

Implementation of the Micromegas detector for SiD and CLIC simulations

Jan BLAHA

Micromegas Physics Meeting, 12 Jan. 2009, LAPP

Aim

To have a look at existing geometries and implement the Micromegas detector for SiD and CLIC simulations

SiD detectors: $sid02 \rightarrow sid02_mMegas$ $sid01_polyhedra \rightarrow sid01_polyhedra_mMegas$

CLIC detectors: $clic01_sid \rightarrow clic01_sid_mMegas$ $clic01_sid_p01 \rightarrow clic01_sid_p01_mMegas$

SiD geometry - barrel

Lol geometry

SiD BARREL	Technology	Inner radius	Outer radius	Z max
Vertex detector	Pixel	1.4	6.0	\pm 6.25
Tracker	Silicon strips	21.7	122.1	± 152.2
EM calorimeter	Silicon-W	126.5	140.9	\pm 176.5
Hadron calorimeter	RPCs	141.7	249.3	\pm 301.8
Solenoid	5 Tesla	259.1	339.2	± 298.3
Flux return	RPCs	340.2	604.2	\pm 303.3

Table 1.1: Key parameters of the baseline SiD design. (All dimension are given in cm.)

sid02 geometry

SiD Barrel	Technology	Inner radius	Outer radius	Z max
Vertex detector	Pixel	1.46	6.04	± 6.25
Tracker	Silicon strips	20.6	126.5	± 162.4
EM calorimeter	Silicon-W	127	140.1	± 182
Hadron calorimeter	RPCs	141	253	± 294
Solenoid	5 Tesla	255	337.8	± 288
Muon system	RPCs	338.8	591.9	± 294

SiD geometry - endcaps

Lol geometry

SiD FORWARD	Technology	Inner Z	Outer Z	Outer radius
Vertex detector	Pixel	7.3	83.4	16.6
Tracker	Silicon strips	77.0	164.3	125.5
EM calorimeter	Silicon-W	165.7	180.0	125.0
Hadron calorimeter	RPCs	180.5	302.8	140.2
Flux return	RPCs	303.3	567.3	604.2
LumCal	Silicon-W	158.0	173.0	19.0
BeamCal	Silicon-W	295.0	320.0	14.5

Table 1.1: Key parameters of the baseline SiD design. (All dimension are given in cm.)

sid02 geometry

SID FORWARD	Technology	Inner Z	Outer Z	Outer radius
Vertex detector	Pixel	7.18	89.48	16.87
Tracker	Silicon strips	84.5	162.6	126
EM calorimeter	Silicon-W	168	181.1	126.5
Hadron calorimeter	RPCs	182	294	140.75
Flux return	RPCs	303.3	557.4	608.2
LumCal	Silicon-W	168	176.43	19.5
BeamCal	Silicon-W	295	313.55	12.96

Sid HCAL - barrel

```
1. Lol geometry:
      Barrel: ri = 141.7 cm
                  ro = 249.3 cm it is not ro, but it is ECAL or + HCAL depth
                  z = 603.6 cm
      If 1 layer = 2.69 cm then
      ro = (ri + 40 \times 1 \text{ layer})/cos(15^{\circ}) = 258.1 \text{ cm}
2. Nicolas numbers:
      Barrel: ri = 141.9 cm
                  ro = 258.3 cm
                  z = 603.6 cm
      40 \text{ layers} = (\text{ro } \times \cos(15^\circ) - \text{ri}) = 107.6 \text{ cm}
      \rightarrow 1 layer = 2.69 cm
3. sid02 geometry:
      Barrel: ri = 141 cm
                  ro = 253.3 cm
                  z = 588 \text{ cm}
      ro - ri = 112 cm
      \rightarrow 1 layer = 2.8 cm
```

N.B. Old concept: 2 mm steel absorber + 8 mm detector = 2.8 cm New concept: 1.89 mm steel absorber + 8 mm detector = 2.69 cm

Sid HCAL - barrel

Sid HCAL - endcaps

1. Lol geometry: Endcap: zi = 180.5 cm zo = 302.8 cm ro = 140.2 cm zo - zi = 122.3 cm ?

2. Nicolas numbers:

Endcap: zi = 180.6 cm zo = 302.8 cm ro = 140.9 cm ri = 20.6 cm zo – zi = 122.2 cm ?

If 40 layers (4 λ) (107.6 cm HCAL depth) are used in endcaps then there is 14.7 cm air gap. Or, are there 45 layers (4.5 λ)?

3. sid02 geometry: Endcap: zi = 182 cmzo = 294 cmro = 140.75 cmzo - zi = 112 cm $\rightarrow 1 \text{ layer} = 112/40 = 2.8 \text{ cm}$

SiD Micromegas implementation

1. sid02 \rightarrow sid02_mMegas

Barrel: 40 layers with RPC \rightarrow 40 layers with Micromegas 1 layer = 1.49 cm steel absorber + 1.2 cm Micromegas detector including two 2 mm thick steels covers (1.89 cm of the absorber in total)

Endcap: 40 layers with RPC \rightarrow 40 layers with Micromegas Same as in case of barrel

- N.B 4.4 cm additional air gap is ue to a difference of 0.2 mm in absorber thickness.
- 2. sid01_polyhedra \rightarrow sid01_polyhedra_mMegas

Barrel: 34 layers with RPC \rightarrow 35 layers with Micromegas Layers are same as in sid02_mMegas

Endcap: 34 layers with RPC \rightarrow 35 layers with Micromegas Layers are same as in sid02_mMegas

Micromegas geometry for SiD 1/3

Materials, region and limits:

```
<materials>
  <material name="IsoButane">
     <D type="density" value="0.00251" unit="q/cm3"/>
     <composite n="4" ref="C" />
     <composite n="10" ref="H" />
   </material>
   <material name="mMegasGas">
     <D type="density" value="0.00184" unit="q/cm3"/>
     <fraction n="0.95" ref="Ar" />
     <fraction n="0.05" ref="IsoButane" />
   </material>
 </materials>
<regions>
 <region name="mMegasGasRegion" store_secondaries="true"
         cut="0.1" lunit="mm" threshold="0.0" eunit="MeV" />
</regions>
<limits>
   <limitset name="cal_limits">
        <limit name="step_length_max" particles="*" value="5.0"</pre>
            unit="mm" />
   </limitset>
</limits>
                   J. Blaha, Micromegas Physics Meeting, 15 Dep. 2009, LAPP
```

Micromegas geometry for SiD 2/3 Barrel:

```
<detector id="3" name="HADBarrel" type="CylindricalBarrelCalorimeter"</pre>
         readout="HcalBarrHits">
        <dimensions inner_r = "141.0*cm" outer_z = "294*cm" />
        <laver repeat="40">
             <slice material = "Steel235" thickness="1.49*cm" />
             <slice material = "Air" thickness="0.07365*cm" />
             <slice material = "Steel235" thickness="0.2*cm" />
             <slice material = "Kapton" thickness="0.01*cm" />
             <slice material = "Copper" thickness="0.0005*cm" />
             <slice material = "mMegasGas" thickness="0.3064*cm"</pre>
                    sensitive = "yes" limits="cal_limits"
                    region="mMegasGasRegion" />
             <slice material = "mMegasGas" thickness="0.0158*cm" />
             <slice material = "Copper" thickness="0.0035*cm" />
             <slice material = "G10" thickness="0.1165*cm" />
             <slice material = "Epoxy" thickness="0.2*cm" />
             <slice material = "Steel235" thickness="0.2*cm" />
             <slice material = "Air" thickness="0.07365*cm" />
        </laver>
 </detector>
```

N.B. The barrel inner radius and outer z value are kept to be same \rightarrow 4.4 cm additional air gap between calorimeter and solenoid

10

Micromegas geometry for SiD 3/3 End-caps:

```
<detector id="7" name="HADEndcap" reflect="true"</pre>
       type="CylindricalEndcapCalorimeter" readout="HcalEndcapHits">
       <dimensions inner_r = "20.0*cm" inner_z = "182.0*cm" outer_r =</pre>
       "140.75*cm" />
       <layer repeat="40" >
            <slice material = "Steel235" thickness="1.49*cm" />
            <slice material = "Air" thickness="0.07365*cm" />
            <slice material = "Steel235" thickness="0.2*cm" />
            <slice material = "Kapton" thickness="0.01*cm" />
            <slice material = "Copper" thickness="0.0005*cm" />
            <slice material = "mMegasGas" thickness="0.3064*cm"</pre>
                   sensitive = "yes" limits="cal limits"
                   region="mMegasGasRegion" />
            <slice material = "mMegasGas" thickness="0.0158*cm" />
            <slice material = "Copper" thickness="0.0035*cm" />
            <slice material = "G10" thickness="0.1165*cm" />
            <slice material = "Epoxy" thickness="0.2*cm" />
            <slice material = "Steel235" thickness="0.2*cm" />
            <slice material = "Air" thickness="0.07365*cm" />
       </laver>
```

```
</detector>
```


Clic Micromegas implementation

- 1. clic01_sid \rightarrow clic01_sid_mMegas Barrel: 77 layers with scintillators \rightarrow 77 layers with Micromegas
 - Old: 1 layer = 1 cm tungsten absorber + 0.75 cm scintillator detector
 - New: 1 layer = 1 cm tungsten absorber + 0.9 cm Micromegas detector Including 2 mm thick steels covers

Endcap: 70 layers with scintillators \rightarrow 71 layers with Micromegas

- Old: 1 layer = 2 cm steel absorber + 0.75 cm scintilator detector
- New: 1 layer = 1.8 cm steel absorber + 0.9 cm Micromegas detector Including 2 mm thick steels covers
- 2. clic01_sid_p01 → clic01_sid_p01_mMegas Barrel: 74 layers with scintillators → 77 layers with Micromegas Old: 1 layer = 1 cm tungsten absorber + 0.85 cm scintillator detector New: 1 layer = 1 cm tungsten absorber + 0.9 cm Micromegas detector Including 2 mm thick steels covers

Endcap: 70 layers with scintillators → 74 layers with Micromegas
 Old: 1 layer = 2 cm steel absorber + 0.85 cm scintilator detector
 New: 1 layer = 1.8 cm steel absorber + 0.9 cm Micromegas detector
 Including 2 mm thick steels covers

clic01_sid_p01_mMegas

Optimized geometry for HCAL?

Projective configuration already implemented as sid01_polyhedra and clic01_sid_p01.

Tilted configuration is not implemented so far. I will ask Jereme if is possible to do so.

It will be nice to compare physics performance of the projective, tilted and simple cylindrical configurations.

Conclusions

New geometry with compact.xml files for SiD and CLIC detectors have been created and after recalculation of the calibration constants can be used in simulations

The created geometries will be sent to SiD and CLIC groups for posting them as new official detector geometries

Recommendation: in order to be coherent with proposed mechanical design, the update of the official geometries is advisable.

