Comment pouvons nous contribuer dans notre communauté à un ou plusieurs Detector Concepts (via nos MP) ?

> Microvertex Tracking PID Calorimétrie

Previous General conclusions (Didier) :

maybe a good time to form dedicated FCC-ee MPs acknowledged by IN2P3 & IRFU

Common with ILC existing progams where relevant

Current Conceptual Design proposals

Best simulation performance (everywhere?) see Roy's presentation at last meeting

 CLD B-field ability for 3 – 4 T 3D High Gran. PFlow Med. track IP & p_T precision Med.(-) γ-energy precision Low p PID 	 IDEA B-field limited by X/X₀ 2D Medium Gran. PFlow High track IP & p_T precision Med.(+) γ-energy precision High p PID 		 IDEA+ (SCEPCal) B-field ability for > 2T ? 2D Medium Gran. PFlow High track IP & p_T precision High γ-energy precision High p PID
472 2.0 2.2 4 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Muons	- Muons	- Muons
9 • (Thick) solenoid 2-4 T	- DRCal	- SciCal ≤ ≤	DRHCal
HGCal HGCa HGCal HGCa	(Thin) solenoid 2 T	LArCal SCICa SCICA	(Thin) solenoid 2 T SCEPCal
S ⁻ T ⁻ MAPS/Hybrids/ O ⁻ T ⁻ AC-LGADs	Drift Chamber	- Drift Chamber PC Services	Drift Chamber DC Services
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5	5.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5	5.0 5.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0	5.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5
PID RICH before HGCAL	TPC instead of DT	TPC instead of DT	TPC instead of DT
Options & Variants • Tracki	ng systems (w/ - w/o PID) can be exc	hanged in different conceptual designs	LKr instead of SCEPCalSciCAL instead of DRHCAL

Vertex Detector: MAPS

Wrap-up/Timing: Layer MAPS/Hybrids/AC-LGADs/SPADs/MicroMegas...

R&D topics in French community (Tracking-MAPS)

MAPS for Vertex Detector - O(12) sensors in 12" wafers times number of experiments

Track IP precision ALICE ITS3 in LS3 fulfil current FCC-ee requirements

Timing O(100) ps expected with current devices, compatibility with IP precision & benefit undefined yet

- MP CMOS: IPHC , CBM, ILC TJ 180 nm, ILC TJ 65nm MP DICE: CPPM, IPHC, IP2I proposal for approval to join
- \succ
- MP Quartet: IPHC TJ 180 nm (targeting ns, now closed
- IRFU Lfoundry: 150 nm
- \succ May need further technology node step, possibly 3D integration, for real estate at small pitch

TJ 65 nm in framework of WP1.2 CERN

MAPS for Central Tracking – Medium production O(100) m²

Improve X/X_0 for p_T precision ALICE-3, LHCb UT & MT in LS4

Timing implementation may not affect significanly X/X_0 , benefit undefined yet

- No dedicated R&D: grouped pixels in strips slightly released \perp pitch \succ
- R&D similar as for pixels \succ
- Alternative technologies: CMOS, 3D, LGAD hybrid designs* \geq
- MAPS for Wrap-up/Timing Layer:

Wrap-up - p_{τ} precision w/ DC/TPC

- Timing Layer to provide low p PID** can be integrated in a Si-CT
- Same as MAPS layer in a Central Tracker \geq
- Need specific R&D, possibly new node and 3D integration, to reach \lesssim 30 ps requirements
- IRFU: Micromegas + cerenkov radiator + photocathod >
 - Other alternative technologies 3D, LGAD, SPADs

R&D topics in French community (Tracking-MAPS)

• Summary MAPS (more possibilities in CLD-like full Si tracker design,

```
depending on technology choice for Wrap-up/PID layers in a gaseous detector design)
```

- Current effort addressing mostly impact precision and low X/X₀
- First attempts at exploiting timing properties with current technologies O(100) ps
- Strong justification to develop designs that could provide $\lesssim 30$ ps
- System aspects (mechanics, cooling...) important for X/X₀
- Large community with an IN2P3 platform C4PI at IPHC
 - Intermediate project interests ex. ALICE ITS3, BELLE 2, ALICE 3, LHCB 2
- Right time to define common orientations beyond current R&D activities
 - Should consider technology aspects but also detector target, Vertex/Central Tracking, HGCalorimetry
- Goal is to widen the R&D collaboration and to structure the common effort
 - Large consortium: CPPM, IJCLab, IPHC, IP2I, IRFU, LLR, LP2I, LPNHE, LPSC, Subatech
- > Opportunity for synergies with electronics R&D MP, ex. for timing implementation (including 3D integration)
 - MP Fastime ASIC < 10 ps precision, MP Lojic130 clock precision (IP2I + ...) in 130 nm TSMC
- > Requires substancial resources both funding and RH; competitive international environment
 - Technology access complex for sensors (so far driven by CERN) no identified path towrd 3D integration

R&D topics in French community (Other Tracking, PID)

Drift Chamber

Light wires Assembly techniques

R&D MP Change at IJCLab - not in FCC-ee IDEA framework

• TPC

Ability to operate at Z-peak luminosity (ion-feedback) Ability for dN/dx

- ➢ R&D TPC at IRFU for ILC
- R&D MicroMegas at IRFU, option for TPC readout

• PID

Timing Layer

- R&D at IRFU Micromegas with Cerenkov radiator and photocathode
 R&D at IJCLab AC-LGAD
- R&D MP Cerenkov Lab (DIRC with ToF design) at IJCLab not in FCC-ee framework

• Interest to follow-up these developments and connect them to FCC-ee

Resource needs relatively limited at this stages

R&D topics in French community (Calorimetry)

Noble Liquid Calorimeter

Improve granularity for PFlow ability High density feedthrough Low noise electronics in cold Improve EM-energy resolution w/ LKr

- R&D at IJCLab dedicated to FCC-ee
- Large community in ATLAS

High Granularity Calorimeter

ECAL section electronics and system integration

ECAL section Si-sensors

HCAL section

- > MP CALICE/ILC, IJClab, LLR, LPNHE, LPSC, and CMS at LLR, OMEGA for electronics
- Possible synergy with MAPS developments
- MP CALICE, SemiDigital HCal with RPCs IP2I or with MicroMegas IRFU
- Scintillating Cerenkov in DRCal and SCEPCal

Material

Electronics

- R&D at ILM (UCBL1), CPPM in CERN Crystal Clear (LHCb 2 LS4), interest at IP2I and LPCC
- New powder-O concept R&D at IJCLab
- R&D at LPCC: 65 nm electronics for LHCb 2 LS4

Several technologies being considered

Technology	ECAL	HCAL	
CLD / CALICE-like	W/Si W/scint + SiPM	Steel/scint + SiPM Steel/glass RPC	
IDEA / Dual Readout	Brass (lead, iron) / parallel scint + PMMA (Č) fibres, SiPM		
Noble Liquid	Fine grained LAr (LKr) / Pb (W)	CALICE-like ?	
Crystals	Finely segmented crystals (possibly DR)	Dual Readout fiber	

• Summary Calorimeters (fully Conceptual Design correlated)

- Large community for HGC and Noble Liquid
 - HGC R&D oriented towards ILC up to now, possible synergy with MAPS R&D;
 - Noble liquid fully dedicated to FCC

> Interest to follow-up other options for contribution in a high E-γ resolution and/or DRCAL Conceptual Design

Requires substancial resources both funding and RH, when reaching system design level

Discussion on selected topics

• MAPS for Vertex Detector - O(12) sensors in 12" wafers times number of experiments

Track IP precision ALICE ITS3 in LS3 fulfil current FCC-ee requirements

Timing O(100) ps expected with current devices, compatibility with IP precision & benefit undefined yet

• Noble Liquid Calorimeter

Improve granularity for PFlow ability High density feedthrough Low noise electronics in cold Improve EM-energy resolution w/ LKr

- MP CMOS: IPHC , CBM, ILC TJ 180 nm, ILC TJ 65nm
- > MP DICE: CPPM, IPHC, IP2I proposal for approval to join
- IRFU Lfoundry: 150 nm

R&D at IJCLab dedicated to FCC-ee

Large community in ATLAS

• High Granularity Calorimeter

ECAL section electronics and system integration

ECAL section Si-sensors

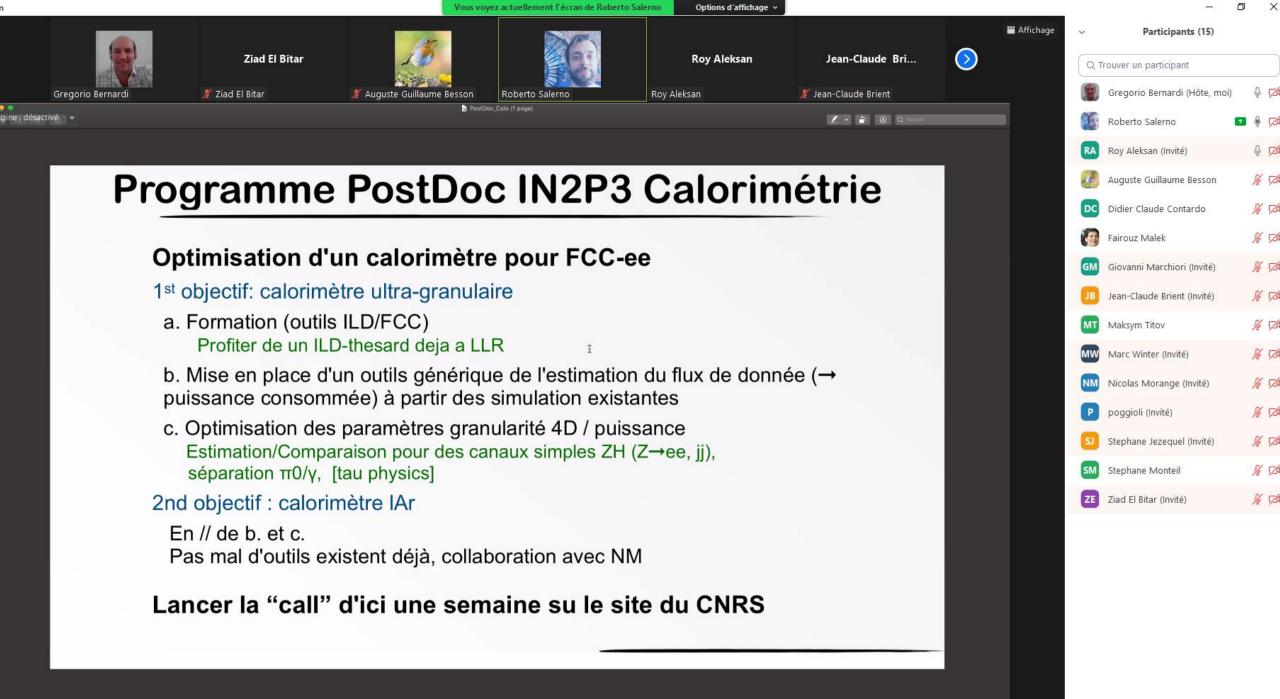
HCAL section

- > MP CALICE/ILC, IJClab, LLR, LPNHE, LPSC, and CMS at LLR, OMEGA for electronics
- Possible synergy with MAPS developments
- MP CALICE, SemiDigital HCal with RPCs IP2I or with MicroMegas IRFU
- Scintillating Cerenkov in DRCal and SCEPCal

R&D at ILM (UCBL1), CPPM in CERN Crystal Clear (LHCb 2 - LS4), interest at IP2I and LPCC New powder-O concept R&D at IJCLab

8

Detector Concept Working Group Goals & Plans


Overall goals:

- Demonstrate that detectors can be built to fully exploit the FCC physics opportunities
 - Optimize the compatibility of the detector concepts with operation at the FCC-ee, with the Machine-Detector Interface layout (MDI), and with the timing and background conditions
 - □ Show that performance requirements can be met with existing or emerging technologies and realistic integration concepts
- Provide guidance for coherent detector R&D efforts to address FCC detector requirements

And to support their funding requests

A Detector Concept eventually includes:

- Assembly of sub-detectors including magnet system
- Systems for data acquisition, processing, powering and cooling based on estimate of data rates and size
- Software implementation of detector allowing performance evaluation
- Overview of services, consumables, power consumption, and ecological impact;
- Evaluation of construction and operating costs.

🔹 🙎 🕵 💼

*