Diluted spin glass models

Amin Coja-Oghlan TU Dortmund

Overview

- discrete probability measures
- extremality and pinning
- the cut metric and pure state decompositions
- limits and compactness

Notation

- let $\Omega \neq \emptyset$ be a finite set
- $\mathscr{P}(\Omega)$ comprises all probability distributions on Ω
- recall the total variation distance:

$$d_{\mathrm{TV}}(\mu, \nu) = \frac{1}{2} \sum_{\omega \in \Omega} |\mu(\omega) - \nu(\omega)| \qquad (\mu, \nu \in \mathscr{P}(\Omega))$$

Probability measures on cubes

- consider a distribution $\mu \in \mathscr{P}(\Omega^n)$
- μ_i is the marginal of the *i*-th entry:

$$\mu_i(s) = \mu(\{\boldsymbol{\sigma}_i = s\}) \qquad (s \in \Omega)$$

• more generally, for a set $I \subset [n]$ let

$$\mu_I(\mathbf{s}) = \mu(\{\forall i \in I : \boldsymbol{\sigma}_i = s_i\}) \qquad (\mathbf{s} \in \Omega^I)$$

Example 1

•
$$\Omega = \{\pm 1\}$$
 and $n = 3$ with

$$\mu(\boldsymbol{\sigma}) = \frac{\mathbf{1}\{\boldsymbol{\sigma}_1 \boldsymbol{\sigma}_2 \boldsymbol{\sigma}_3 = 1\}}{4} \qquad (\boldsymbol{\sigma} \in \Omega^n)$$

•
$$\mu_1(\pm 1) = \mu_2(\pm 1) = \mu_3(\pm 1) = 1/2$$

•
$$\mu_{i,j}(\pm 1, \pm 1) = 1/4$$
 for all $1 \le i < j \le 3$

• however, $\boldsymbol{\sigma}_1, \boldsymbol{\sigma}_2, \boldsymbol{\sigma}_3$ are not independent

Example 2

- $\Omega = \{\pm 1\}^n$ for $n \gg 1$
- $\mu = \mu_{K_n,\beta}$ =Curie-Weiss Boltzmann distribution with $\beta = b/n$

• if b < 1 then for any set *I* of size |I| = O(1)

$$\mu_I(\sigma) = \prod_{i \in I} \mu_i(\sigma_i) = 2^{-|I|} \qquad (\sigma \in \{\pm 1\}^I)$$

▶ if *b* > 1 then

$$\mu_I(\sigma) \not\sim \prod_{i \in I} \mu_i(\sigma_i) = 2^{-|I|} \qquad (\sigma \in \{\pm 1\}^I)$$

however,

$$\mu_{I}\left(\sigma \mid \sum_{i \leq n} \boldsymbol{\sigma}_{i} \geq 0\right) \sim \prod_{i \in I} \mu_{i}\left(\sigma_{i} \mid \sum_{i \leq n} \boldsymbol{\sigma}_{i} \geq 0\right)$$

Extremality

[BCO16]

• A distribution $\mu \in \mathscr{P}(\Omega^n)$ is ε -extremal if

$$\frac{1}{n^2}\sum_{i,j=1}^n \left| \mu_{i,j}(s,t) - \mu_i(s)\mu_j(t) \right| \le \varepsilon \qquad (s,t\in\Omega)$$

▶ not the similarity with (static) "replica symmetry" [KMRTSZ07]

Extremality

[BCO16]

• A distribution $\mu \in \mathscr{P}(\Omega^n)$ is (ε, ℓ) -*extremal* if

$$\sum_{i_1,\dots,i_\ell=1}^n \left| \mu_{i_1,\dots,i_\ell}(s_1,\dots,s_\ell) - \prod_{j=1}^\ell \mu_{i_j}(s_j) \right| \le \varepsilon n^\ell \qquad (s_i \in \Omega)$$

Lemma

[BCO16]

For any Ω , $\varepsilon > 0$, $\ell > 2$ there exist $\delta > 0$, $n_0 > 0$ such that any δ -extremal $\mu \in \mathscr{P}(\Omega^n)$ is (ε, ℓ) -extremal.

"approximate pairwise independence implies approximate ℓ -wise independence"

The pinning operation

- consider $\mu \in \mathscr{P}(\Omega^n)$
- for a set $I \subset [n]$ and $\chi \in \Omega^n$ let

$$\mathscr{S}^{I,\chi} = \{ \sigma \in \Omega^n : \forall i \in I : \sigma_i = \chi_i \}$$

$$\mu^{I,\chi}(\sigma) = \mu\left(\sigma \,|\, \mathcal{S}^{I,\chi}\right)$$

• pin the coordinates I according to σ

[T08,M08,RT12,CKPZ17]

Randomised pinning

[T08,M08,RT12,CKPZ17]

- let $1 \le \Theta \le n$ and choose $1 \le \ell \le \Theta$ randomly
- consider a random set $I \subset [n]$ of size ℓ
- draw χ from μ
- then define

$$\hat{\mu}(\cdot)=\mu^{[\Theta]}(\cdot)=\mu^{I,\chi}(\cdot)$$

- observe that $\hat{\mu}(\cdot)$ is *random*!
- pin a random set of coordinates according to a sample from μ

Theorem

[T08,M08,RT12,CKPZ17]

For any $\Omega, \varepsilon > 0$ there exist $\Theta > 0$, $n_0 > \Theta$ such that for all $n > n_0$ and all $\mu \in \mathscr{P}(\Omega^n)$,

 $P[\hat{\mu} \text{ is } \varepsilon \text{-extremal}] > 1 - \varepsilon.$

crucially, Θ depends on Ω and ε only, but not on μ or even n

Example: the Curie-Weiss model with b > 1

- fix a small $\varepsilon > 1$ and let $n \gg 1$
- $\mu = \mu_{K_n,\beta}$ fails to be ε -extremal
- however, $\mu^{[\ell]}$ is ε -extremal for large enough ℓ

Proof

[RT12]

the conditional mutual information

$$P[X = x, Y = y, Z = z]$$

$$\cdot \log \frac{P[X = x, Y = y, Z = z]}{P[X = x, Y = y \mid Z = z]}$$

the conditional entropy

$$H(X \mid Y) = \sum_{x, y \in \mathscr{X}} P\left[X = x, Y = y\right] \log P\left[X = x \mid Y = y\right].$$

they satisfy

 $I(X, Y \mid Z) = H(X \mid Z) - H(X \mid Y, Z).$

Proof

[RT12]

- ▶ let $i, i', i_1, i_2, ... \in [n]$ be independent and uniform
- for every $\theta \ge 0$,

$$I(\boldsymbol{\sigma}_{i}, \boldsymbol{\sigma}_{i'} \mid \boldsymbol{\sigma}_{i_{1}}, \dots, \boldsymbol{\sigma}_{i_{\theta}})$$

= $H(\boldsymbol{\sigma}_{i} \mid \boldsymbol{\sigma}_{i_{1}}, \dots, \boldsymbol{\sigma}_{i_{\theta}}) - H(\boldsymbol{\sigma}_{i} \mid \boldsymbol{\sigma}_{i_{1}}, \dots, \boldsymbol{\sigma}_{i_{\theta}}, \boldsymbol{\sigma}_{i'})$
$$\stackrel{d}{=} H(\boldsymbol{\sigma}_{i} \mid \boldsymbol{\sigma}_{i_{1}}, \dots, \boldsymbol{\sigma}_{i_{\theta}}) - H(\boldsymbol{\sigma}_{i} \mid \boldsymbol{\sigma}_{i_{1}}, \dots, \boldsymbol{\sigma}_{i_{\theta}}, \boldsymbol{\sigma}_{i_{\theta+1}}).$$

summing on θ = 1,..., T (with E[·] referring to the choice of *i*, *i*',...), we thus obtain

$$\sum_{\theta=0}^{T} \mathbb{E} \left[I(\boldsymbol{\sigma}_{i}, \boldsymbol{\sigma}_{i'} | \boldsymbol{\sigma}_{i_{1}}, \dots, \boldsymbol{\sigma}_{i_{\theta}}) \right] = \mathbb{E} \left[H(\boldsymbol{\sigma}_{i}) - \mathbb{E} \left[H(\boldsymbol{\sigma}_{i} | \boldsymbol{\sigma}_{i_{1}}, \dots, \boldsymbol{\sigma}_{i_{T+1}}) \right] \right]$$

Proof

[RT12]

• since $H(\boldsymbol{\sigma}_i) \leq \log |\Omega|$ and $H(\boldsymbol{\sigma}_i \mid \boldsymbol{\sigma}_{i_1}, \dots, \boldsymbol{\sigma}_{i_{T+1}}) \geq 0$, we obtain

$$\sum_{\theta=0}^{T} \mathbb{E} \left[I(\boldsymbol{\sigma}_{i}, \boldsymbol{\sigma}_{i'} \mid \boldsymbol{\sigma}_{i_{1}}, \dots, \boldsymbol{\sigma}_{i_{\theta}}) \right] \leq \log |\Omega|$$

recalling the definition of the mutual information, we conclude that

$$\mathbb{E}\left[D_{\mathrm{KL}}\left(\hat{\mu}_{\boldsymbol{i},\boldsymbol{i}'} \| \hat{\mu}_{\boldsymbol{i}} \otimes \hat{\mu}_{\boldsymbol{i}'}\right)\right] \leq \frac{\log |\Omega|}{T}$$

Proof

[RT12]

► finally, let us recall Pinsker's inequality:

$$d_{\mathrm{TV}}(\mu, \nu) \le \sqrt{D_{\mathrm{KL}}(\mu \| \nu)/2}.$$

applying Pinsker's inequality and Jensen's inequality, we see

$$\begin{split} \mathbf{E}\left[\left\|\hat{\mu}_{i,i'} - \hat{\mu}_{i} \otimes \mu_{i'}\right\|_{\mathrm{TV}}\right] &\leq \mathbf{E}\left[\sqrt{D_{\mathrm{KL}}\left(\hat{\mu}_{i,i'} \| \hat{\mu}_{i} \otimes \hat{\mu}_{i'}\right)/2}\right] \\ &\leq \sqrt{\mathbf{E}\left[D_{\mathrm{KL}}\left(\hat{\mu}_{i,i'} \| \hat{\mu}_{i} \otimes \hat{\mu}_{i'}\right)\right]/2} \\ &\leq \sqrt{\frac{\log|\Omega|}{2T}} \end{split}$$

thereby completing the proof

Couplings

- suppose that $\mu, \nu \in \mathscr{P}(\Omega)$
- a *coupling* of μ , ν is a probability γ on $\Omega \times \Omega$ such that

$$\sum_{y \in \Omega} \gamma(x, y) = \mu(x) \qquad (x \in \Omega),$$
$$\sum_{y \in \Omega} \gamma(y, x) = \nu(x) \qquad (x \in \Omega).$$

- let $\Gamma(\mu, v)$ comprise all couplings of μ, v
- *Example:* the product measure $\mu \otimes v$

Coupling lemma

For any $\mu, \nu \in \mathcal{P}(\Omega)$ we have

$$\max\left\{\sum_{x\in\Omega}\gamma(x,x):\gamma\in\Gamma(\mu,\nu)\right\}+d_{\mathrm{TV}}(\mu,\nu)=1.$$

The cut metric [FK99,BCO16,COHK21]

For two probability distributions $\mu, \nu \in \mathcal{P}(\Omega^n)$ define

$$d_{\Box}(\mu,\nu) = \frac{1}{n} \min_{\gamma \in \Gamma(\mu,\nu)} \max_{\substack{I \subset \{1,\dots,n\} \\ B \subset \Omega^n \times \Omega^n \\ \omega \in \Omega}} \left| \sum_{i \in I} \sum_{(\sigma,\tau) \in B} \gamma(\sigma,\tau) (\mathbf{1}\{\sigma_i = \omega\} - \mathbf{1}\{\tau_i = \omega\}) \right|$$

Explanation

- first couple μ , ν as best as possible $\rightsquigarrow \gamma$
- then identify the largest discrepancy \rightsquigarrow *I*, *B*, ω
- (the cut metric satisfies the triangle inequality)

Example: Curie–Weiss

- let v be the uniform distribution on {±1}
- then for any b < 1,

$$\lim_{n\to\infty}d_{\Box}(\mu_{K_n,\beta}(\cdot),\nu^{\otimes n})=0$$

Example: Curie–Weiss

- suppose b > 1
- let λ_{\pm} be the positive/negative maximiser
- ► let $v_{\pm} \in \mathscr{P}(\{\pm 1\})$ have mean λ_{\pm}

$$\lim_{n\to\infty}d_{\Box}\left(\mu_{K_n,\beta}(\cdot),\frac{1}{2}\left(\nu_+^{\otimes n}+\nu_-^{\otimes n}\right)\right)=0$$

Product measures

- suppose that $\mu \in \mathscr{P}(\Omega^n)$
- then we let

$$\bar{\mu} = \bigotimes_{i=1}^{n} \mu_i$$

be the product measure with the same marginals as μ

Lemma

For any Ω , $\varepsilon > 0$ there exist $\delta > 0$, $n_0 > 0$ such that for all $n > n_0$ and all $\mu \in \mathscr{P}(\Omega^n)$:

- if μ is δ -extremal, then $d_{\Box}(\mu, \bar{\mu}) < \varepsilon$
- if $d_{\Box}(\mu, \bar{\mu}) < \delta$, then μ is ε -extremal

Decomposition theorem

[BCO16,COHK21]

For any Ω , $\varepsilon > 0$ there exist $n_0 > 0$, $\Theta > 0$ such that for a random $1 \le \theta < \Theta$ for all $n > n_0$ and $\mu \in \mathscr{P}(\Omega^n)$:

• let $I \subset [n]$ be a random subset of size θ

► let

$$\bar{\mu}^I = \sum_{\chi \in \Omega^I} \mu_I(\chi) \bar{\mu}^{I,\chi}$$

then

 $\mathrm{E}[d_{\Box}(\mu,\bar{\mu}^{I})] < \varepsilon$

Explanation

- $\boldsymbol{\theta}$ is bounded independently of n, μ
- actually $\Theta \leq (\varepsilon^{-1} \log |\Omega|)^c$
- proof: pinning lemma and triangle inequality
- related to the "Szemerédi regularity lemma"
- "any distribution can be approximated by a mixture of a small number of product measures"

Pure states

• we obtain a decomposition of the phase space Ω^n into

$$\mathcal{S}^{I,\chi}\{\sigma \in \Omega^n : \forall i \in I : \sigma_i = \chi_i\} \qquad (\chi \in \Omega^I)$$

• for all but an ε -measure of χ , the conditional

$$\mu(\cdot \,|\, \mathscr{S}^{I,\chi})$$

is ε -extremal

• think of the $\mathscr{S}^{I,\chi}$ as "pure states"

Example: Curie–Weiss

- suppose b > 1
- actually the model has two pure states
- the decomposition theorem renders a partition that is "too fine"
- ... but not by "too much"
- ... and under the cut metric, the sub-states amalgamate

Example: sparse random factor graphs

- ► in the RS/dRSB phase we obtain an approximation by a single product measure ~> one pure state
- ▶ in the static RSB phase, we obtain several pure states
- their number diverges (slowly) as $\varepsilon \to 0$ and $n \to \infty$

Limit objects

- let's stick to $\Omega = \{\pm 1\}$
- ▶ let \mathscr{S} contain all measurable $s: [0,1] \rightarrow [-1,1]$
- equip \mathscr{S} with the L^1 metric:

$$d_1(s,t) = \int_0^1 |s(x) - t(x)| \mathrm{d}x$$

▶ let S contain all measurable bijections $[0,1] \rightarrow [0,1]$

Limit objects

• for probability measures μ , ν on \mathcal{S} define

$$d_{\Box}(\mu, \nu) = \min_{\substack{\gamma \in \Gamma(\mu, \nu) \\ \varphi \in \mathbb{S}}} \max_{\substack{I \subset [0, 1] \\ B \subset \mathscr{S} \times \mathscr{S}}} \left| \int_{I} \int_{B} s(x) - t(x) d\gamma(s, t) dx \right|$$

• obtain a space $L_{\Box}(\{\pm 1\})$ by identifying μ, ν with $d_{\Box}(\mu, \nu) = 0$

Proposition

Endowed with $d_{\Box}(\cdot, \cdot)$, the space $L_{\Box}(\{\pm 1\})$ is compact and separable.

Embedding discrete mesures

• any configuration $\sigma \in \{\pm 1\}^n$ yields a step function

$$s: [0,1] \to [-1,1], \qquad \qquad x \mapsto s(\lceil nx \rceil)$$

this turns a distribution µ ∈ 𝒫({±1}ⁿ) into an element of L_□({±1})

Random probability measures

- ► the Boltzmann distribution $\mu_{\mathbb{G},\beta}$ of, say, an Ising model on the random regular graph $\mathbb{G} = \mathbb{G}(n,d)$ is random itself
- ► hence, $\mu_{\mathbb{G},\beta}$ induces a distribution on $L_{\Box}(\{\pm 1\})$
- thus, disordered systems map to the space

 $\mathcal{P}(L_{\Box}(\{\pm 1\}))$

this is a compact separable space

Aldous-Hoover

[P13]

- this embedding is equivalent to the Aldous–Hoover representation of exchangeable arrays
- ▶ specifically, given $p \in \mathscr{P}(L_{\Box}(\{\pm 1\}))$, we ultimately represent the Boltzmann disordered as follows:
 - choose a random measure $\mu \in L_{\square}(\{\pm 1\})$ from *p*
 - choose $s \in \mathscr{S}$ from μ
 - ▶ draw $x \in [0, 1]$ randomly
 - draw $\sigma \in \{\pm 1\}$ from a Rademacher with mean s(x)

Example: Curie–Weiss

- the Boltzmann distributions µ_{K_n,β} coverges to a limit µ^{*} ∈ L_□({±1})
- in the case $b \le 1$ we obtain

$$\mu^* = \delta_0$$

• in the case b > 1 we obtain

$$\mu^* = \frac{1}{2} \left(\delta_{\lambda_-} + \delta_{\lambda_+} \right)$$

Summary

- the pinning operation
- decomposition into pure states
- embedding into a compact space
- Aldous–Hoover