SECTIONS EFFICACES DE PRODUCTION DU BOSON Z' DANS LE MODÈLE Right Handed Neutrino

Ambroise Espargilière

LAPP, Annecy

January 20, 2010

Plan

Motivations

- 2 Paramètres d'études
- 3 Canal : $e^+e^- \rightarrow \nu_e \bar{\nu}_e Z'$
- 4 Canal : $e^+e^- \rightarrow HZ'$
- **5** Canal : $e^+e^- \rightarrow t\bar{t}Z'$
- 6 Canal : $e^+e^- \rightarrow \tau^+\tau^- Z'$
- Statistique attendue
- 8 Conclusion préliminaire

- Article de référence : G. Bélanger *et al, Dirac Neutrino Dark Matter,* arXiv:0706.0526v2 [hep-ph].
- Introduction d'un boson Z' ne couplant essentiellement qu'aux leptons de la 3^e génération
- Couplages aux e et μ extrêmement contraints par les mesures du LEP ($e^+e^- \xrightarrow{\gamma, Z} \mu^+\mu^-$)
- Couplage aux e et μ donc très faible, via le mélange Z/Z'
- Trois canaux d'étude a priori :
 - $e^+e^- \rightarrow \nu_e \bar{\nu}_e Z'$ • $e^+e^- \rightarrow HZ'$ • $e^+e^- \rightarrow I^+I^-Z'$
- Étude réalisé à l'aide du logiciel calchep, version micrOMEGAS2.2 (A. Pukhov)

Paramètres d'études

Diagrammes des canaux étudiés

э

э.

Paramètres pertinents pour les différents canaux envisagés:

• $e^+e^- \rightarrow \nu_e \bar{\nu}_e Z'$:

- Impulsion des faisceaux (de 2×250 à 2×1500 GeV/c) (commande batch : set_momenta inP1 InP2)
- Masse du Z' (de 200 à 3000 GeV/c²) (commande batch : name_cycle MZp 200 20 140)

•
$$e^+e^- \rightarrow HZ'$$

- Impulsion des faisceaux
- Masse du Z'
- Masse du Higgs (120 GeV/c^2 a priori)
- Couplage Z, Z', H (valeurs ≤ 1 − 1.5) (commande batch : set_param gHZ value)

•
$$e^+e^- \rightarrow I^+I^-Z'$$

- Impulsion des faisceaux
- Masse du Z'
- Couplages aux $t\bar{t}$ et aux $au^+ au^-$ (valeurs de l'ordre de 1 ou inférieures)

Canal : $e^+e^- \rightarrow \nu_e \bar{\nu}_e Z'$ Section efficace en fonction de $M_{Z'}$ à différentes énergies

Comportement très dépendant de l'énergie incidente

Ambroise Espargilière (LAPP, Annecy)

Z' in RHNM

Canal : $e^+e^- \rightarrow \nu_e \bar{\nu}_e Z'$ Section efficace en fonction de $M_{Z'}$ à différentes énergies

• Comportement très dépendant de l'énergie incidente

Zp production Cross section (pb) in e+e- ->nnZ'

• On observe un maximum local de section efficace pour $E_{cm} \approx 3/2 \times M_{Z'}$

Canal : $e^+e^- \rightarrow HZ'$ Section efficace en fonction de $M_{Z'}$ à différentes énergies

- Comportement très distinct du canal précédent
- Canal favorisé pour des basses masses et des faibles énergies
- On observe un maximum local de section efficace pour $E_{cm} \approx 3/4 \times M_{Z'}$

• A différentes énergies le comportement reste semblable

 $E_{cm} = 1.5 \,\mathrm{TeV}$

• A différentes énergies le comportement reste semblable

 $E_{cm} = 3 \,\mathrm{TeV}$

Canal : $e^+e^- \rightarrow t\bar{t}Z'$ Section efficace en fonction de $M_{Z'}$ à différentes énergies

- Comportement très distinct des canaux précédents
- Canal favorisé pour des basses masses et des faibles énergies
- On observe un maximum local de section efficace pour $E_{cm} pprox 4 imes M_{Z'}$
- $\sigma_{max} < 5 \cdot 10^{-3} \, \mathrm{pb}$

Canal : $e^+e^- \rightarrow t\bar{t}Z'$

 σ en fonction de $M_{Z'}$ et de E_{cm} pour différents couplages gtl et gtr

gtr	gtl	σ_{max}
0.2	0.2	$0.18\mathrm{fb}$
0.3	0.2	$0.25\mathrm{fb}$
0.4	0.2	$0.4{ m fb}$
0.2	0.3	0.3 fb
0.3	0.3	0.4 fb
0.4	0.3	$0.5{ m fb}$
0.2	0.4	$0.5{ m fb}$
0.3	0.4	$0.6{ m fb}$
0.4	0.4	0 .7 fb

 σ en fonction de $M_{Z'}$ et de E_{cm} pour différents couplages gtl et gtr

- Effet d'échelle
- Pas de modification topologique majeure.
- légère dissymétrie des rôles de gtr et gtl
 - gtr : couplage $Z' t_R$
 - gtl : couplage $Z' t_L, b_L$

gtr	gtl	σ_{max}
0.2	0.2	$0.18\mathrm{fb}$
0.3	0.2	$0.25\mathrm{fb}$
0.4	0.2	$0.4\mathrm{fb}$
0.2	0.3	0.3 fb
0.3	0.3	0.4 fb
0.4	0.3	$0.5{ m fb}$
0.2	0.4	$0.5{ m fb}$
0.3	0.4	$0.6{ m fb}$
0.4	0.4	0.7 fb

- \bullet A hautes valeurs des couplages la section efficace est de plusieurs $\,{\rm fb}$
- Canal toujours favorisé pour un Z' de faible masse

- Dépendance quadratique des couplages
- Décroissance exponentielle avec la masse du Z'

Canal : $e^+e^- \rightarrow \tau^+\tau^- Z'$

Section efficace en fonction de $M_{Z'}$ à différentes énergies

- Très semblable au $e^+e^-
 ightarrow t ar Z'$, comme attendu
- Canal favorisé pour des basses masses et des faibles énergies
- On observe un maximum local de section efficace pour $E_{cm} \approx 2.5 \times M_{Z'}$
- σ chute un peu plus vite que dans $e^+e^-
 ightarrow t ar{t} Z'$

Canal : $e^+e^- \rightarrow \tau^+\tau^- Z'$

 σ en fonction de $M_{Z'}$ et de E_{cm} pour différents couplages gll et grl

gll	σ_{max}
0.1	$0.045{\rm fb}$
0.2	$0.18\mathrm{fb}$
0.3	$0.4{ m fb}$
0.4	$0.7{ m fb}$
0.5	$1.1{ m fb}$

Canal : $e^+e^- \rightarrow \tau^+\tau^- Z'$

 σ en fonction de $M_{Z'}$ et de E_{cm} pour différents couplages gll et grl

- gll : couplage Z' $\tau~\tau$
- Effet d'echelle seul

gll	σ_{max}
0.1	$0.045\mathrm{fb}$
0.2	$0.18\mathrm{fb}$
0.3	0.4 fb
0.4	0 .7 fb
0.5	$1.1{ m fb}$

Statistique attendue

• Pour une luminosité de 10^{34} cm⁻² s⁻¹, sur un an d'acquisition, *ie*: $3.15 \cdot 10^5$ pb⁻¹

Statistique attendue

• Pour une luminosité de $10^{34}\,{\rm cm^{-2}}~{\rm s^{-1}}$, sur un an d'acquisition, *ie*: $3.15\cdot10^5\,{\rm pb^{-1}}$

Conclusion préliminaire

- Luminosité intégrée de 1000 ${
 m fb}^{-1}$ (pprox 3 ans)
- $e^+e^- \rightarrow t\bar{t}Z'$ et $e^+e^- \rightarrow HZ'$ sont favorisés pour un Z' de masse relativement faible
- $e^+e^- \to \nu_e \bar{\nu}_e Z'$ reste le seul canal envisageable si le Z' est au delà de 500 GeV/ c^2
- $e^+e^-
 ightarrow
 u_e ar{
 u}_e Z'$ est intéressant pour une large gamme de masses du Z'

- Les canaux $e^+e^- \rightarrow t\bar{t}Z'$ et $e^+e^- \rightarrow \tau^+\tau^-Z'$ offrent très peu d'événements sur un an de collision CLIC ou ILC pour des basses valeurs des couplages (0.3)
- Le canal $e^+e^- \rightarrow HZ'$ offre la statistique maximale pour les faibles valeurs de la masse du Z' ($M'_Z < 1 \,\text{TeV}$) et à "basse" énergie de faisceau ($E_{cm} < 1 \,\text{TeV}$) \Rightarrow ILC.
- Le canal $e^+e^- \rightarrow \nu_e \bar{\nu}_e Z'$ offre une statistique raisonnable (> 1000 événements) quelle que soit la masse du Z' mais à haute énergie de faisceau uniquement ($E_{cm} > 2.5 \text{ TeV}$) \Rightarrow CLIC.
- L'état du Z' reste à étudier et devra être confronté au bruit de fond.