Toward Ultra-Light Vertexing Devices Suited to all FCCee Regimes
(le projet ITS-3 d’ALICE vu depuis les usines a Higgs-top)

M.Winter / 22 Avril 2022
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US
CLD - Vertexing and fracking py

VTX: e
- Pixel size 25x25 pm2- 50 pm sensor thickness - aiming

at 3 ym resolution

- Material and cooling benchmarked on ALICE ITS LS2

upgrade design [MAFPS)

- Occupancy dominated by IPC - higher at the 7 pole

and below 1% (Safety factor 5 - 10 us readout window)

- Power dissipation: 40 mW/cm2- water cooled

ID: 125 126 50, 161 225, 231 I3 301

- Single point resolution /20 pm?2- 5x5 pm2 in
15t layer.

- Inner tracker: Barrel 3 layers, end-cap 7 discs.

- Quiter fracker: Barrel 3 layers, end-cap 4
discs.

FCC—ea CLD

E“E 30 I I [ ] Dluter tracl:elr =
I_::, | Inner tracker b
< Il Vertex detector |
= I Beam pipe : E
5 20 : .
n —
: p
m B
< 10
| —
oD
[4%]
=

8]

0 20 40 60

-

I. Vivarelli - FCC-UK - FCC-ee detectors - 11 September 2020



Vertex Detector Requirements: Time Resolution

e Expected occupancy vs time stamping:
Beam crossing at IP: from every 20 ns (91.2 GeV) to every 3.4 s (365 GeV)

N. Bacchetta et al. (CLD - arXiv:1911.12230v3 - 12.12.2019):

« consider approach of ALICE-ITS2 (ALPIDE sensor): ~ 40 mW/cm? (watch hit rate !)
« assume A; =~ 10 us for vertex detector (case of ALICE-ITS2)
o occupancy (simul x 5, cluster size = 3): from 0.43 % (91.2 GeV) t0 0.13 % (365 GeV) = OK

P. Azzi & E. Perez (Eur. Phys. J. Plus - 30.11.2021 - 136:1195):
"A; < 1 s makes integrated background negligible”

e |LD vertex detector requirement:
A; <1 us based on CMOS sensors (providing simultaneously required spatial resolution)

expected occupancy at FCCee (scaled from above):
< 0.043 % (91.2 GeV) — < 0.013 % (365 GeV)

= hnho need to push time resolution below ~ 500 ns
power saving is the priority !
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Vertex Detector Requirements: Spatial Resolution (1/2)

e Vertexing goal:
o(Adp) < a@b/p-sin®20 pm
witha =~ 5and b =~ 10 — 15GeV - um

assume 3 double layers (R ranging from 17.5 to 60 mm)

sp
ORe,z

3 dble-layers with water cooling (= ALICE-ITS2)
= 0.6 - 0.7 % Xop/dble-layer

=3 um

e Beam pipe:
dble-shell of Be with water cooling = 0.34 % Xo
gold coting (5 um) = 0.15 % Xo

e ILD VXD & beam pipe material budget:
VXD: 0.3 % Xop/dble-layer with air cooling
(possibility of power pulsing)
BP: sgle-shell of Be with no cooling = 0.14 % Xo

= b >~ 10 GeV-um instead of 15 GeV-um
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Vertex Detector Requirements:
Single Point Resolution (2/2)

e Impact of relaxed constraint on
single point resolution:

0R¢Z_3,um
— S5and7 um

dilutes o (Adp) by up to factor 2

e Impact of increased dble-layer
material budget:

add 50 % to dble-layer material budget
impact is nearly marginal = impact < 1 GeV/c ?

What if mat. budget would be twice less ?
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Major R&D Goal in Coming Years: Material Budget Reduction

e Physics perfo. limited by material budget of services & overlaps of neighbouring modules/ladders

Material budget studies: Belle Il - SVD Barrel, PXD 75.0m
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e Contribution of sensors to total material budget of vertex detector layer is modest: 15 - 30%
e R&D objective beyond “classical” concepts: Gl

o Innermost layer: try stitched & curved CPS along
goals of ALICE-ITS3, possibly with 65 nm process
o Concept with minimised mechanical support

(e.g. using beam pipe) See Talk of M. Mager at Vertex-19, Lopud Island, Oct. 19
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Aiming at Improved Physics Performances w.r.t. State-of-the-Art

e Revisit globally usual vertex detector concepts in ordre to suppress its material budget

and improve the spatial resolution toward the ambitionned 3 um

e Join R&D effort of ALICE-ITS3 project, associated to W.P.-1.2 of CERN-EP R&D programme

(despite some modest ambitioned performances: 5 yum and 10 pS)

e Unique occasion to develop stitched (curved) pixel sensors in a 65 nm technology (cost !)

and a novel integration concept optimised for material budget suppression

S A Cylindrical
— Structural Shell

A\




@ ITS3 specifications & layout

carbon foam rib to hold ASICs in place

@ Concept
« replace inner 3 layers of air cooling
ITS2 with ITS3 - homogenous material distribution
280 mm long sensor ASICs ® 6 sensor ASICs
out of 300 mm long stitched « 2 halves * 3 layers

wafers
20-40 um (0.02-0.04% X,)

bent shape with radius
18/24/30 mm

from A. Kluge - VCI 2022



Which questions need to be answered?

« remove all but the silicon sensor ASIC and

« bend it around beam pipe

for increased performance and mechanical stability
@ Questions
e Can thin silicon be bent without breaking?
e Are bent silicon sensor ASICs functional?
« Can long, thinned silicon sensors be integrated without a heavy CF structure?
o Can the sensor be cooled with air only efficiently?
e Can a 280 mm long silicon sensor ASIC be produced?

e Can the sensors be connected without additional HDI?

from A. Kluge - VCI 2022
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DEVELOPING A NEW VERTEX DETECTOR CONCEPT VIA ITS-3

Layer assembly

Layer 2 Layers 2+1 Layers 2+1+0

3-layer integration successful!

Magnus Mager (CERN) | ALICE ITS3 | CERN detector seminar | 24.09.2021 | 26

from ALICE-ITSS - internal = NOT TO COPY
11



© Wind tunnel cooling studies

BT=T -T.. VsAirspeed Matrix 20mW/cm?

periphery air_in

@ Tests with model and
heaters
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key for heat 0 v
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15 ~\"1-~
LO has larger temperature . i o " P8
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from A. Kluge - VCI 2022
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CURVED SENSOR DEVELOPMENT BASED ON ASSEMBLY OF ALPIDE SENSORS

A Large ion Collider Experiment

Super-ALPIDE mockup assembly - V2

Wire-bonding through exoskeleton

ALICE | WP4 meeting | 14 April 2022 | Domenico Colella

from ALICE-ITSS - internal = NOT TO COPY

> Extendable to MIMOSIS+ : < 5 yum — O(1 115) — 2 Gbits/s
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Cu target in the cente —-—-‘J
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from A. Kluge - VCI 2022
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Exploration of a 65 hm Imaging Technology

Motivations of the R&D:

Smaller feature size than 180 nm technology used for MIMOSIS
=> smaller pixels, more in-pixel functionnalities,
less power consumption, faster readout, ...

Imaging technology available since ~ Spring 2020:
includes stiching = multireticle sensors

R&D coordinated at CERN (ALICE-ITS3 & EP-div)

ITS3 goals: small pixels and very low material budget
exploiting stitching for "supportless” detector layer

Prototyping at IPHC for MLR1 (2020):

Design of "elementary” test structures with CERN

Design of 2 chips featuring arrays of 15x15 & 25x25,um2 pixels
with rolling shutter readout & analog output

Variants A/B/C Variant D

Grouped submission (MLR1) submitted to TowerJazz 64 % 32 48 x 32
for fabrication during Winter-Spring 2020-21 15 um pitch 25 um pitch

Tests under way: detection performances are promising
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MLR1: CE-65 Proto. Testing Charge Collection with 15 pm Pitch

CE65 (IPHC): Exemplary >>Fe spectra
ALICE
Source follower sub matrix, optimised diode
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See S. Bugiel, A. Dorokhov et al, VCI

from VCI-2022 - S. Bugiel et al.
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Beam test with Telescope with DPTS

ALICE

Track intercept in y (pm)
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from A. Kluge - VCI 2022
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Stitched sensor ASICs

ALICE

® Next big milestone in sensor design: stitching

® Design activity in full swing

e Stitching used to connect metal traces for power
distribution and long range on-chip interconnect busses
for control and data readout

Repeated Sensor Unit Endcap R
Pads 1 Peripheral circuits 5 Pads N~ 10 Pads

111111111
||||||||||

+— 25.5 mm — peripheral circuits Pads

from A. Kluge - VCI 2022
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Next Step: ER1 including 25 x 1.5 cm large sensor in 65 nm Technology

Endcap L Repeated Sensor Unit Endcap R
Pads 4 Peripheral circuits 2 Pads Primary Goals
t samsnmans & T — T : E—— B Learn Stitching to make a particle detector
c I ' -+ SEStIEY [Sttetll (Sias FUNIT j LARGE PITCH PIXELS (22.5 um)
< I‘ %ﬁ - = ” = :. _________________ scale design
l T - ' ; Learn about yield and DFM
— i Periphery ~0.8 mm -«—
AA%mm 25.5 mm ——> peripheral circuits Pads Pad h: 0.35 mm L5mm  study power, leakage, spread, noise, speed

* Large sensor abutting identical but functionally independent sub-units

— Repeated Sensor Unit, Endcap Left, Endcap Right
— Stitching used to connect metal traces for power distribution and long range on-chip interconnect busses for control and data
readout

On behalf of MOSS team
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BELLE-II Potential Vertex Detector Upgrade

VXD Upgrade -Requirements

* Be prepared for a major
interaction region redesign
Tracking & Vertexing performance - Allow large safety factors against
at least as good as current VXD backgrounds

I S » Take advantage of technology

Radius range: R 14 — 135 mm "9

Total material budget < (2x 0.2% + 4x 0.7%) X, development
Robustness against radiation environment . _POSSible performance
improvements
Hit rate!" ~ 120 MHz/cm? » Impact parameter and vertexing
resolution
Total Ionizing Dose!" ~10 Mrad[year ° Traekmg perform&noe for low pT
track
NIEL fluence™  ~ 5.0 x 10** n.,/cm?/year : X
* Lower trigger latency
(*) requirement for the innermost layer (R=14mm) « L1 trigger capabilities

(**) Optionally, we may include also the CDC inner region (135<R<240mm)

/1

LIEFN Feb 23, 2022 F.Forti - Belle || Upgrades 12

o Little overlap in sensor requirements: < (15 um, 100 ns, 200 mW/cm2)

e But: cooling system possibly relevant for FCCee vertex detector
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CONCLUSIONS

SCIENTIFIC PRIORITIES FOR THE R&D TARGETTING

A VERTEX DETECTOR AT FCCEE (ALL Ecar):
1) Material budget !!! = multi-reticle, very low power pixel sensor
integrated in an ultra-light and stable system (challenging)
sp ~

2) Spatial resolution: ORrp.z ~ 3 um (less challenging)

PRIVILEGED ENVIRONMENT FOR THIS R&D:
ALICE-ITS3 W.P.-3 & W.P.-4 (together with CERN-EP R&D W.P.-1.2)

Devt of stitched (i.e. multi-reticle) CMOS pixel sensors = mat. budget

Exploration of 65 nm TJsc process

= low power, thin (bending), small pixels

Will end up with a real detector taking data in = 5yrs

COMMENT ON FAST SENSORS:
not a must for a vertex detector addressing Higgs, top, Z, WW physics

added value for BG rejection, TOF, B decays, long-lived new particles, ...

generates substantial extra power consumption = extra material !

=> avoid vertex detector and minimise fast detector surfaces
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ALPIDE: Single point resolution and Cluster multiplicity

ALPIDE Position resolution and cluster size
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