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Overview

Ï replica symmetry and Belief Propagation

Ï construction of Bethe states

Ï application: random matrices and the k-XORSAT threshold



Reminder: predictions from the cavity method

Replica symmetry breaking [MP00,KMRTSZ07]

Ï replica symmetry

Ï dynamic replica symmetry breaking

Ï (static) replica symmetry breaking



Reminder: predictions from the cavity method

Replica symmetry [MP00,KMRTSZ07]

Ï µG,β({σx1 = s,σx2 = t }) ∼µG,β({σx1 = s})µG,β({σx2 = t })

Ï in other words, µG,β is o(1)-extremal



Reminder: predictions from the cavity method

Bethe states [MPRTRLZ99,MP00,KMRTSZ07]

Ï the phase space decomposes into pure states

Ï each of them induces a BP fixed point (but not vice versa)

Ï replica symmetry iff there is just one Bethe state



The replica symetric case

An Erdős-Rényi factor graph model

Ï a random factor graph model G=G(n,m) with variables
x1, . . . , xn

Ï the variable range overΩ

Ï k-ary factor nodes a1, . . . , am with m ∼ Po(dn/k)

Ï the factor nodes are independent

Ï suppose they all carry the same weight function ψ( · ) > 0

Ï the model induces a Boltzmann distribution

µG(σ) = 1

Z (G)

m∏
i=1

ψ(σ∂ai )



The replica symetric case

x1 x2 x3 x4 x5 x6

a1 a2 a3

Replica symmetry assumption

Ï we assume that∑
s,t∈Ω

E
∣∣µG({σx1 = s,σx2 = t })−µG({σx1 = s)µG({σx2 = t )

∣∣= o(1)

Ï in other words, µG is o(1)-extremal with high probability



The replica symetric case

x
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a

b2 b3

The standard messages

Ï obtain G−a by removing a from G and let

µG,x→a(s) =µG−a,x (s) (s ∈Ω)

Ï the marginal of x in G−a



The replica symetric case
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The standard messages

Ï obtain G− (∂x \ a) by removing all b ∈ ∂x \ a

µG,a→x (s) =µG−(∂x\a),x (s) (s ∈Ω)

Ï the marginal of x in G− (∂x \ a)



The replica symetric case
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Reminder: Belief Propagation

We expect that

µG,x→a(s) ∝ ∏
b∈∂x\a

µG,b→x (s)

µG,a→x (s) ∝ ∑
σ∈Ω∂a

1{σx = s}ψa(σ)
∏

y∈∂a\x
µG,y→a(σy )



The replica symetric case

Theorem [COP18]

If replica symmetry holds we have for all s ∈Ω,

lim
n→∞

∑
a∈∂x1

∣∣∣∣µG,x→a(s)−
∏

b∈∂x\a µG,b→x (s)∑
t∈Ω

∏
b∈∂x\a µG,b→x (t )

∣∣∣∣= 0

lim
n→∞

∑
a∈∂x1

∣∣∣∣∣µG,a→x (s)−
∑
σ∈Ω∂a 1{σx = s}ψa(σ)

∏
y∈∂a\x µG,y→a(σy )∑

σ∈Ω∂a ψa(σ)
∏

y∈∂a\x µG,y→a(σy )

∣∣∣∣∣= 0

“the standard messages satisfy the BP equations”



The replica symetric case

a

Lemma

Obtain G+a by adding a single factor node a arbitrarily. Then
w.h.p. µG+a is o(1)-extremal and

1

n

n∑
i=1

dTV(µG+a,xi ,µG,xi ) = o(1)



The replica symetric case

a

Reminder: cut metic

d□(µ,ν) = 1

n
min

γ∈Γ(µ,ν)
max

I⊂{1,...,n}
B⊂Ωn×Ωn

ω∈Ω

∣∣∣∣∣∑
i∈I

∑
(σ,τ)∈B

γ(σ,τ)(1{σi =ω}−1{τi =ω})

∣∣∣∣∣



The replica symetric case

Proof of the theorem

Ï add a new random variable node along with adjacent factors

Ï the attachment points are random

Ï due to extremalilty, their joint distribution factorises

Ï we can therefore verify the BP equations



The replica symetric case

Corollary [COP18]

Assume replica symmetry. Then and that the Bethe free entropy
B(G) of the standard messages satisfies

lim
n→∞

1

n
B(G) = B ∈R in probability.

Then

lim
n→∞

1

n

∣∣log Z (G)−B
∣∣= 0 in probability.



Bethe states

Absence of replica symmetry

Ï let us drop the assumption of replica symmetry

Ï we expect any number of Bethe states



Bethe states

The conditional standard messages

For S ⊂Ωn let

µG,x→a(s | S) =µG−a,x (s | S) (s ∈Ω)

µG,a→x (s | S) =µG−(∂x\a),x (s | S) (s ∈Ω)



Bethe states

Definition

A set S ⊂Ωn is an ε-Bethe state if

1

n

n∑
i=1

∑
a∈∂xi

∣∣∣∣µG,xi→a(s | S)−
∏

b∈∂xi \a µG,b→xi (s | S)∑
t∈Ω

∏
b∈∂xi \a µG,b→xi (t | S)

∣∣∣∣< ε
1

n

n∑
i=1

∑
a∈∂xi

∣∣∣∣∣µG,a→xi (s | S)−
∑
σ∈Ω∂a 1{σxi = s}ψa(σ)

∏
y µG,y→a(σy | S)∑

σ∈Ω∂a ψa(σ)
∏

y∈∂a\xi
µG,y→a(σy | S)

∣∣∣∣∣< ε



Bethe states

Theorem [COP19]

For any ε> 0 there exist L ≥ 1 and n0 > 0 such that for all n > n0 with
high probability there exist S1, . . . ,Sℓ ⊂Ωn , ℓ≤ L, such that

(i) S1, . . . ,Sℓ are ε-Bethe states

(ii)
∑ℓ

i=1µG(Si ) > 1−ε

“any random factor graph model has a Bethe state decomposition”



Bethe states

Proof

Ï apply pinning repeatedly like in the decomposition theorem

Ï to each sub-cube apply a coupling argument as in the RS case

Ï delicate point: the “edits” shift the relative weights of the Bethe
states



Random k-XORSAT

x1 x2 x3 x4 x5 x6

a1 a2 a3

The random k-XORSAT problem

Ï variables x1, . . . , xn ranging overΩ= F2

Ï check nodes a1, . . . , am represent k-XOR constraints:

xi1 +xi2 +·· ·+xik = yi

Ï with m ∼ Po(dn/k), for what d is it possible to satisfy all
constraints?



Random k-XORSAT

x1 x2 x3 x4 x5 x6

a1 a2 a3

Equivalent formulation

Ï let A be the random (bi)adjacency matrix

Ï for what d ,k does A have full row rank?

Ï equivalently, determine the dimension of the kernel

Ï Z = #{solutions to Ax = 0}

Ï µA(σ) = 1{Aσ= 0}/Z



Random k-XORSAT

x1 x2 x3 x4 x5 x6

a1 a2 a3

Trivial BP solution

Ï set all messages to 1/2:

µx→a(0) =µx→a(1) = 1

2

µa→x (0) =µa→x (1) = 1

2



Random k-XORSAT
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Trivial BP solution

Ï set all messages to 1/2:

µx→a(0) =µx→a(1) = 1

2
µa→x (0) =µa→x (1) = 1

2

Ï Bethe free entropy = n(1−d/k) log2

Ï Are there other fixed points (there’d better be)?



Random k-XORSAT

Lemma

For any m ×n-matrix A for a random σ ∈ ker A we have

P[σi = 0] ∈ {1/2,1}

If P[σi = 0] = 1, call coordinate i frozen.

Proof

Ï consider a basis ξ1, . . . ,ξℓ of the kernel

Ï σ=ω1ξ1 +·· ·+ωℓξℓ



Random k-XORSAT

Bethe states of k-XORSAT

Ï consider the Bethe states S1, . . . ,SL

Ï for each of them letα1, . . . ,αL be the fraction of frozen
variables:

α j = 1

n

n∑
i=1

1
{
P

[
σi = 0 | S j

]= 1
}

Ï what values canα1, . . . ,αL take?



Random k-XORSAT
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The fixed point property

Ï Theαi satisfy the fixed point equation

α= 1−exp(−dαk−1)

Ï this equation has at most three solutions

Ï at most two of them are stable



Random k-XORSAT
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The ensuing Bethe free entropy

Ï the fixed points translate into stationary points of the BFE

B(α) = exp(−dαk−1)− d

k

(
1−kαk−1 + (k −1)αk

)
Ï the stable ones are local maxima

Ï from a certain threshold d∗ = d∗(k) the positive one dominates



Random k-XORSAT
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The method of moments

Ï we can finally calculate the expected number of solutions to
Ax = 0 with a certain fraction of frozen coordinates

Ï if that fraction is a fixed point, the answers (with suitable
conditioning) boils down to B(α)



Random k-XORSAT
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Theorem [DM02,MRTZ02,DGMMPR10,PS16]

The random k-XORSAT satisfiability threshold equals d∗(k).



Random k-XORSAT

Summary

Ï random factor graph models possess Bethe states

Ï they can be constructed obliviously via pinning

Ï we can harness Bethe decompositions to derive combinatorial
results

Ï Example: the k-XORSAT threshold


