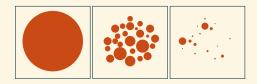
Diluted spin glass models

Amin Coja-Oghlan TU Dortmund

Overview

- replica symmetry and Belief Propagation
- construction of Bethe states
- ▶ application: random matrices and the *k*-XORSAT threshold

Reminder: predictions from the cavity method

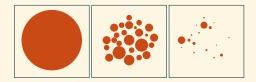


Replica symmetry breaking

[MP00,KMRTSZ07]

- replica symmetry
- dynamic replica symmetry breaking
- (static) replica symmetry breaking

Reminder: predictions from the cavity method



Replica symmetry

[MP00,KMRTSZ07]

- $\blacktriangleright \ \mu_{\mathbb{G},\beta}(\{\boldsymbol{\sigma}_{x_1} = s, \boldsymbol{\sigma}_{x_2} = t\}) \sim \mu_{\mathbb{G},\beta}(\{\boldsymbol{\sigma}_{x_1} = s\})\mu_{\mathbb{G},\beta}(\{\boldsymbol{\sigma}_{x_2} = t\})$
- in other words, $\mu_{\mathbb{G},\beta}$ is o(1)-extremal

Reminder: predictions from the cavity method

Bethe states

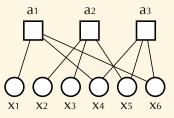
[MPRTRLZ99,MP00,KMRTSZ07]

- the phase space decomposes into pure states
- each of them induces a BP fixed point (but not vice versa)
- replica symmetry iff there is just one Bethe state

An Erdős-Rényi factor graph model

- a random factor graph model $\mathbb{G} = \mathbb{G}(n, m)$ with variables x_1, \ldots, x_n
- the variable range over Ω
- *k*-ary factor nodes a_1, \ldots, a_m with $m \sim Po(dn/k)$
- the factor nodes are *independent*
- suppose they all carry the same weight function $\psi(\cdot) > 0$
- the model induces a Boltzmann distribution

$$\mu_{\mathbb{G}}(\sigma) = \frac{1}{Z(\mathbb{G})} \prod_{i=1}^{m} \psi(\sigma_{\partial a_i})$$

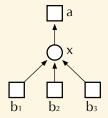


Replica symmetry assumption

we assume that

$$\sum_{s,t\in\Omega} \mathbb{E} \left| \mu_{\mathbb{G}}(\{\boldsymbol{\sigma}_{x_1}=s,\boldsymbol{\sigma}_{x_2}=t\}) - \mu_{\mathbb{G}}(\{\boldsymbol{\sigma}_{x_1}=s\}) \mu_{\mathbb{G}}(\{\boldsymbol{\sigma}_{x_2}=t\}) \right| = o(1)$$

▶ in other words, $\mu_{\mathbb{G}}$ is o(1)-extremal with high probability

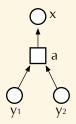


The standard messages

• obtain $\mathbb{G} - a$ by removing *a* from \mathbb{G} and let

$$\mu_{\mathbb{G},x \to a}(s) = \mu_{\mathbb{G}-a,x}(s) \qquad (s \in \Omega)$$

• the marginal of x in
$$\mathbb{G}$$
 – a

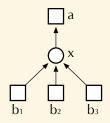


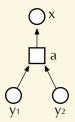
The standard messages

• obtain $\mathbb{G} - (\partial x \setminus a)$ by removing all $b \in \partial x \setminus a$

 $\mu_{\mathbb{G},a \to x}(s) = \mu_{\mathbb{G}-(\partial x \setminus a),x}(s) \qquad (s \in \Omega)$

• the marginal of x in $\mathbb{G} - (\partial x \setminus a)$





Reminder: Belief Propagation

We expect that

$$\mu_{\mathbb{G},x \to a}(s) \propto \prod_{b \in \partial x \setminus a} \mu_{\mathbb{G},b \to x}(s)$$

$$\mu_{\mathbb{G},a \to x}(s) \propto \sum_{\sigma \in \Omega^{\partial a}} \mathbf{1}\{\sigma_x = s\} \psi_a(\sigma) \prod_{y \in \partial a \setminus x} \mu_{\mathbb{G},y \to a}(\sigma_y)$$

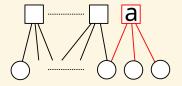
Theorem

[COP18]

If replica symmetry holds we have for all $s \in \Omega$,

$$\lim_{n \to \infty} \sum_{a \in \partial x_1} \left| \mu_{\mathbb{G}, x \to a}(s) - \frac{\prod_{b \in \partial x \setminus a} \mu_{\mathbb{G}, b \to x}(s)}{\sum_{t \in \Omega} \prod_{b \in \partial x \setminus a} \mu_{\mathbb{G}, b \to x}(t)} \right| = 0$$
$$\lim_{n \to \infty} \sum_{a \in \partial x_1} \left| \mu_{\mathbb{G}, a \to x}(s) - \frac{\sum_{\sigma \in \Omega^{\partial a}} \mathbf{1}\{\sigma_x = s\}\psi_a(\sigma) \prod_{y \in \partial a \setminus x} \mu_{\mathbb{G}, y \to a}(\sigma_y)}{\sum_{\sigma \in \Omega^{\partial a}} \psi_a(\sigma) \prod_{y \in \partial a \setminus x} \mu_{\mathbb{G}, y \to a}(\sigma_y)} \right| = 0$$

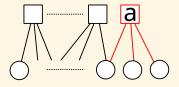
"the standard messages satisfy the BP equations"



Lemma

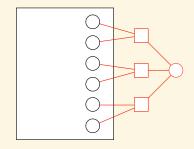
Obtain $\mathbb{G}+a$ by adding a single factor node a arbitrarily. Then w.h.p. $\mu_{\mathbb{G}+a}$ is o(1) -extremal and

$$\frac{1}{n}\sum_{i=1}^n d_{\mathrm{TV}}(\mu_{\mathbb{G}+a,x_i},\mu_{\mathbb{G},x_i}) = o(1)$$



Reminder: cut metic

$$d_{\Box}(\mu,\nu) = \frac{1}{n} \min_{\gamma \in \Gamma(\mu,\nu)} \max_{\substack{I \subset \{1,\dots,n\}\\ B \subset \Omega^n \times \Omega^n}} \left| \sum_{\substack{i \in I \ (\sigma,\tau) \in B\\ \omega \in \Omega}} \gamma(\sigma,\tau) (\mathbf{1}\{\sigma_i = \omega\} - \mathbf{1}\{\tau_i = \omega\}) \right|$$



Proof of the theorem

- add a new random variable node along with adjacent factors
- the attachment points are random
- due to extremalilty, their joint distribution factorises
- we can therefore verify the BP equations

Corollary

[COP18]

Assume replica symmetry. Then and that the Bethe free entropy $\mathscr{B}(\mathbb{G})$ of the standard messages satisfies

$$\lim_{n \to \infty} \frac{1}{n} \mathscr{B}(\mathbb{G}) = B \in \mathbb{R} \qquad \text{in probability.}$$

Then

$$\lim_{n \to \infty} \frac{1}{n} \left| \log Z(\mathbb{G}) - B \right| = 0 \qquad \text{in probability.}$$

Absence of replica symmetry

- let us drop the assumption of replica symmetry
- we expect any number of Bethe states

The conditional standard messages

For $S \subset \Omega^n$ let

$$\mu_{\mathbb{G},x \to a}(s \mid S) = \mu_{\mathbb{G}-a,x}(s \mid S) \qquad (s \in \Omega)$$

$$\mu_{\mathbb{G},a \to x}(s \mid S) = \mu_{\mathbb{G}-(\partial x \setminus a),x}(s \mid S) \qquad (s \in \Omega)$$

Definition

A set $S \subset \Omega^n$ is an ε -Bethe state if

$$\frac{1}{n}\sum_{i=1}^{n}\sum_{a\in\partial x_{i}}\left|\mu_{\mathbb{G},x_{i}\rightarrow a}(s\mid S) - \frac{\prod_{b\in\partial x_{i}\backslash a}\mu_{\mathbb{G},b\rightarrow x_{i}}(s\mid S)}{\sum_{t\in\Omega}\prod_{b\in\partial x_{i}\backslash a}\mu_{\mathbb{G},b\rightarrow x_{i}}(t\mid S)}\right| < \varepsilon$$

$$\frac{1}{n}\sum_{i=1}^{n}\sum_{a\in\partial x_{i}}\left|\mu_{\mathbb{G},a\rightarrow x_{i}}(s\mid S) - \frac{\sum_{\sigma\in\Omega^{\partial a}}\mathbf{1}\{\sigma_{x_{i}}=s\}\psi_{a}(\sigma)\prod_{y}\mu_{\mathbb{G},y\rightarrow a}(\sigma_{y}\mid S)}{\sum_{\sigma\in\Omega^{\partial a}}\psi_{a}(\sigma)\prod_{y\in\partial a\backslash x_{i}}\mu_{\mathbb{G},y\rightarrow a}(\sigma_{y}\mid S)}\right| < \varepsilon$$



Theorem

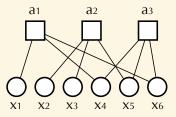
[COP19]

For any $\varepsilon > 0$ there exist $L \ge 1$ and $n_0 > 0$ such that for all $n > n_0$ with high probability there exist $S_1, \ldots, S_\ell \subset \Omega^n$, $\ell \le L$, such that (i) S_1, \ldots, S_ℓ are ε -Bethe states (ii) $\sum_{i=1}^{\ell} \mu_{\mathbb{G}}(S_i) > 1 - \varepsilon$

"any random factor graph model has a Bethe state decomposition"

Proof

- apply pinning repeatedly like in the decomposition theorem
- to each sub-cube apply a coupling argument as in the RS case
- delicate point: the "edits" shift the relative weights of the Bethe states

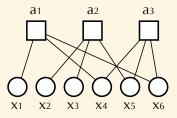


The random *k*-XORSAT problem

- variables x_1, \ldots, x_n ranging over $\Omega = \mathbb{F}_2$
- check nodes a_1, \ldots, a_m represent k-XOR constraints:

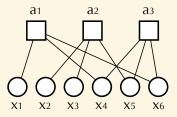
$$x_{i_1} + x_{i_2} + \dots + x_{i_k} = y_i$$

with *m* ~ Po(*dn*/*k*), for what *d* is it possible to satisfy all constraints?



Equivalent formulation

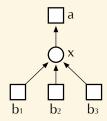
- let A be the random (bi)adjacency matrix
- ▶ for what *d*, *k* does *A* have full row rank?
- equivalently, determine the dimension of the kernel
- $\blacktriangleright Z = \#\{\text{solutions to } Ax = 0\}$
- $\blacktriangleright \ \mu_A(\sigma) = \mathbf{1}\{A\sigma = 0\}/Z$

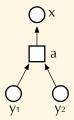


Trivial BP solution

▶ set all messages to 1/2:

$$\mu_{x \to a}(0) = \mu_{x \to a}(1) = \frac{1}{2}$$
$$\mu_{a \to x}(0) = \mu_{a \to x}(1) = \frac{1}{2}$$





Trivial BP solution

► set all messages to 1/2:

$$\mu_{x \to a}(0) = \mu_{x \to a}(1) = \frac{1}{2}$$
 $\mu_{a \to x}(0) = \mu_{a \to x}(1) = \frac{1}{2}$

- Bethe free entropy = $n(1 d/k)\log 2$
- Are there other fixed points (there'd better be)?

Lemma

For any $m \times n$ -matrix *A* for a random $\sigma \in \ker A$ we have

P [σ_i = 0] ∈ {1/2, 1}

If P [$\sigma_i = 0$] = 1, *call coordinate i frozen*.

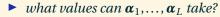
Proof

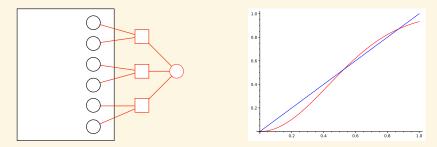
- consider a basis ξ_1, \ldots, ξ_ℓ of the kernel
- $\bullet \ \boldsymbol{\sigma} = \boldsymbol{\omega}_1 \boldsymbol{\xi}_1 + \dots + \boldsymbol{\omega}_\ell \boldsymbol{\xi}_\ell$

Be he states of k-XORSAT

- consider the Bethe states S_1, \ldots, S_L
- for each of them let *α*₁,..., *α*_L be the fraction of frozen variables:

$$\boldsymbol{\alpha}_{j} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{1} \left\{ \mathbf{P} \left[\boldsymbol{\sigma}_{i} = \mathbf{0} \mid S_{j} \right] = 1 \right\}$$



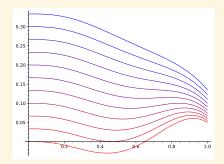


The fixed point property

• The $\boldsymbol{\alpha}_i$ satisfy the fixed point equation

$$\alpha = 1 - \exp(-d\alpha^{k-1})$$

- this equation has at most three solutions
- at most two of them are stable

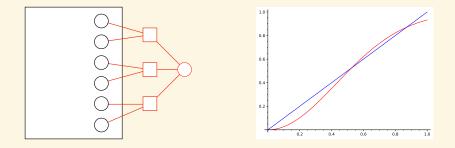


The ensuing Bethe free entropy

the fixed points translate into stationary points of the BFE

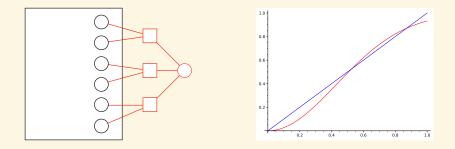
$$\mathscr{B}(\alpha) = \exp(-d\alpha^{k-1}) - \frac{d}{k} \left(1 - k\alpha^{k-1} + (k-1)\alpha^k \right)$$

- the stable ones are local maxima
- from a certain threshold $d^* = d^*(k)$ the positive one dominates



The method of moments

- we can finally calculate the *expected* number of solutions to Ax = 0 with a certain fraction of frozen coordinates
- if that fraction is a fixed point, the answers (with suitable conditioning) boils down to B(α)



Theorem

[DM02,MRTZ02,DGMMPR10,PS16]

The random *k*-XORSAT satisfiability threshold equals $d^*(k)$.

Summary

- random factor graph models possess Bethe states
- they can be constructed obliviously via pinning
- we can harness Bethe decompositions to derive combinatorial results
- Example: the *k*-XORSAT threshold