Signatures of light scalars particles with long lifetimes at the LHC and

FCC

Tomas Francisco URIBE APRAEZ

Supervisor : Aldo Deandrea (IP2I) Co-supervisor : Giacomo Cacciapaglia (IP2I)

Introduction

- The standard model is an effective theorie : (neutrino masses, dark matter, matter-antimatter asymmetry)
- Active area of research in search of a model beyond the standard model
- Colliders are tools in order to test these models in particular the LHC
- Future colliders like the FCC will improve the precision : ee phase, and the energy scale reached : hh phase

Higgs composite model

- Main idea : the Higgs boson is not an elementary particle
- Scalar particles in the standard model are composite particles (hadrons : pion, sigma, kaon). \rightarrow what if the Higgs boson is a composite particle too?
- Advantages :
 - The hierarchy problem can be solve by this consideration
- Some important physical concepts used in this model :
 - Higgs is a pNGB (pseudo-Nambu Goldstone boson)
 - Partial compositeness to fermions (interaction between fermions of the SM to the composite sector)

Long lived particles (LLP)

Х

D

ΡV

 They are present in many models beyond the standard model who could answer open questions → Probes for new physics CRYSTAL ELECTROMAGNETIC CALORIMETER (ECAL) ~76,000 scintillating PbWO₄ crystals

CMS DETECTOR

Overall diameter : 15.0 m

: 14.000 tonnes

: 28.7 m

: 3.8 T

Total weight

Overall length

Magnetic field

HADRON CALORIMETER (HCAL) Brass + Plastic scintillator ~7,000 channels SILICON TRACKERS Pixel (100x150 μm²) ~1 m² ~66M channels Microstrips (80-180 μm) ~200 m² ~9.6M channels

STEEL RETURN YOKE

12,500 tonnes

SUPERCONDUCTING SOLENOID Niobium titanium coil carrying ~18,000 A

> MUON CHAMBERS 7 Barrel: 250 Drift Tube, 480 Resistive Plate Chambers Endcaps: 468 Cathode Strip, 432 Resistive Plate Chambers

> > PRESHOWER Silicon strips ~16 m² ~137,000 channel

> > > FORWARD CALORIMETER Steel + Quartz fibres ~2,000 Channel

Long lived particles (LLP)

PV : primary vertex DV : decay vertex

Efficient search by means of LLP

LLP have special signatures \rightarrow negligible background

5

Long lived particles (LLP)

Х

D

PV : primary vertex DV : decay vertex

ΡV

Test of the model by means of the following lagrangian of interaction between a pseudo-scalar particle (here an axion) and the electroweak gauge bosons of the SU(2)U(1).

$$\mathcal{L}_{int} = a \left(g^2 \frac{C_W}{\Lambda} W_{\mu\nu} \tilde{W}^{\mu\nu} + g^{\prime 2} \frac{C_B}{\Lambda} B_{\mu\nu} \tilde{B}^{\mu\nu} \right)$$

 2 different scenarios depending on the interaction between the scalar particle and photons (C = Cw + Cb):

• Photophilic : Cw=Cb

Photophobic : Cw=-Cb

Recasting of the LHC analysis : ATLAS-SUSY-2017-04

- Recasting : reproduction of the logic of an analysis in a simulation considering a different process/phase space
- ATLAS-SUSY-2017-04 : very developed analysis and adapted to the search of LLP who decay into oppositely charged leptons (ee,mu mu, e mu)

Numerical implementation

Simulations : strategies

10-4

W/N TeV

Simulations and analysis can be very heavy → we need to implement strategies

Lifetime depends on the coupling Cw and the mass)

 \rightarrow Yellow region is the region that must be analyzed in order to get the limits on the cross section and therefore to test the model

Simulation : details

• We tested the analysis generating events of the process $pp \rightarrow a\gamma$ et $a \rightarrow \mu\mu$ because the analysis is sensitive only to oppositely charged leptons. Center of mass energy = 13 TeV, Lint = 32.8 fb⁻¹

Explored region : mass between 20 and 80 GeV, cτ between 50 and 300 mm

Simulations : Feynman diagrams

diagram 1 NP=2, OCD=0, OED=1

diagram 2

NP-2, OCD-0, OED-1

diagram 1 NP=2, OCD=0, OED=1

-10

1

Exclusion limits (phenomenology of the model)

- Determination of the exclusion limit is essential from a phenomenological point of view
 - Exclusion criteria :

 $\sigma_{IM} \times \mathcal{L} \times S = 10$

 $\sigma_M > \sigma_{IM} = \frac{10}{\mathcal{L} \times S}$

 $N_{obs} = \sigma_{IM} \times \mathcal{L}$

Selection efficiency

- Search for this type of particle is best when : • when the mass increase
 - for a given mass when the lifetime decrease

Perspectives

- Development of new analysis adapted to composite models both using cuts and using machine learning methods.
- Construction of new composite models (exploration of symmetry of composite models and particle content using the restrictions imposed by the analysis)