(HIGH ENERGY) NEUTRINO PROGRAMS @ GRANDMA :

The next GRANDMA Observation Campaign

Thierry Pradier

thierry.pradier@iphc.cnrs.fr

with inputs from A. Coleiro (SNEWS), D. Dornic (KM3NeT), G. de Wasseige (IceCube), A. Franckowiack (ZTF)

OGMA

Observations with Gravitational Waves & Multimessenger Astronomy

HEN and other messengers - the Cosmic-Ray Connection

A picture not so clear

• Similar energies among messengers, but evidence for different origins (γ Blazars \sim 80%, HEN < 15 - 30%)

A large diversity of HEN sources...

...and of their signals

- Short duration GRB-like falling lightcurve, few hours
- Medium duration SNIc, Kilonova few weeks
- Long duration SNIIn, TDE, AGN few months

AGNs - TXS0506+056

Multi-messenger observations of a flaring blazar coincident with high-energy neutrino IceCube-170922A (IceCube et al, 2018)

Th. Pradier (University of Strasbourg & IPHC)

(HIGH ENERGY) NEUTRINO PROGRAM @ GRANDMA, Nice Workshop 01/06/2022

4/25

э

くロ とくぼ とくほ とくほ と

AGNs?

AGNs - TXS0506+056 - HEN emission \rightarrow rebrightening in optical

Optical Observations Reveal Strong Evidence for HEN Progenitor (Lipunov et al, 2020)

Th. Pradier (University of Strasbourg & IPHC)

(HIGH ENERGY) NEUTRINO PROGRAM @ GRANDMA, Nice Workshop 01/06/2022

AGNs?

HEN Followups since 12/2021

AGNs - several hints

Oikonomou, ICRC 2021

Th. Pradier (University of Strasbourg & IPHC)

(HIGH ENERGY) NEUTRINO PROGRAM @ GRANDMA, Nice Workshop 01/06/2022

HEN Sources - Tidal Disruption Events (TDE)?

TDE & AT2019dsg

HEN Sources - Tidal Disruption Events (TDE)?

HEN Followups since 12/2021

TDE & AT2019dsg

A tidal disruption event coincident with a high-energy neutrino (R. Stein et al, 2021)

HEN Sources - GRBs of all sorts

Electromagnetic Emissions & Multimessenger

イロト イヨト イヨト

Upper limits & Eddington bias

source class	local density	min. dist.	limit	source energy	max. fluence	10 ¹								
	$[Mpc^{-3}(yr^{-1})]$	[Mpc]		[erg]	$[\text{GeV}^{-1}\text{cm}^{-2}]$							Ζ.		
long GRBs	$4 imes 10^{-10}$	470	< 1% (stacked)	$< 6 imes 10^{51}$	$< 4 imes 10^{-3}$	ň								/:
short GRBs	3×10^{-9}	220	< 32% (OFU)	$< 3 imes 10^{52}$	$< 9 imes 10^{-2}$	- -					<u>/.</u> *			
llGRBs	$1.6 imes10^{-7}$	64	< 100% (flux)	$<1.5\times10^{51}$	$< 6 imes 10^{-2}$		100%		ro, flux	<u>/</u>		/	<u></u>	
SNe Ic broad.	$1.4 imes 10^{-6}$	30	< 100% (flux)	$< 2 imes 10^{50}$	$< 4 imes 10^{-2}$	Shh			/:			/.:	•	
SNe IIn	4×10^{-6}	20	< 66% (stacked)	$< 4 imes 10^{49}$	$< 1.4 imes 10^{-2}$	do		1.			1	· _		5
SNe Ib/c	$1.7 imes 10^{-5}$	12	< 32% (stacked)	$< 5 imes 10^{48}$	$< 5 imes 10^{-3}$	asti	-			/			E	
CCSNe	$7 imes 10^{-5}$	8	< 100% (flux)	$< 4 imes 10^{48}$	$< 8 imes 10^{-3}$	5 10-1			/					N-like
FSRQs	$6 imes 10^{-10}$	1 000	< 17% (EHE)	$< 1.6 \times 10^{53}$	$< 3 imes 10^{-2}$	5 10		/			Ne	- d	- GRE	B-like
BL Lac objects	2×10^{-7}	120	< 25% (EHE)	$< 3 imes 10^{51}$	$<2.5 imes10^{-2}$	cti	-				S I			
all AGN	10^{-3}	7	< 100% (flux)	$< 3 imes 10^{46}$	$< 8 imes 10^{-5}$	fra	_	9			je i	2	Ne	
jetted TDEs	$3 imes 10^{-11}$	1 000	< 100% (flux)	$< 10^{54}$	$< 1.4 imes 10^{-1}$			GRB		BL Lac	1%	2	S	
galaxy cluster	$5 imes 10^{-6}$	40	< 100% (flux)	$< 3 imes 10^{50}$	$< 3 imes 10^{-2}$	10-2	10-10	10-9	10-8	10-7	10.6	10-5	10-4	10-3
starburst gal.	$3 imes 10^{-5}$	22	< 100% (flux)	$< 2 imes 10^{49}$	$< 2 imes 10^{-3}$		rate at z=0 [Mpc ^{-3} yr ^{-1}]							

N. L. Strotjohann, PhD, https://edoc.hu-berlin.de/handle/18452/21791

Which alerts/objects to observe?

- Short duration GRB-like GRBs disfavored as HEN sources (prompt phase) ⇒ what about precursor/afterglow?
- Medium duration SNIc, Kilonova mostly unconstrained
- Long duration SNIIn, TDE, AGN unconstrained

⇒ Focus on Medium / Long durations?

Th. Pradier (University of Strasbourg & IPHC)

Upper limits & Eddington bias

N. L. Strotjohann et al, https://www.aanda.org/articles/aa/pdf/2019/02/aa34750-18.pdf

Eddington Bias

- With only 1 neutrino \rightarrow $D \sim 0.5 20$ Gpc 90% (here BL Lac density, 10 events in 10 yrs for <30% detected HEN flux)
- To date, no reported multiple neutrino candidates for all Alerts (= no additional HEN found after initial IceCube alert)
 - \Rightarrow Counterpart, if any, very distant/faint depends on emission model

\Rightarrow Focus on HEN alerts with possible counterparts in 90% Rol ?

Th. Pradier (University of Strasbourg & IPHC)

ヘロト ヘヨト ヘヨト

HEN Alerts (AMON/IceCube/KM3NeT)

Existing Alerts - Public

- Gold Alerts : $12/yr_{1} > 50\%$ astrophysical *latest : 06/03/2022 Observed \approx 1/month*
- Bronze Alerts: 16/vr, > 30% astrophysical latest: 25/02/2022 Observed ≈ 1.3/month

Other Public Alerts

- NU EM Alerts : 2-4/yr HAWC-ICECUBE + 2-4/yr Fermi-ANTARES (only position + 90% radius)
 - \Rightarrow latest : 20/02/2022 (IceCube HAWC) **Observed** \approx **0.7/month**
- ICECUBE Cascades : 8/vr. > 85% astrophysical (with FITS skymap)
 - \Rightarrow latest : 10/12/2021 Observed $\approx 0.5/month$

Possible Alerts - Private - MoU needed

- OFU Alerts (Optical/X-ray) : GRB/SN jets, Northern, multiplets 2 evts in 100s $\Delta \Omega < 3.5^{\circ}$ (ROTSE, PTF, Swift)
- GFU (γ -ray) : clusters around selected sources (MAGIC, VERITAS)

IceCube(/KM3NeT) Alert contents

- Position + uncertainty (convertible in fits map) $\lesssim 1^{\circ} \rightarrow 10^{\circ}$ (Tracks) / 20° (Cascades)
- Signalness + FAR + Energy

Th. Pradier (University of Strasbourg & IPHC)

How often were the HEN alerts followed?

Since December 2021, mostly no optical followups!

1- 11 Gold alerts [5/11 with possible counterparts?]

- ⇒ 2 with no optical followup (except MASTER) and 0 4FGL in FoV, but with 4FGL activity reported nearby counterpart unlikely?
- ⇒ 3 with no followup (except MASTER/ZTF) and ≥1 4FGL in FoV, but with Blazar radio activity/presence possible counterpart?
- ⇒ 2 with no followup and 0 4FGL in FoV no counterpart searched
- ⇒ 3 with no (public) followup reported (GCN or ATel), all with No/Many 4FGL sources in FoV no counterpart searched

2- 10 Bronze alerts [5/10 with possible counterparts?]

- ⇒ 2 with multiple ATel (optical, radio etc) possible counterparts
- 2 with no report despite New FERMI-LAT sources counterparts?
- ⇒ 1+1 with no report despite 4FGL sources in FoV no counterpart searched
- ⇒ 3 with no report with 0 sources in FoV no counterpart searched
- ⇒ 1 with no report despite SNIIn discovered possible counterpart not studied

Since December 2021, mostly no optical followups !

1- 11 Gold alerts [5/11 with possible counterparts?]

- ⇒ 2 with no optical followup (except MASTER) and 0 4FGL in FoV, but with 4FGL activity reported nearby counterpart unlikely?
- ⇒ 3 with no followup (except MASTER/ZTF) and ≥1 4FGL in FoV, but with Blazar radio activity/presence possible counterpart?
- ⇒ 2 with no followup and 0 4FGL in FoV no counterpart searched
- ⇒ 3 with no (public) followup reported (GCN or ATel), all with No/Many 4FGL sources in FoV no counterpart searched

2- 10 Bronze alerts [5/10 with possible counterparts?]

- ⇒ 2 with multiple ATel (optical, radio etc) possible counterparts
- ⇒ 2 with no report despite New FERMI-LAT sources counterparts?
- ⇒ 1+1 with no report despite 4FGL sources in FoV no counterpart searched
- ⇒ 3 with no report with 0 sources in FoV no counterpart searched
- ⇒ 1 with no report despite SNIIn discovered possible counterpart not studied

 \approx 1.4-2 alerts/month with probable counterpart (only Gold/Bronze only)

+ NuEm (0.5/month)/ Cascades (0.35/month), with no (public) reports on followups 2 alerts/month worth following

Gold Alerts - Examples of Gold Alerts with no reports

No 4 FGL sources in FoV

- IceCube-220202A 0.7deg error, 151 TeV, FAR 1.9/yr
- IceCube-220306A (fig) 0.5deg error, 413 TeV, FAR 0.4/yr (nearest at 0.8°)

Many 4 FGL sources in FoV

IceCube-220221A (fig) - 3.6deg error, 157 TeV, FAR 0.4/yr - 6 possible sources

(Reported) Search for possible counterpart(s) would have been needed !

Gold Alerts - Examples of IceCube-220205B, 220303A, 220304A

IceCube-220205B - 0.5deg error, 216 TeV, FAR 0.7/yr

• ATel# 15222 + # 15215 - PKS 1741-03, radio followup - low flux in 3.5-13.5mm (22-85 GHz) band - consistent?

IceCube-220303A - 1.2deg error, 398 TeV, FAR 0.54/yr

• No 4FGL sources in FoV / MASTER - Blazar 4C 09.57 (nearest 4FGL source) / SWIFT/XRT - X-ray counterpart?

IceCube-220304A - 6.2deg error, 260 TeV, FAR 0.57/yr

• Many 4FGL in FoV / Fermi-LAT Flux 20× TXS0310+022 - Radio followup of this Blazar, ATel# 15266

 \Rightarrow Confirmation/Characterization of these possible counterparts needed

Th. Pradier (University of Strasbourg & IPHC)

IGH ENERGY) NEUTRINO PROGRAM @ GRANDMA, Nice Workshop 01/06/2022

Gold Alerts - Example of IceCube-220509A

IceCube-220509A - 1.7deg error, 177 TeV, FAR 1.5/yr

- 3 4FGL sources
- FERMI-LAT GCN TXS 2210+065, 3σ in month before T_0
- No report except HAWC, Fermi_LAT

 \Rightarrow Confirmation/Characterization of this possible counterpart needed

Image: A math a math

Gold Alerts - Example of IceCube-220425A

IceCube-220425A - 1.7deg error, 604 TeV, FAR 0.6/yr

- ATel# 15363 TXS 1749-101, coincident with IC181023A
- MASTER \rightarrow TXS 1742-078, 3.4° away, in flaring period (brightest since 2017)

 \Rightarrow Confirmation/Characterization of this possible counterpart needed

Bronze Alerts - Example of IceCube-211208A

IceCube-211208A - 2.1deg error, Bronze alert, 170 TeV, FAR 1.2/yr

- 2 possible 4FGL sources in FoV, including 4FGL J0738.1+1742 PKS 075+178
- 13 ATels : MASTER, REM-NOT (Optical, NIR), X-rays, radio
- Medium/longterm monitoring needed to evaluate PKS 075+178 as possible counterpart

Th. Pradier (University of Strasbourg & IPHC)

HIGH ENERGY) NEUTRINO PROGRAM @ GRANDMA, Nice Workshop 01/06/2022

Bronze Alerts - Example of IceCube-220225A

IceCube-220225A - 2-3deg error, Bronze alert, 153 TeV, FAR 2.4/yr

- 1 possible 4FGL sources in FoV, 4FGL J0217.8+0144 PKS 0215+015
- ullet 3 ATels : radio to optical (# 15243, 15245 radio flare, 15248) ASAS-SN 60 days since 20/01/2022 ightarrow 22/03
- Medium/longterm monitoring needed to study/evaluate PKS0215+015 as possible counterpart

Bronze Alerts - IceCube-211216A, 211216B

IceCube-211216A - 1-3deg error, Bronze alert (>30% astro), 113 TeV, FAR 2.4/yr

• 2 possible 4FGL sources in FoV / No follow-up reported

IceCube-211216B - 1.55deg error, Bronze alert (>30% astro), 112 TeV, FAR 2.4/yr

No 4FGL sources / ATel# 15123 - SNIIn 2021gpw (discovered March 2021, peak 25/04/2021) within 90% Rol - LC ASAS-SN (25/11/2021 to 22/03/2022)

Rapid or medium follow-up would have been needed !

Th. Pradier (University of Strasbourg & IPHC)

(HIGH ENERGY) NEUTRINO PROGRAM @ GRANDMA, Nice Workshop 01/06/2022

A □ K A □ K

Bronze Alerts - IceCube-220115A, 220205A

IceCube-220115A - 1.2deg error, Bronze alert (>30% astro), 110 TeV, FAR 2.1/yr

- No possible 4FGL sources in FoV
- ATel# 15166 New Fermi-LAT source J2350.2+2620 within 90% Rol

IceCube-220205A - 3deg error, Bronze alert (>30% astro), 110 TeV, FAR 2.5/yr

- Several possible 4FGL sources in FoV (PKS 1413+135 on border)
- ATel# 15211 New Fermi-LAT source J1420.7+1653 within 90% Rol

Optical characterization of the sources would have been helpful

Th. Pradier (University of Strasbourg & IPHC)

HIGH ENERGY) NEUTRINO PROGRAM @ GRANDMA, Nice Workshop 01/06/2022

Decision Tree for GRANDMA Observations

э

Discussion points

HEN Followups since 12/2021

Targets : GRB-like and AGNs

- GRB-like :
 - $\Rightarrow \leq 1^{\circ}$ GOLD/BRONZE alerts
 - \Rightarrow +NuEM average $\sim 0.4^{\circ}$
 - \Rightarrow Relevant Telescopes to observe Error Box
 - ⇒ Counterpart search

AGNs

- ⇒ Characterize potential counterparts
- ⇒ Followup of AGNs in Error Box

$\bullet\,\lesssim1^\circ$ GOLD + interesting BRONZE + NuEM

 \simeq 3-4/months

(Low Frequency) Radio Observations in GRANDMA?

NenuFAR in Nancay (France)

- $\bullet\ < 100\ {\rm MHz}$
- Low Frequencies will arrive after High Frequencies (Dispersion)
 - \Rightarrow An increase in HF Radio for a given AGN can trigger a NenuFAR observation
- Contact with KM3NeT/Radio physicists in Subatech (Nantes), ready to be involved