HIGGS BOSON SELF-COUPLING AT FCC-EE

Nico Härringer, Roberto Salerno, Roy Lemmon

Science & Technology Facilities Council
Daresbury Laboratory

Science and Technology Facilities Council

Outline of the presentation

- Importance of the Higgs self coupling
 - Methods of measuring the self coupling and considered processes
- Categorization
 - 240 GeV
 - Discuss $Z(\mu^+\mu^-)H$ and $Z(b\overline{b})H$
 - 365 GeV
 - Neutral VBF
- Combined analysis
- Conclusions and next steps

Importance of the Higgs self coupling

- Measuring the tri- and quadrilinear self coupling of the Higgs crucial to understand the EWSB
- Parametrize deviations from SM trilinear coupling with κ_{λ}
- At FCC-ee: Indirect access to κ_{λ} in ZH and VBF via NLO EWK corrections
- Consider two energy points (240 and 365 GeV) to improve precision on the deviation of κ_{λ} from the SM value and exploit high single-Higgs production cross section.

 $V^{\text{SM}}(H) = \frac{m_H^2}{2}H^2 + \lambda v H^3 + \frac{\lambda}{4}H^4$ $\Sigma_{\text{NLO}} = Z_H \Sigma_{\text{LO}} \left(1 + \kappa_\lambda C_1\right)$

Methods

Consider only single Higgs production => trilinear self coupling appear only at NLO

Considered processes

- Higgsstrahlung $(e^+e^- \rightarrow ZH)$ @ 240 and 365 GeV
 - Inclusive Higgs decays: $Z(\mu^+\mu^-)H$, $Z(e^+e^-)H$, $Z(q\bar{q})H$
 - Extracted recoil mass distribution
- Exclusive VBF @ 365 GeV
 - WW-Fusion: $e^+e^- \rightarrow v_e \bar{v}_e H(b\bar{b})$ and ZZ-Fusion: $e^+e^- \rightarrow e^+e^-H(b\bar{b})$
 - Extracted missing mass and invariant electron mass respectively
- Used the <u>Delphes spring 2021 samples</u> in our analysis

 $M_{\text{Rec}}^2 = p_H^2$ $= (E_{\text{ff}} - \sqrt{s})^2 - |\vec{p}_{\text{ff}}|^2$ $= s - 2E_{\text{ff}}\sqrt{s} + M_{\text{ff}}^2,$

CATEGORIZATION

Categorization

$Z(b\bar{b})H @ 240 \text{ GeV}, L = 5 \text{ ab}^{-1}$

- Category requirement:
 - $\neg(\neg(2\mu) \land (2e))$ in final state
 - $N_{b-Jets,Z} = 2$
- Samples:
 - $e^+e^- \rightarrow q\bar{q}H$ (Signal)
 - $e^+e^- \rightarrow ZZ, e^+e^- \rightarrow WW,$ $e^+e^- \rightarrow q\bar{q}$ (Background)
- Additional selection cuts:
 - $M_{bb} \in [86, 96] \, GeV$

$Z(b\bar{b})H @ 240 \text{ GeV}, L = 5 \text{ ab}^{-1}$

events

events / 2.86 GeV $e^+e^- \rightarrow ZH \rightarrow ij + X$ ww ΖZ √s = 240.0 GeV 10⁵ Zqq L = 5.0 ab ⁻¹ – ZH $\beta_{BDT} > 0.1535$ sel_noBDT_bbH cut, $\beta_{ph} > 0.1535$ 10⁴ 10^{3} 10² 10 200 20 40 60 80 100 120 140 160 180 0 m_{Rec} [GeV] Pbb

FCCAnalyses: FCC-ee Simulation (Delphes)

- Use adaptive Boosted Decision Trees (BDTs) to cut down $q\bar{q}$ background
- Input variables related to Z system:
 - $N_{b \ Jets}, M_{bb}, N_{Jets}, etc.$
- Cutflow:

	$\mathrm{Z}(qar{q})\mathrm{H}$	ZZ	WW	$Z \rightarrow q \bar{q}$
Number of bb events (Yield)	35'980	102'058	3'657	2'749'902
$Z(bb) \text{ tag}, M_{bb} \in [86, 96] \text{ GeV}$	$100 \ \%$	100~%	100~%	100~%
$+ \beta_{bb} > 0.1535$	91.46~%	33.82~%	7.85~%	1.86~%

$e^+e^-H(b\overline{b})$ @ 365 GeV, L = 1.5 ab⁻¹

Category requirement:

- $\neg (2\mu) \land (2e)$ in final state
- $|M_{ee} M_z| \ge 6 \text{ GeV}$
- $N_{b-Jets, H} \ge 2$
- Samples:
 - $e^+e^- \rightarrow e^+e^-H(b\overline{b})$ (Signal)
 - $e^+e^- \rightarrow ZZ, e^+e^- \rightarrow WW,$ $e^+e^- \rightarrow ZH$ (Background)
- Additional selection cuts:
 - $|\Delta \eta_{bb}| < 3, H_T > 20 \text{ GeV}, \beta_{BDT} > -0.1034$

COMBINED ANALYSIS

Combined analysis

- Fit all channels using parametric and non-parametric distributions
 - Experimental systematics: Integrated luminosity measurement O(0.1%) and signal selection efficiency O(1%)
- Construct Asimov dataset with original dataset and post-fit parameters
- Simultaneous fit of $\delta \kappa_{\lambda}$ to combined dataset
- Global assumption:
 - Higgs decays as predicted in SM

Conclusions and next steps

- Analysis involving almost complete ZH and VBF
 - 1D precision on $\delta \kappa_{\lambda}$: ~30% with HL-LHC
- Next steps:
 - Add more systematics and their correlations between channels
 - Drop assumption: Higgs decays as predicted in SM
 - Probe more global scenarios (e.g. include more Higgs couplings to fermions)

THANK YOU FOR YOUR ATTENTION

Nico Härringer

BACKUP SLIDES

Nico Härringer

Production cross sections

arXiv: 9512355

Separation of ZH and VBF

2D FIT

Nico Härringer

4D FIT

Nico Härringer

Nico Härringer

Confidence Intervals at 68% CL

- 1D $\delta \kappa_{\lambda}$: [-0.36, 0.40] (FCC only) \mapsto [-0.29, 0.31] (+HL-LHC)
- 4D $\delta \kappa_{\lambda}$: [-0.83, 0.83] (FCC only) $\delta \mu_{ZH}$: [-9.23, 11.1] * 10⁻³ $\delta \mu_{VBF,WW}$: [-4.73, 4.83] * 10⁻² \mapsto [-4.72, 4.82] * 10⁻²
- - → [-0.43, 0.43] (+HL-LHC)
 - \mapsto [-6.11, 6.47] * 10⁻³
 - $\delta \mu_{VBF,ZZ}$: [-7.15, 7.45] * 10⁻² \mapsto [-7.14, 7.44] * 10⁻²

ADDITIONAL CHANNELS

Nico Härringer

Categorization

31

$v_e \bar{v}_e H(b\bar{b}) @ 365 \text{ GeV}, L = 1.5 \text{ ab}^{-1}$

FCCAnalyses: FCC-ee Simulation (Delphes)

- Category requirement:
 - $\neg(\neg(2\mu) \land (2e))$ in final state
 - $|M_{qq} M_H| \le 6 \text{ GeV}$
 - $N_{b,H} \ge 2$
- Samples:
 - $e^+e^- \rightarrow \nu_e \overline{\nu_e} H(b\overline{b})$ (Signal)
 - $e^+e^- \rightarrow ZZ, e^+e^- \rightarrow WW, e^+e^- \rightarrow ZH$ (Background)
- Additional selection cuts:
 - $|\Delta \eta_{bb}| < 3, H_T > 20 \text{ GeV},$ $|\cos(\theta_H)| > 0.5, MET > 20 \text{ GeV}, \beta_{BDT} > -0.0426$

