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Overview

» discrete probability measures
» extremality and pinning
» the cut metric and pure state decompositions

» limits and compactness



Discrete probability measures

Notation
> let Q # @ be a finite set
> 22(Q) comprises all probability distributions on Q
» recall the total variation distance:

1
dry(k,v) = 5 Y ) - vw)| (1,ve22(Q)

weQ



Discrete probability measures

Probability measures on cubes

> consider a distribution p e 22(Q")

» u;is the marginal of the i-th entry:
pi(s) = p(lo; = s})
» more generally, for aset I c [n] let

pr(s)=pdviel:o;=s;})

(se€Q)

(seQh



Discrete probability measures

Example 1
> O ={+1} and n =3 with

1{0’10’20’3 =1}

ulo) = 4

> up(x1) = pa(£1) = us(x1) =1/2
> /J,-,j(il,il):llélforalllsi<j53

> however, 01,02,03 are not independent

(ceQ™



Discrete probability measures

Example 2

> QO={+1}"forn>1
> u= g, p =Curie-Weiss Boltzmann distribution with = b/n
» if b <1 then for any set I of size |I| = O(1)

pr@) =[Juicd=2""  (oex1h

iel
» if b>1 then

p10) #[[uilep=2"" (oce{zxnh

iel

> however,

m(mZaizo)~]'[p,~(a,~|zmzo)

isn iel i<n



Extremality and pinning

Extremality [BCO16]

> Adistribution p € 2(Q") is e-extremal if

1 n
M N CHEYHOITIGIET: (5,1€Q)
i,j=1

» not the similarity with (static) “replica symmetry” [KMRTSZ07]



Extremality and pinning

Extremality

> Adistribution u € 2(Q") is (¢, ¢) -extremal if

4

(BCO16]

(s;€Q)



Extremality and pinning

Lemma [BCO16]

For any Q, € > 0, ¢ > 2 there exist 0 > 0, ny > 0 such that any
§-extremal p € P(Q") is (¢, £)-extremal.

‘approximate pairwise independence implies approximate ¢ -wise
independence”



Extremality and pinning
The pinning operation [T08,M08,RT12,CKPZ17]

> consider u e 2(Q")
> forasetIc[n]and y € Q" let

yf'lz{aeQ”:ViEI:0i=xi}
» define
ulrx(o') = “(O' | yl,l)

» pin the coordinates I according to o



Extremality and pinning
Randomised pinning [T08,M08,RT12,CKPZ17]

v

let1 <O < n and choose 1 </ < © randomly
» consider a random set I < [n] of size ¢

» draw y from p

» then define

NOENIOEITZI0)

\4

observe that fi(-) is random!

v

pin a random set of coordinates according to a sample from



Extremality and pinning
Theorem [T0O8,M08,RT12,CKPZ17]

For any Q, € > 0 there exist © > 0, g > O such that for all n > ng and
all ue 22(Q"),

P[fiis e-extremal]| > 1 —¢.

crucially, © depends on Q and € only, but not on y1 or even n



Extremality and pinning

Example: the Curie-Weiss model with b > 1

> fixasmalle>1andletn>1
> u= ug, p fails to be e-extremal
» however, ul/! is e-extremal for large enough ¢



Extremality and pinning
Proof [RT12]

» the conditional mutual information

IX,Y|Z)= ) P[X=xY=y Z=2]
X,y,2eX

P[X=x,Y=yl|Z=¢]
P X=x|Z=2z]P[Y=y|Z=2¢]

log

» the conditional entropy

HX|Y)= ) P[X=xY=y]logP[X=x|Y=y].
X, yex

> they satisfy

IX,YIZ2)=HX|2)-H(XY,2).



Extremality and pinning

Proof [RT12]

» leti,i’,iy,io,... € [n] beindependent and uniform
» forevery6 =0,

I(oi,0i|04,...,04)
=H(o;iloj,...,0i4)-H(o;|l0;,...,04,0)
d
=H(oiloi,....,0i4)—H(oiloi,...,04,0i,, ).
» summingon 8 =1,..., T (with E[-] referring to the choice of
i,i’,...), we thus obtain

T

Y E[l(oi,010i,,...,0:)| =E[H(@)|-E[H(@;|0i,,...,0i,,)]
0=0



Extremality and pinning
Proof [RT12]
» since H(o;) <log|Qland H(c; |0},,...,04,,,) =20, we obtain
T
;}E[I(ai,air loi,...,ai,)] <log|Q|

» recalling the definition of the mutual information, we
conclude that

log|Q|
T

E Dk, (@i, 1 ® )] <



Extremality and pinning
Proof [RT12]

» finally, let us recall Pinsker’s inequality:

drv(p,v) <1/ Dk (pllv) /2.

» applying Pinsker’s inequality and Jensen’s inequality, we see

E (|| fir — fri ® pir | 1] <E

\/DKL (fa,irll i ® Qi) /2]

< \/E [Dxw (i1l fri ® frir) ] 12

_ [loglo
2T

thereby completing the proof




The cut metric and pure states
Couplings
> suppose that u,v e 22(Q)
» a coupling of u,v is a probability y on Q x Q such that

Y y(x,y) = px) (xeQ),
yeQ
Y r(,x) =v(x) (xeQ).
yeQ

» let I'(u, v) comprise all couplings of u, v

» Example: the product measure y® v



The cut metric and pure states
Coupling lemma
For any p,v € 22(Q2) we have

max{ Y y(x,x):yel(w,v) } +dry(u,v) = 1.
xXeQ



The cut metric and pure states
The cut metric [FK99,BCO16,COHK21]
For two probability distributions p, v € 22(Q") define
1
do(u,v)=— min max T (o =wl—1{T; =
D('u ) n yel(uy,v) Ic{l,...,n} ;(U%‘%BY(U Do =) 7y = i)
segir 1o

Explanation

» first couple y, v as best as possible ~ y
» then identify the largest discrepancy ~~ I, B,w

» (the cut metric satisfies the triangle inequality)



The cut metric and pure states

Example: Curie-Weiss

> let v be the uniform distribution on {+1}
» thenforany bh<1,

r}i_fgodD(HKn,ﬁ(')»V@n) =0



The cut metric and pure states

Example: Curie-Weiss

> suppose b > 1
» let A, be the positive/negative maximiser
> let v, € 22({£1}) have mean A,

. 1
Nim doy | i, p(), 5 (v +v2") | =0



The cut metric and pure states

Product measures
> suppose that pe 2(Q")
> then we let

n
fi=Qui
i=1

be the product measure with the same marginals as



The cut metric and pure states

Lemma

For any Q, € > 0 there exist 6 > 0, ny > 0 such that for all n > ny and
all ue 2(Q"):
» if uis 6-extremal, then do(u, i) < €

» if do(u, 1) <9, then p is e-extremal



The cut metric and pure states

Decomposition theorem [BCO16,COHK21]

For any Q, € > 0 there exist 179 > 0, ©® > 0 such that for a random
1<0 <0Oforall n>ngand ue2(Q"):

» let I c [n] be arandom subset of size 6

> let

=Y wpph
1eQ!
> then
Eldo(u, a] <e



The cut metric and pure states

Explanation

» 0 is bounded independently of n,
actually © < (¢~ !log|Q|)¢
proof: pinning lemma and triangle inequality

related to the “Szemerédi regularity lemma”

vy vvyy

‘any distribution can be approximated by a mixture of a small
number of product measures”



The cut metric and pure states

Pure states

> we obtain a decomposition of the phase space Q" into
FgeQm:Viel:o; =y} (xeQh
» for all but an e-measure of y, the conditional
(- | 0

is e-extremal

> think of the %X as “pure states”



The cut metric and pure states

Example: Curie-Weiss

> suppose b>1
» actually the model has two pure states

» the decomposition theorem renders a partition that is “too

fine”
» ...but not by “too much”
» ...and under the cut metric, the sub-states amalgamate



The cut metric and pure states

Example: sparse random factor graphs

> in the RS/dRSB phase we obtain an approximation by a single
product measure ~~ one pure state

> in the static RSB phase, we obtain several pure states

» their number diverges (slowly) as e — 0 and n — co



Limits and Aldous—-Hoover

Limit objects

» let’s stick to Q = {+1}
> let.# contain all measurable s: [0,1] — [—1,1]

> equip . with the L' metric:

1
di (s, t)=/ [s(x) — t(x)|dx
0

» let S contain all measurable bijections [0, 1] — [0, 1]



Limits and Aldous—-Hoover

Limit objects
» for probability measures y,v on .# define
do(y,v) = min

vel'(p,v) Ic[O 1]
@eS BcS xS

/f s(x) — t(x)dy(s, r)dx

> obtain a space Lo({+1}) by identifying u, v with do(u,v) =0



Limits and Aldous—-Hoover

Proposition

Endowed with dg (-, -), the space Lo({+1}) is compact and
separable.



Limits and Aldous—-Hoover

Embedding discrete mesures

> any configuration o € {+1}" yields a step function

» this turns a distribution y € 22({+1}") into an element of
Lo({£1})



Limits and Aldous—-Hoover

Random probability measures

> the Boltzmann distribution ug g of, say, an Ising model on the
random regular graph G = G(n, d) is random itself

> hence, g g induces a distribution on L ({+1})

» thus, disordered systems map to the space
P(Lo{£1})

> this is a compact separable space



Limits and Aldous—-Hoover

Aldous—-Hoover [P13]

» this embedding is equivalent to the Aldous-Hoover
representation of exchangeable arrays
> specifically, given p € 22(Ln({£1})), we ultimately represent the
Boltzmann disordered as follows:
» choose a random measure p € L({+1}) from p
> choose se€ & from p
> draw x € [0,1] randomly
» draw o € {1} from a Rademacher with mean s(x)



Limits and Aldous—-Hoover

Example: Curie-Weiss

> the Boltzmann distributions ug, g coverges to a limit
p* e Lod+1})
> in the case b < 1 we obtain

> in the case b > 1 we obtain

.1
w=3 (6a_+62,)



Summary

» the pinning operation

» decomposition into pure states
» embedding into a compact space
» Aldous-Hoover



