017)

Evolved points fitted with cosine FT of

qv(x) = N(a, b) xa (1− x)b

a = 0.36(6), b = 3.95(22)

Evolved data can be exploited to build

uv(x)− dv(x)

Results compared with predictions from

global fits
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Sanity checks vs other lattice results

Extract lowest PDF moments from our data Karpie, Orginos, S.Z., JHEP 1811 (2018)

and compare with the lattice literature QCD-SF collaboration (1996)

MS moments up to O(α2
s, z

2) directly from the reduced function M(ν, z2)

an+1(µ) = (−i)n 1

cn(z2µ2)

∂nM(ν, z2)

∂νn

∣∣∣∣
ν=0

+O(z2, α2
s)

Our method avoids mixing and allows the extraction of any moment

〈x〉µ=2 GeV

us

0.24 0.25 0.26 0.27 0.28

QCD-SF

〈x2〉µ=2 GeV

us

6 6.5 7 7.5 8 8.5 9

·10−2

QCD-SF
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Numerical Results
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The real part of the reduced pseudo-ITD calculated on ensembles with 358
MeV, 278 MeV, and 172 MeV pion masses (LHS) and the corresponding MS
ITD at 2 GeV (RHS) Joo, Karpie, Orginos, Radyushkin, Richards, S.Z. Phys.Rev.Lett. 125 (2020) 23,

232003
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New results with Nf = 2 + 1 fermions for the nucleon
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Our determinination of the phys. pion mass nucleon valence PDF compared
to pheno and other lattice determinations. Joo, Karpie, Orginos, Radyushkin, Richards, S.Z.

Phys.Rev.Lett. 125 (2020) 23, 232003
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Results with Nf = 2 + 1 flavors for the pion
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(LHS) Comparison of the pion xqπv (x)-distribution with the LO extraction
from DY data (gray data points), NLO fits (green, maroon, and blue). This
lattice QCD calculation of qπv (x) is evolved from an initial scale µ2

0 = 4 GeV2

at NLO. All the results are evolved to an evolution scale of µ2 = 27 GeV2.
Similar comparison of the pion qπv (x)-distribution (RHS). Joo, Karpie, Orginos,

Radyushkin, Richards, Sufian S.Z. Phys.Rev.D 100 (2019) 11, 114512
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Results with Nf = 2 + 1 flavors for the pion

Results for the lowest moments of the pion PDF Joo, Karpie, Orginos, Radyushkin,

Richards, Sufian S.Z. Phys.Rev.D 100 (2019) 11, 114512
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The pertinent systematics in PDF extraction

Parton distribution functions or distribution amplitudes may be defined in

lattice QCD by inverting the quasi-Fourier transform of a certain class of

hadronic position-space matrix elements

One example are the Ioffe-time PDFs, MR, related to the physical PDF

qv(x, µ
2) via the integral relation

MR(ν, µ2) ≡
∫ 1

0

dx cos(νx) qv(x, µ
2)

Karpie, Orginos, Rothkopf, S.Z. JHEP 1904 (2019) 057
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The pertinent systematics in PDF extraction

Parton distribution functions or distribution amplitudes may be defined in

lattice QCD by inverting the quasi-Fourier transform of a certain class of

hadronic position-space matrix elements

One example are the Ioffe-time PDFs, MR, related to the physical PDF

qv(x, µ
2) via the integral relation

MR(ν, µ2) ≡
∫ 1

0

dx cos(νx) qv(x, µ
2)

Only a handful

of lattice data

Cosine not or-

thogonal in [0,1]

The task at hand is then to reconstruct the PDF qv(x, µ
2) given a limited

set of simulated data for MR(ν, µ2).

The extraction is highly ill-posed, so one has to resort to regularization

strategies in order to find a way to reliably estimate the PDF from the data

at hand
Karpie, Orginos, Rothkopf, S.Z. JHEP 1904 (2019) 057
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Naive Reconstruction

Discretize the integral, employing the trapezoid rule

MR(ν) =
1

2
cos(νx0) qv(x0)+

Nx−1∑

k=1

δx cos(νxk) qv(xk)+
1

2
cos(νxNx) qv(xNx)

Casting our problem in a matrix equation m = C · q,
The conditioning of the problem is easily elucidated by considering the

eigenvalues of the matrix C.
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Naive Reconstruction
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Results for the direct inversion for different discretization intervals
(left ν = [0, 40π], center ν = [0, 100], right ν = [0, 20]). Note the different
size of the relative errors needed, to obtain a well behaved result (left
∆MR/MR = 10−2, center ∆MR/MR = 10−5, right ∆MR/MR = 10−6).
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Advanced PDF Reconstructions
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Advanced PDF Reconstructions
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Capitalize of the good scan-

ning in Ioffe time and use ad-

vanced reconstruction meth-

ods to extract the maximum

amount of information also

for the small-x region.

Karpie, Orginos, Rothkopf, S.Z. JHEP 1904 (2019) 057
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Global fitting lattice data in the NNPDF framework

Focus on lattice observables, ie. a quantity which can be computed on the

lattice on one hand, and related to some collinear PDFs through some kind

of factorization theorem on the other. We consider the case of the

unpolarized isovector parton distribution the definition of the two nonsinglet

PDFs V3 and T3

V3 (x) = u (x)− ū (x)−
[
d (x)− d̄ (x)

]
,

T3 (x) = u (x)− ū (x) +
[
d (x)− d̄ (x)

]
,

we can define the two lattice observables

Re [M]
(
ν,−z2

3

)
=

∫ 1

0

dxCRe
(
xν, µ2z2

3

)
V3

(
x, µ2

)
,

Im [M]
(
ν,−z2

3

)
=

∫ 1

0

dxC Im
(
xν, µ2z2

3

)
T3

(
x, µ2

)
,
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Global fitting lattice data in the NNPDF framework

with

CRe = cos (ξ)− αs
2π
CF

∫ 1

0

dw

[
B (w) log

(
z2

3µ
2 e

2γE+1

4

)
+ L (w)

]
cos (ξw) ,

C Im = sin (ξ)− αs
2π
CF

∫ 1

0

dw

[
B (w) log

(
z2

3µ
2 e

2γE+1

4

)
+ L (w)

]
sin (ξw)

where the kernels B (w) and L (w), are given by

B (w) =

[
1 + w2

1− w

]

+

L (w) =

[
4

log (1− w)

1− w − 2 (1− w)

]

+

.
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Global fitting lattice data in the NNPDF framework

Given a set of lattice data for the real and imaginary part of the reduced

pseudo-ITD, the distributions T3 and V3 can be extracted from them

through a standard χ2 fit

where the unknown x-dependence of the PDFs is parameterized at the

chosen scale µ2

using a suitable parametric form, whose best parameters are determined

minimizing the χ2

Using the NNPDF fitting framework, running the same machinery commonly

used to extract PDFs from experimental data.

x-dependence of fq (x) parameterized through a neural network NNq

multiplied by a preprocessing polynomial factor

fq (x) = xαq (1− x)
βq NNq (x) ,

αq, βq being additional free parameters determined by the fit
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Global fitting lattice data in the NNPDF framework

NNPDF methodology has been used to produce PDF sets for years

provides a flexible environment

possible to fit more than 4000 experimental points

from a variety of different high energy processes in different kinematic

ranges. NNPDF collaboration R. Ball et al, Eur.Phys.J.C 77 (2017) 10, 663, JHEP 04 (2015) 040

reliable framework used to study and analyze the available lattice data

to assess how well these are able to constrain the PDFs

to compare lattice results with those coming from standard PDF sets.

important to emphasize once again that in this analysis, once the

FastKernel tables have been generated, the lattice data are treated exactly

on the same footing as any other data

viz. the exact same methodology and code are used for fitting experimental

and lattice data.

Savvas Zafeiropoulos Lattice studies of PDFs 39/56



Global fitting lattice data in the NNPDF framework
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Quasi-PDFs and pseudo-ITD results are plotted together. Both T3 and V3
distributions appear to be in good agreement, the main difference being a
huge decrease in the PDFs error when considering results presented in this
work. Del Debbio, Giani, Karpie, Orginos, Radyushkin, S.Z. JHEP 02 (2021) 138 Cichy, Del Debbio, Giani

JHEP 10 (2019) 137
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Lessons from a comparison of quasi and pseudo data

implemented in the NNPDF framework

Comparison between our results fine-sys with the best result of K. Cichy, L. Del Debbio

and T. Giani, JHEP 10 (2019) 137. Both PDFs sets have been obtained using the same

NNPDF methodology, the only difference being the input data (pseudo-ITD

and quasi-PDFs data respectively) and the corresponding errors.

Good agreement between the distributions

huge decrease in the PDFs error from the pseudo-framework

partially traced back to the number of points included in the analysis

16 points for quasi-PDFs matrix element compared to data corresponding

to all momenta, for a total of 48 pseudo-ITD points.

More points in the analysis allow to better constraint the fits, giving final

PDFs with smaller error.

Equivalent computational cost, the low momenta matrix elements, (used by

the pseudo approach), are exponentially more precise than the large

momenta matrix elements, (restriction for the quasi approach).
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Global fitting lattice data in the NNPDF framework

The lattice ensembles used for the NNPDF reco of the lattice data Del Debbio,

Giani, Karpie, Orginos, Radyushkin, S.Z. JHEP 02 (2021) 138
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The Continuum and Leading Twist Limits of Parton

Distribution Functions in Lattice QCD

In Karpie, Orginos, Radyushkin and S.Z. JHEP 11 (2021) 024 we present continuum limit

results

first continuum limit using the pseudo-PDF approach with Short Distance

Factorization for factorizing lattice QCD calculable matrix elements

we are employing the summation Generalized Eigenvalue Problem (sGEVP)

technique in order to optimize our control over the excited state

contamination which can be one of the most serious systematic errors in

this type of calculations

crucial novel ingredient of our analysis is the parameterization of systematic

errors using Jacobi polynomials to characterize and remove both lattice

spacing and higher twist contaminations, as well as the leading twist

distribution

method can be expanded in further studies to remove all other systematic

errors
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The Continuum and Leading Twist Limits of Parton

Distribution Functions in Lattice QCD

Parameters for the lattices generated by the CLS collaboration using two
flavors of O(a) improved Wilson fermions. Check-out the OPENLAT effort.
https://openlat1.gitlab.io/
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The Continuum and Leading Twist Limits of Parton

Distribution Functions in Lattice QCD

The correlators using the summation technique (right) and the sGEVP
technique (left). The correlators with smeared source and sink fields (SS)
show little difference between the two techniques. On the other hand, the
correlators with smeared sources and point sinks (SP) show a dramatic
improvement in excited states. In the new approach of distillation this is one
of the biggest advantages.
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The Continuum and Leading Twist Limits of Parton

Distribution Functions in Lattice QCD

The real (LHS) and the imaginary (RHS) part of the reduced ITDs of the
three lattice ensembles used in this study. We see that for the range of Ioffe
times that is covered by our data the three ensembles have a pretty good
overlap. The statistical and systematic errors are added in quadrature.
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The Continuum and Leading Twist Limits of PDFs

The continuum limit is a critical step in any precision lattice calculation.

Take advantage of the symmetries of the reduced pseudo-ITD to

parameterize the lattice spacing and the higher twist effects.

The continuum PDF is also parameterized and a simultaneous analysis of

all three ensembles obtains the continuum limit PDF with higher twist

contamination removed.

This method of adding “nuisance parameters” to parameterize the

systematic errors of experimental cross sections is also used in the pheno

extractions of PDFs.

Generalize this to combine different pion masses, lattice spacings, matrix

elements, lattice actions given appropriate parameterizations.

Utilize all published results and analyzing them, given sufficiently novel

nuisance parameterizations, just as a global phenomenological fit is

performed using experimental data with vastly different systematic errors

(here we correct for discretization errors and higher twist).
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The Continuum and Leading Twist Limits of Parton

Distribution Functions in Lattice QCD

A Taylor expansion in lattice spacing gives the continuum reduced

pseudo-ITD Mcont and lattice spacing corrections

M(p, z, a) = Mcont(ν, z
2) +

∑

n=1

(
a

|z|

)n
Pn(ν) + (aΛQCD)nRn(ν)

With an O(a) improved lattice action, the lattice spacing errors related to the

momentum p, must come in from the momentum transfer. This feature is

known in the improvement of the local vector current The higher twist power

corrections are added as nuisance terms similar to the lattice spacing terms.

The functional form is given by

Mcont(ν, z
2) = Mlt(ν, z

2) +
∑

n=1

(z2Λ2
QCD)nBn(ν) .
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The Continuum and Leading Twist Limits of Parton

Distribution Functions in Lattice QCD

All of the unknown functions, q−(x), q+(x), P1(ν), R1(ν), and B1(ν), are

parameterized using Jacobi polynomials.

The Jacobi polynomials, j
(α,β)
n (z), are defined in the interval [−1, 1] and they

satisfy the orthogonality relation

∫ 1

−1

dz(1− z)α(1 + z)βj(α,β)
n (z)j(α,β)

m (z) = Ñ (α,β)
n δn,m ,

for α, β > −1. COV x = 1−z
2 or z = 1− 2x. This transformation maps the

interval [−1, 1] to the interval [0, 1] and the orthogonality weight becomes

(1− z)α(1 + z)β = 2α+βxα(1− x)β . We then introduce the transformed

Jacobi polynomials J
(α,β)
n (x), as

J (α,β)
n (x) =

n∑

j=0

ω
(α,β)
n,j xj .
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The Continuum and Leading Twist Limits of PDFs

Since the Jacobi polynomials form a complete basis of functions in the

interval of [0,1], the PDFs can be written as

q±(x) = xα(1− x)β
∞∑

n=0

±d
(α,β)
n J (α,β)

n (x)

for any α and β. The choice of those parameters does affect the convergence

of the coefficients ±d
(α,β)
n . One needs to truncate the series introducing in

this way some model dependence which can be easily controlled. The control

of the truncation can be improved if one fits for the optimal values of α and

β for that given order of truncation. In other words, the rate of convergence

of the series can be optimized by tuning the values of α and β.
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The Continuum and Leading Twist Limits of PDFs

The results of fitting with various nuisance terms included.
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The Continuum and Leading Twist Limits of PDFs

The L2/d.o.f. and χ2/d.o.f. of models using 2 Jacobi polynomials for the
PDF and 1 Jacobi polynomial for the various nuisance terms from fits to the
real and imaginary components of the reduced pseudo-ITD. The change in
the L2/d.o.f. is a metric to judge the necessity of various nuisance terms.
The most dramatic decreases occur when O(az ) nuisance terms are included.
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The Continuum and Leading Twist Limits of PDFs

Isovector quark and anti-quark distributions-comparing to phenomenology
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Towards High-Precision Parton Distributions From Lattice

QCD via Distillation

The real component of the matched ITD at µ = 2 GeV in MS fit by cosine
transforms of two- and three-parameter model PDFs. The nucleon
unpolarized valence quark PDF at 2 GeV in MS determined from the
uncorrelated cosine transform fits applied to real component of the matched
ITD. Comparisons are made with the NLO global analyses of CJ15 and
JAM20, and the NNLO analyses of MSTW and NNPDF at the same scale.

Egerer, Edwards, Kallidonis, Orginos, Radyushkin, Richards, Romero and S.Z. JHEP11(2021)148
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Towards High-Precision Parton Distributions From Lattice

QCD via Distillation

The imaginary component of the matched ITD at µ = 2 GeV in MS fit by
the sine transform of a two-parameter model PDF. Data has been fit for
z/a ≤ 12, and correlations have been neglected. The nucleon unpolarized
plus quark PDF at 2 GeV in MS determined from the uncorrelated sine
transform fits applied to the imaginary component of the matched ITD.
Comparisons are made with the NLO global analyses of CJ15 and JAM20,
and the NNLO analyses of MSTW and NNPDF at the same scale. Egerer,

Edwards, Kallidonis, Orginos, Radyushkin, Richards, Romero and S.Z. JHEP11(2021)148
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Conclusions and outlook

PDFs are needed as theoretical inputs to all hadron scattering experiments

and in some cases are the largest theory uncertainty.

The lattice community is by now able to provide ab-initio determinations of

PDFs without theoretical obstructions.

The interplay between lattice QCD and global fits is very important

Also important in the search of New Physics Gao, Harland-Lang, Rojo (2018)

What next?

Many thanks for your attention!!!
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