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Overview

Ï discrete probability measures

Ï extremality and pinning

Ï the cut metric and pure state decompositions

Ï limits and compactness



Discrete probability measures

Notation

Ï letΩ ̸= ; be a finite set

Ï P (Ω) comprises all probability distributions onΩ

Ï recall the total variation distance:

dTV(µ,ν) = 1

2

∑
ω∈Ω

|µ(ω)−ν(ω)| (µ,ν ∈P (Ω))



Discrete probability measures

Probability measures on cubes

Ï consider a distribution µ ∈P (Ωn)

Ï µi is the marginal of the i -th entry:

µi (s) =µ({σi = s}) (s ∈Ω)

Ï more generally, for a set I ⊂ [n] let

µI (s) =µ({∀i ∈ I :σi = si }) (s ∈ΩI )



Discrete probability measures

Example 1

Ï Ω= {±1} and n = 3 with

µ(σ) = 1{σ1σ2σ3 = 1}

4
(σ ∈Ωn)

Ï µ1(±1) =µ2(±1) =µ3(±1) = 1/2

Ï µi , j (±1,±1) = 1/4 for all 1 ≤ i < j ≤ 3

Ï however, σ1,σ2,σ3 are not independent



Discrete probability measures

Example 2

Ï Ω= {±1}n for n ≫ 1

Ï µ=µKn ,β =Curie-Weiss Boltzmann distribution with β= b/n

Ï if b < 1 then for any set I of size |I | =O(1)

µI (σ) =∏
i∈I
µi (σi ) = 2−|I | (σ ∈ {±1}I )

Ï if b > 1 then

µI (σ) ̸∼∏
i∈I
µi (σi ) = 2−|I | (σ ∈ {±1}I )

Ï however,

µI

(
σ | ∑

i≤n
σi ≥ 0

)
∼∏

i∈I
µi

(
σi |

∑
i≤n

σi ≥ 0

)



Extremality and pinning

Extremality [BCO16]

Ï A distribution µ ∈P (Ωn) is ε-extremal if

1

n2

n∑
i , j=1

∣∣µi , j (s, t )−µi (s)µ j (t )
∣∣≤ ε (s, t ∈Ω)

Ï not the similarity with (static) “replica symmetry” [KMRTSZ07]



Extremality and pinning

Extremality [BCO16]

Ï A distribution µ ∈P (Ωn) is (ε,ℓ)-extremal if

n∑
i1,...,iℓ=1

∣∣∣∣∣µi1,...,iℓ(s1, . . . , sℓ)−
ℓ∏

j=1
µi j (s j )

∣∣∣∣∣≤ εnℓ (si ∈Ω)



Extremality and pinning

Lemma [BCO16]

For anyΩ, ε> 0,ℓ> 2 there exist δ> 0, n0 > 0 such that any
δ-extremal µ ∈P (Ωn) is (ε,ℓ)-extremal.

“approximate pairwise independence implies approximate ℓ-wise
independence”



Extremality and pinning

The pinning operation [T08,M08,RT12,CKPZ17]

Ï consider µ ∈P (Ωn)

Ï for a set I ⊂ [n] and χ ∈Ωn let

S I ,χ = {
σ ∈Ωn : ∀i ∈ I :σi =χi

}
Ï define

µI ,χ(σ) =µ(
σ |S I ,χ)

Ï pin the coordinates I according to σ



Extremality and pinning

Randomised pinning [T08,M08,RT12,CKPZ17]

Ï let 1 ≤Θ≤ n and choose 1 ≤ ℓ≤Θ randomly

Ï consider a random set I ⊂ [n] of size ℓ

Ï draw χ from µ

Ï then define

µ̂( · ) =µ[Θ]( · ) =µI ,χ( · )

Ï observe that µ̂( · ) is random!

Ï pin a random set of coordinates according to a sample from µ



Extremality and pinning

Theorem [T08,M08,RT12,CKPZ17]

For anyΩ,ε> 0 there existΘ> 0, n0 >Θ such that for all n > n0 and
all µ ∈P (Ωn),

P
[
µ̂ is ε-extremal

]> 1−ε.

crucially,Θ depends onΩ and ε only, but not on µ or even n



Extremality and pinning
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Example: the Curie-Weiss model with b > 1

Ï fix a small ε> 1 and let n ≫ 1

Ï µ=µKn ,β fails to be ε-extremal

Ï however, µ[ℓ] is ε-extremal for large enough ℓ



Extremality and pinning

Proof [RT12]

Ï the conditional mutual information

I (X ,Y | Z ) = ∑
x,y,z∈X

P
[

X = x, Y = y, Z = z
]

· log
P

[
X = x, Y = y | Z = z

]
P[X = x | Z = z]P

[
Y = y | Z = z

]
Ï the conditional entropy

H(X | Y ) = ∑
x,y∈X

P
[

X = x, Y = y
]

logP
[

X = x | Y = y
]

.

Ï they satisfy

I (X ,Y | Z ) = H(X | Z )−H(X | Y , Z ).



Extremality and pinning

Proof [RT12]

Ï let i , i ′, i 1, i 2, . . . ∈ [n] be independent and uniform

Ï for every θ ≥ 0,

I (σi ,σi ′ |σi 1 , . . . ,σi θ )

= H(σi |σi 1 , . . . ,σi θ )−H(σi |σi 1 , . . . ,σi θ ,σi ′)

d=H(σi |σi 1 , . . . ,σi θ )−H(σi |σi 1 , . . . ,σi θ ,σi θ+1 ).

Ï summing on θ = 1, . . . ,T (with E[ · ] referring to the choice of
i , i ′, . . .), we thus obtain

T∑
θ=0

E
[
I (σi ,σi ′ |σi 1 , . . . ,σi θ )

]= E[H(σi )]−E
[
H(σi |σi 1 , . . . ,σi T+1 )

]



Extremality and pinning

Proof [RT12]

Ï since H(σi ) ≤ log |Ω| and H(σi |σi 1 , . . . ,σi T+1 ) ≥ 0, we obtain

T∑
θ=0

E
[
I (σi ,σi ′ |σi 1 , . . . ,σi θ )

]≤ log |Ω|

Ï recalling the definition of the mutual information, we
conclude that

E
[
DKL

(
µ̂i ,i ′∥µ̂i ⊗ µ̂i ′

)]≤ log |Ω|
T



Extremality and pinning

Proof [RT12]

Ï finally, let us recall Pinsker’s inequality:

dTV(µ,ν) ≤
√

DKL
(
µ∥ν)

/2.

Ï applying Pinsker’s inequality and Jensen’s inequality, we see

E
[∥∥µ̂i ,i ′ − µ̂i ⊗µi ′

∥∥
TV

]≤ E

[√
DKL

(
µ̂i ,i ′∥µ̂i ⊗ µ̂i ′

)
/2

]
≤

√
E

[
DKL

(
µ̂i ,i ′∥µ̂i ⊗ µ̂i ′

)]
/2

≤
√

log |Ω|
2T

thereby completing the proof



The cut metric and pure states

Couplings

Ï suppose that µ,ν ∈P (Ω)

Ï a coupling of µ,ν is a probability γ onΩ×Ω such that∑
y∈Ω

γ(x, y) =µ(x) (x ∈Ω),∑
y∈Ω

γ(y, x) = ν(x) (x ∈Ω).

Ï let Γ(µ,ν) comprise all couplings of µ,ν

Ï Example: the product measure µ⊗ν



The cut metric and pure states

Coupling lemma

For any µ,ν ∈P (Ω) we have

max

{ ∑
x∈Ω

γ(x, x) : γ ∈ Γ(µ,ν)

}
+dTV(µ,ν) = 1.



The cut metric and pure states

The cut metric [FK99,BCO16,COHK21]

For two probability distributions µ,ν ∈P (Ωn) define

d□(µ,ν) = 1

n
min

γ∈Γ(µ,ν)
max

I⊂{1,...,n}
B⊂Ωn×Ωn

ω∈Ω

∣∣∣∣∣∑
i∈I

∑
(σ,τ)∈B

γ(σ,τ)(1{σi =ω}−1{τi =ω})

∣∣∣∣∣

Explanation

Ï first couple µ,ν as best as possible⇝ γ

Ï then identify the largest discrepancy⇝ I ,B ,ω

Ï (the cut metric satisfies the triangle inequality)



The cut metric and pure states
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Example: Curie–Weiss

Ï let ν be the uniform distribution on {±1}

Ï then for any b < 1,

lim
n→∞d□(µKn ,β( · ),ν⊗n) = 0



The cut metric and pure states
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Example: Curie–Weiss

Ï suppose b > 1

Ï let λ± be the positive/negative maximiser

Ï let ν± ∈P ({±1}) have mean λ±

lim
n→∞d□

(
µKn ,β( · ),

1

2

(
ν⊗n
+ +ν⊗n

−
))= 0



The cut metric and pure states

Product measures

Ï suppose that µ ∈P (Ωn)

Ï then we let

µ̄=
n⊗

i=1
µi

be the product measure with the same marginals as µ



The cut metric and pure states

Lemma

For anyΩ, ε> 0 there exist δ> 0, n0 > 0 such that for all n > n0 and
all µ ∈P (Ωn):
Ï if µ is δ-extremal, then d□(µ, µ̄) < ε
Ï if d□(µ, µ̄) < δ, then µ is ε-extremal



The cut metric and pure states

Decomposition theorem [BCO16,COHK21]

For anyΩ, ε> 0 there exist n0 > 0,Θ> 0 such that for a random
1 ≤ θ <Θ for all n > n0 and µ ∈P (Ωn):
Ï let I ⊂ [n] be a random subset of size θ

Ï let
µ̄I = ∑

χ∈ΩI

µI (χ)µ̄I ,χ

Ï then
E[d□(µ, µ̄I )] < ε



The cut metric and pure states

Explanation

Ï θ is bounded independently of n,µ

Ï actuallyΘ≤ (ε−1 log |Ω|)c

Ï proof: pinning lemma and triangle inequality

Ï related to the “Szemerédi regularity lemma”

Ï “any distribution can be approximated by a mixture of a small
number of product measures”



The cut metric and pure states

Pure states

Ï we obtain a decomposition of the phase spaceΩn into

S I ,χ{σ ∈Ωn : ∀i ∈ I :σi =χi } (χ ∈ΩI )

Ï for all but an ε-measure of χ, the conditional

µ( · |S I ,χ)

is ε-extremal

Ï think of the S I ,χ as “pure states”



The cut metric and pure states

Example: Curie–Weiss

Ï suppose b > 1

Ï actually the model has two pure states

Ï the decomposition theorem renders a partition that is “too
fine”

Ï . . . but not by “too much”

Ï . . . and under the cut metric, the sub-states amalgamate



The cut metric and pure states

Example: sparse random factor graphs

Ï in the RS/dRSB phase we obtain an approximation by a single
product measure⇝ one pure state

Ï in the static RSB phase, we obtain several pure states

Ï their number diverges (slowly) as ε→ 0 and n →∞



Limits and Aldous–Hoover

Limit objects

Ï let’s stick toΩ= {±1}

Ï let S contain all measurable s : [0,1] → [−1,1]

Ï equip S with the L1 metric:

d1(s, t ) =
∫ 1

0
|s(x)− t (x)|dx

Ï let S contain all measurable bijections [0,1] → [0,1]



Limits and Aldous–Hoover

Limit objects

Ï for probability measures µ,ν on S define

d□(µ,ν) = min
γ∈Γ(µ,ν)
ϕ∈S

max
I⊂[0,1]

B⊂S ×S

∣∣∣∣∫
I

∫
B

s(x)− t (x)dγ(s, t )dx

∣∣∣∣
Ï obtain a space L□({±1}) by identifying µ,ν with d□(µ,ν) = 0



Limits and Aldous–Hoover

Proposition

Endowed with d□( · , · ), the space L□({±1}) is compact and
separable.



Limits and Aldous–Hoover

Embedding discrete mesures

Ï any configuration σ ∈ {±1}n yields a step function

s : [0,1] → [−1,1], x 7→ s(⌈nx⌉)

Ï this turns a distribution µ ∈P ({±1}n) into an element of
L□({±1})



Limits and Aldous–Hoover

Random probability measures

Ï the Boltzmann distribution µG,β of, say, an Ising model on the
random regular graph G=G(n,d) is random itself

Ï hence, µG,β induces a distribution on L□({±1})

Ï thus, disordered systems map to the space

P (L□({±1}))

Ï this is a compact separable space



Limits and Aldous–Hoover

Aldous–Hoover [P13]

Ï this embedding is equivalent to the Aldous–Hoover
representation of exchangeable arrays

Ï specifically, given p ∈P (L□({±1})), we ultimately represent the
Boltzmann disordered as follows:

Ï choose a random measure µ ∈ L□({±1}) from p
Ï choose s ∈S from µ
Ï draw x ∈ [0,1] randomly
Ï draw σ ∈ {±1} from a Rademacher with mean s(x)



Limits and Aldous–Hoover

Example: Curie–Weiss

Ï the Boltzmann distributions µKn ,β coverges to a limit
µ∗ ∈ L□({±1})

Ï in the case b ≤ 1 we obtain

µ∗ = δ0

Ï in the case b > 1 we obtain

µ∗ = 1

2

(
δλ− +δλ+

)



Summary

Ï the pinning operation

Ï decomposition into pure states

Ï embedding into a compact space

Ï Aldous–Hoover


