
Michael Coughlin (University
of Minnesota), GRANDMA
Collaboration Meeting,
May 24, 2022

SkyPortal
Towards a multi-messenger data science platform for the MMA era

The History

O3 showed us how hard follow-up can be, and O4 is
not going to get easier, as our interferometers remain
at quite different sensitivities (plus the unfortunate
situation with KAGRA’s sensitivity).

However, because O3 was challenging, we built/
adapted many, many quality tools both during the run
and afterwards to analyze the results.

iCARE, gwemopt, simsurvey, POSSIS, gwemlightcurves/nmma,
NIMBUS, various annotation pipelines, the GROWTH ToO-Marshal, the
GROWTH Marshal, etc.

The Vision

We have also seen our team evolve (both in terms of people coming and going, as well
as career stages). Even during these 1+ year runs, these aspects change as well.

For this reason, we have set out to use SkyPortal as our one-stop-shop where many of
these analyses should be available. This enables us to both save ourselves both in
time and energy; the run is grueling (but obviously potentially incredibly rewarding) and
limiting single points of success* is important. Even if in principle more than one person
knows how to do something, it can be often the case that basically one person knows
how to do it, and that’s a tough spot to be in.

* A Patrick Brady special

SkyPortal: Schematic overview

 and friends

Observe → Mine/Discover → Study and Characterize → Profit!

Community, External
facilities and services ++

Kowalski SkyPortal

https://skyportal.io/docs/index.html

and friends

ZTF-I: data/processing flow

ZTF acts as a discovery
engine. Discoveries are

followed-up using a wide
range of instruments
(including ZTF itself)

See Masci+ 2019

ZTF-II: data/processing flow

ZTF acts as a discovery
engine. Discoveries are

followed-up using a wide
range of instruments
(including ZTF itself)

SkyPortal

- Open source (free to use, modify, and
distribute)

- Scalable, API-first system, with fine-
grained access control

- Multi-survey data archive and alert
broker

- Interactive, mobile-friendly collaborative
platform for transient, variable, and
Solar system science cases

- Workhorse for ML applications:
classification and labeling at scale

- Follow-up observation management:
robotic and classical facilities

- Well-tested, extensive docs, CI/CD

Initiated in Feb 2020
Beta up in Sep 2020

MVP live in Nov 2020

https://docs.fritz.science/api.html
https://skyportal.io/docs/permissions.html
https://skyportal.io/docs/permissions.html

Roadmap

Stability/Scaling

MMA (04)

3rd Party Analysis

(In brief)

Stability / Scaling

“Debugging performance issues is
really hard. But it’s not hard due to
a lack of data; in fact, the
difficulty arises because there is
too much data…It’s easy to confuse
causes with symptoms”

https://blog.twitter.com/engineering/en_us/a/2010/the-anatomy-of-a-whale

Building the plane while we fly it…

…and (trying to) squash bugs big and small.

MMA Infrastructure for O4

Inherits from two very successful projects during O3 and beyond:
GRANDMA’s iCARE and GROWTH’s ToO Marshal

Ahumada et al. 2105.05067, Anand and Coughlin et al. 2009.07210, Andreoni and Goldstein et al. 1910.13409,
Antier et al: 1910.11261, 2004.04277, Coughlin et al.: 1907.12645, etc.

A vision for the O4 workflow

15

Goal: Inform follow-up
decisions

Goal: Remove difference between code we
use to vet candidates in low latency and code

we use to do science

What do I hope is available by O4?

● Light curve fitting: fit to supernova, kilonova, GRB, etc. models with the click of a
button (led by Berkeley, support from UMN / OCA for NMMA)

● Follow-up prioritization suggestion (led by Caltech/Ari with ORACLE code)
● Creation of space-time MOCs for ease of internal and external observation

distribution (led by UWM)
● Improved scheduling with M4OPT (led by Goddard)
● Upperlimits/efficiency assessment: triggering of simsurvey/NIMBUS so we can

quote sensible efficiencies in GCNs/papers (led by UWM, Stockholm, UMN and
others). Are we tooled up for things like using our own survey limits as priors?
GW170817 as a prior? etc?

● Shifts: fine-grained tooling to receive notifications of events / observations in time-
zone appropriate ways (led by OCA/IJCLAB)

● Rapid/large-scale time-series interaction, i.e. data sets like from KPED or Chimera
(led by Berkeley)

What do I need from you?

● All: Missing features in the to-do list that you remember / expect you will find essential
for O4

● Those with existing observing programs (especially on those with APIs
accessible through SkyPortal): Try to trigger your programs through the website
and work with us to fix any bugs / missing features. I know it will probably fail the first
time or two, but this will allow us to be set by the time we need all hands on deck.

● Those with existing code you use to interact in cool ways with SkyPortal but are
otherwise poorly/tersely documented: Take a few minutes to add some text and
code to the SkyPortal Markdown docs (https://github.com/skyportal/skyportal/tree/
master/doc)

● Those with existing code you use that should probably be enabled within
SkyPortal: Post an issue / talk to me about what it does / check the big board

● Those with some hiring power: Send us your undergrads / summer students willing
to learn some JS / React.js, we are sorely in need of some front-end help.

https://github.com/skyportal/skyportal/tree/master/doc
https://github.com/skyportal/skyportal/tree/master/doc

What do I need from you?

● All: Missing features in the to-do list that you remember / expect you will find essential
for O4

● Those with existing observing programs (especially on those with APIs
accessible through SkyPortal): Try to trigger your programs through the website
and work with us to fix any bugs / missing features. I know it will probably fail the first
time or two, but this will allow us to be set by the time we need all hands on deck.

● Those with existing code you use to interact in cool ways with SkyPortal but are
otherwise poorly/tersely documented: Take a few minutes to add some text and
code to the SkyPortal Markdown docs (https://github.com/skyportal/skyportal/tree/
master/doc)

● Those with existing code you use that should probably be enabled within
SkyPortal: Post an issue / talk to me about what it does / check the big board

● Those with some hiring power: Send us your undergrads / summer students willing
to learn some JS / React.js, we are sorely in need of some front-end help.

Note: None of this requires significant software input from your side!

There is a pretty steep learning curve for joining the dev team, so we don't
recommend that all the users necessarily become developers. That said, it is
worthwhile to have at least one student or researcher devote the time to learn the
inner workings by joining the team and contributing code. This helps the group get
their own tools in faster and the way they need them, and it's also good for the
developer that would learn a lot of useful technical skills along the way, such as
industry best practices for open source development (code review, automated
testing, etc).

https://github.com/skyportal/skyportal/tree/master/doc
https://github.com/skyportal/skyportal/tree/master/doc

Experience so far…

Dev/Ops Personnel
Currently: 7 code contributors are mostly

those donating their time

🙏 Michael, Jada (UMN),
Guy, Josh, Stefan (Berkeley),
Theo, Thomas (OCA/GRANDMA)

We appreciate bug 🐞 reports but we really
need code contributors 👩💻

How to Engage

• Document Issues on the SkyPortal GitHub

• Contribute code via pull requests - we’re happy to onboard you!

• Lots of (unique) learning opportunities in development and operations

Lesson Learned: open source is 💚
- Fritz/SkyPortal/Kowalski is open source

- A huge part of devs is volunteer labor of love
- While the core dev team is relatively small (in terms of effective person-

hours), dozens of people have contributed meaningfully
- Leveraging what GitHub/OSS has to offer

- Issues to track bugs and feature requests
- PRs + thorough code review
- GitHub Actions as the CI/CD platform
- Don’t argue about style, enforce pre-commit hook (black, flake8, eslint...)

- Project management tool: ZenHub
- Should be as close as possible to GH

https://docs.fritz.science/developer.html

Lesson Learned: team and community is 💚
- Extraordinary individuals with a broad range of expertise

- Respectful + supportive environment (that naturally extends to mutual admiration) allows the team to
go far (check out this article for the spirit)

- Critical but fair and open-minded review of ideas and code allows to iterate fast, converging on better
solutions

- Staying in sync: Slack + Daily 15-min stand-ups + weekly 1h meetings
- Constructive community feedback is essential for success

- Beta-testers!
- Enormously useful for finding/fixing bugs and implementing new features
- Need to be clear about the communication channels: a dedicated Slack channel for smaller issues +

GH issue templates for larger stuff
- Critically important: prioritization + clear big picture for the project

https://hacker-news.news/post/25757398

Lesson Learned: testing
- You are not testing your code enough

- No, you’re not!
- From unit testing to integration testing through API and frontend, every bit is

essential
- Is that docker image still building from scratch? Note the word “continuous” in CI
- Never underestimate the scale of a disaster that six innocently-looking lines of

code can bring
- Database migrations should be tested both ways - roll-backs are more common

than we’d wish
- Understand (and embrace!) flakiness

- Staging environment
- Helps catch a lot of bugs before they have a chance to reach production, e.g.

innocently-looking migrations that can take forever

Lesson Learned: production is really hard
- Even harder is to deliver updates/new features to prod
- Testing is your friend, but it won’t catch everything that

can happen
- Running a subset of the test suite on a read-only

replica of the prod db
- Weekly (at least) deployment to prod
- Resilient infrastructure for deployment

- Monitoring the performance of the different
components

- Query Insights on the GCP
- API endpoint response times, temporal evolution

Thank you!

