Etudes à 3 TeV de la production du boson Z'dans le modèle *Right Handed Neutrino* et de son bruit de fond

Ambroise Espargilière

LAPP, Annecy

January 7, 2010

- 1 Résumé préliminaire
- 2 bruit de fond

3 Signal
$$e^+e^- \rightarrow \nu_e \bar{\nu}_e Z' \rightarrow t\bar{t}$$

• Énergies
• Angles

Résumé préliminaire

• A 3 TeV le canal $e^+e^- \rightarrow \nu_e \bar{\nu}_e Z'$ présente les plus hautes sections efficaces ($\geq 1 \text{ fb}$).

- Désintégration en $au^+ au^-$ ou $tar{t} \Rightarrow 2$ jets + énergie manquante
- En supposant le jet tagging efficace, le bruit de fond se résume principalement à $e^+e^- \rightarrow t\bar{t}$, $\tau^+\tau^-$
- Luminosité intégrée de référence $\mathcal{L} = 1000 \, \mathrm{fb}^{-1}$

• $e^+e^- \xrightarrow{\gamma, Z} t\bar{t}$: cross section at $3 \,\mathrm{TeV} = 20.1 \,\mathrm{fb}_{(ie: \,\approx \, 20\,000 \,\,\text{événements})}$

• $e^+e^- \xrightarrow{\gamma, Z} \tau^+\tau^-$: cross section at $3 \,\mathrm{TeV} = 12.4 \,\mathrm{fb}_{(ie: \,\approx \, 12\,400 \,\,\mathrm{événements})}$

- Les 2 leptons ont toujours $1.5 \,\mathrm{TeV}$ chacun
- Les 2 leptons sont toujours émis à 180°
- Pas d'énergie manquante

Hypothèses :

• $MZ' = 500 \, \text{GeV}/c^2$

• Énergie dans le centre de masse : $E_{cm} = 3 \text{ TeV}$

Remarques :

- $\sigma_{TOT} = 0.3 \, \text{fb}$
- pprox300 événements attendus pour $\mathcal{L}=1000\,\mathrm{fb}^{-1}$

Signal $e^+e^- ightarrow u_e ar{ u}_e Z' ightarrow tar{t}$

Signal $e^+e^- ightarrow u_e ar{ u}_e Z' ightarrow tar{t}$ Énergie

- Comportement symétrique entre *t* et *t*
- Énergie des tops \geq 200 GeV
- Energie totale des tops $\in [\approx 500, \approx 1500] \, \mathrm{GeV}$

⇒Coupure possible sur l'énergie mesurée des tops

Signal $e^+e^- \rightarrow \nu_e \bar{\nu}_e Z' \rightarrow t\bar{t}$ Angles

RMS

160

Signal $e^+e^- ightarrow u_e ar{ u}_e Z' ightarrow tar{t}$

- Carte ci contre cohérente avec les plots ∂σ/∂θ et ∂σ/∂E (ci-dessus)
- Possibilité de coupure sur l'angle et l'énergie de la paire tt
- En sommant $\partial^2 \sigma / \partial \theta \partial E$ pour θ de 18° à 162° et E de 0 à 1472 GeV: $\sigma_{\rm cut} = 2.6 \cdot 10^{-4}$ fb soit ≈ 260 evts.

Paire $t\overline{t}$ toujours émise à $2 \times 1.5 \, {\rm GeV}$ et à 180°

Spectre d'émission varié. Très faible aux environs de $1.5\,{\rm GeV}$ et de 180°

- Le bruit de fond étudié ici peut être entièrement supprimé avec une perte de signal minime
- D'autres sources produisant des paires $t\bar{t}$ mais avec énergie manquante peuvent intervenir