Readiness of Maidanak observatory to the observations of optical transients during the O4 run

Yusuf Tillayev Ulugh Beg Astronomical Institute (UBAI)

Outline

- Introduction
 - UBAI
 - Maidanak observatory
 - 4m telescope named after Ulugh Beg
- Maidanak site characteristics for optical astronomy
- New cameras
- New telescope and camera
- Conclusion

Uzbekistan

Ulugh Beg Astronomical Institute (UBAI)

UBAI is one of the oldest institutions of Uzbekistan

Ulugh Beg Astronomical Institute (UBAI)

- Scientific staff 51 of 140
- Main observational facility is Maidanak

Main fields of research

- Minor planets
- Galactic Astronomy
- Physical variable stars, exoplanets and close binary systems
- Extragalactic objects (AGN, GLS)
- Space geodynamics
- Astroclimate (site testing)
- Theoretical astrophysics of compact objects, GR and gravitation effects

Maidanak Observatory 66°56″E, 38°41″N 2700 m asl

 \mathbb{A}

GRANDMA

Maidanak observatory

 Participates in GRANDMA with two 60 cm telescopes – Nothern Zeiss-600 (NT) and Southern Zeiss-600 (ST)

Telescopes of MAO

Focal instrumentation	Programs	Partners							
1.5 meter AZT-22 telescope (D = 1500 мм, F = 11500 мм (+long focus is f/11.5))									
SI 600 Series 4096x4096 CCD (Seoul National university) FOV 18' x 18'	Near by galaxy Gravitational lenses Asteroids Blazars Seyfert galaxies GRB objects	Korea Russia Ukraine Japan Italy							
1 meter Zeiss-1000 telescone (D=1 0m f=13300 mm)									
Apogee Alta-U 9000 CCD 3056x3056	SAGE project - 70% of time UBAI - 30% available	NAOC							
Zeiss-600 0.6m telescope "North" (D = 600 мм, F = 7200 мм)									
FLI ML0580911 1024×1024	Asteroids Exoplanets	Japan							
Zeiss-600 0.6m telescope "South" (D = 600 мм, F = 7200 мм)									
FLI IMG ProLine 1024x1024 CCD	Blazars Variable stars	Italy							
Zeiss-600 0.6m telescope "East" (D = 600 мм, F = 7200 мм)									
AMT-1 0.5m telescope (D=51 cm, Corrected Ritchey–Chretien f/8)									
Apogee Alta-U16M CCD	Exoplanets (Under discuss)								

Observation schedule h*

January 2019

Duration of night h

12 hours

Telescope "AZT-22"

Lunar phases	((((()	\frown)				de la	E.
Date	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
1. GRB objects				2 h	2 h	2 h	1 h 30 m	2 h	2 h	2 h					
2. Nearby galaxies				3 h 30 m	3 h 30 m	3 h 30 m	2 h 30 m	2 h	2 h 30 m	2 h	2 h 30 m	2 h	3 h 30 m	3 h 30 m	3 h 30 m
3. Gravitational lenses				3 h 30 m	3 h 30 m	3 h 30 m	2 h	2 h 30 m	2 h	2 h 30 m	2 h	2 h 30 m	3 h 30 m	3 h 30 m	3 h 30 m
4. Asteroids							4 h 30 m								
5. Blazars				1 h 30 m	1 h 30 m	1 h 30 m		1 h		1 h		1 h	1 h 30 m	1 h 30 m	1 h 30 m
6. Seyfert galaxies + OC				1 h	1 h	1 h	1 h		1 h		1 h		1 h	1 h	1 h
7. Urgent observations				30m											

Lunar phases	E.	Sec.	A.	and		S.	5	5	5	3	3					
Date	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
1. GRB objects	1 h 30 m	1 h 30 m	2 h	2 h	2 h	2 h	2 h	2 h	2 h	2 h	2 h	1 h 30 m	2 h			
2. Nearby galaxies	2 h 30 m	2 h	3 h 30 m	3 h 30 m	3 h 30 m	3 h 30 m	3 h 30 m	3 h 30 m	3 h 30 m	3 h 30 m	3 h 30 m	2 h 30 m	3 h 30 m			
3. Gravitational lenses	2 h	2 h 30 m	3 h 30 m	3 h 30 m	3 h 30 m	3 h 30 m	3 h 30 m	3 h 30 m	3 h 30 m	3 h 30 m	3 h 30 m	2 h	2 h	2 h	2 h	3 h 30 m
4. Asteroids	4 h 30 m	4 h 30 m										4 h 30 m				
5. Blazars		1 h	1 h 30 m	1 h 30 m	1 h 30 m	1 h 30 m	1 h 30 m	1 h 30 m	1 h 30 m	1 h 30 m	1 h 30 m	1 h		1 h		1 h 30 m
6. Seyfert galaxies + OC	1 h		1 h	1 h	1 h	1 h	1 h	1 h	1 h	1 h	1 h		1 h		1 h	1 h

New set of Andor cameras

- Three Andor cameras purchased for ~400kEUR
- iKon-XL (XL-EA07-DS)
- iKon-L (DZ 936N-BEX2-DD)
- Apogee Aspen CG 230-1-G09-S58

4 m telescope initiative

• New telescope project

Atmospheric conditions at the Maidanak observatory

- Site testing (astroclimate)
- The parameters of the atmosphere above the observatory relevant to optical astronomy

New studies of astroclimate

- The project of 4-meter telescope acted as a new motivation to re-initialize site testing measurements
- The next slides show new data about atmospheric conditions of Maidanak observatory

Monthly fraction of clear nights

Ehgamberdiev et al, 2000 Astron.Astrophys.Suppl.Ser., v. 145. p.293.

Data of 1991-2017

The Annales Of The Geographical Society Of Uzbekistan, 2020, v57, nages 218-225

Differential image motion monitor (DIMM)

Seeing conditions at Mt. Maidanak

Ehgamberdiev et al, 2000 Astron.Astrophys.Suppl.Ser., v. 145. p.293.

Seeing data of 2018

Seeing – data of 2018

ang, arcseconds

Seeing-data of 2018

Monthe	1996-2003	2018	Difference	
wontins	(EFWHM, arcseconds)	(EFWHM, arcseconds)		
August	0.72	0.77	+0.05	
September	0.70	0.66	-0.04	
October	0.69	0.65	-0.03	
November	0.65	0.75	+0.10	
Total	0.71	0.70	-0.01	

Contribution of the surface layer

UBAI participation in **GRANDMA**

Since 2019 Yusuf Tillayev Otabek Burkhonov Tatyana Sadibekova Yodgor Rajabov (pre-PhD student)

Uzbekistan team telescopes

Responsible person for observations Yodgor Rajabov For observations we are going to use:

- 0.6 meter "North" telescope NT-60
- 0.6 meter "South" telescope ST-60
- Probably we will be able to use the 1.5 meter telescope (under discussion) if:
 - It is possible to interrupt the telescope program
 - The object is fainter

All of the telescopes have CCD and UBVRI filters.

UBAI ST-60 and NT-60 photometry

- Photometry contact person Otabek Burkhonov
- Photometry routine

 Real-time astrometry on the telescope MaxIm DL (UCAC 4 catalogue)
 custom aperture photometry via MaxIm DL
 full field source checking by SExtrator software
 Final photometry using custom STDPipe-based pipeline, run manually
 Alternative independent processing based on
 - Alternative independent processing based on IRAF by using our own scripts

New telescope

- GRB and GW optical counterparts
- Target of opportunity objects (ToO) become more and more important
- Since the 4-m telescope is a long term project, a small but powerful telescope required.

80-cm telescope

- In collaboration with GRANDMA
- With financial support of the ministry of Innovative development

Budget

	Estimated (keuros)	Proposition (keuros)
Mount+ wheel filter	400	ASA: 340
Camera	50	QHYCCD: 50
Dome	100	ASA: 50
Installation	40	ASA: 10 (+5 for outside Europe)
Maintenance	20/yr	

EQ800PF f2,26

Conclusion

- A project of the 4 m telescope has been initiated
- New measurements of the atmospheric parameters have been carried out
- New studies confirm high quality conditions for optical astronomy
- Installation of 80 cm telescope is in progress for GW, GRB counterparts observations

Thanks for your attention!

