Monte Carlo Event Generators

Klaus Werner

SUBATECH, University of Nantes - IN2P3/CNRS
- IMT Atlantique, Nantes, France

Contents

1 Introduction 6
1.1 Challenges 7
1.2 What means "Monte Carlo Method" 17
1.3 Monte Carlo Methods and the Ising Model 22
1.4 Ising Model and Markov chains 26
1.5 Parallel and sequential scattering 29
1.6 Parallel approach in pp 34
1.7 Factorization 37
2 Gribov Regge approach 39
2.1 Gribov-Regge approach (EPOS basis) and factor- ization 40
2.2 Beyond factorization 55
2.3 Pros and cons 58
2.4 AA collisions 60
2.5 Glauber and Gribov Regge 62
3 Gribov-Regge \& Partons (GRP) 75
3.1 A fast moving proton 77
3.2 pp scattering (linear domain) 83
3.3 Soft domain 87
3.4 Semihard Pomeron 92
4 Multiple Pomeron exchange in EPOS 101
4.1 Multiple scattering 102
4.2 Complete result 108
4.3 Configurations via Markov chains 113
4.4 Metropolis alorithm 117
5 Secondary interactions (overview) 122
5.1 Primary and secondary interactions 123
5.2 Secondary interactions: An example 127
5.3 Radial flow visible in particle distributions 142
5.4 Ridges \& flow harmonics 145
5.5 Flow harmonics, identified particles 154
6 (Pre)hadrons and secondary interactions 157
6.1 From partons to strings 159
6.2 Hadron production 174
6.3 Core-corona procedure 182
6.4 Some results sensitive to flow 189
6.5 Statistical particle production 197

1 Introduction

1.1 Challenges

Since 2 decades we know: Colliding heavy ions at relativistic energies
behave like an expanding fluid, with huge transverse flow (observables: pt spectra)
being in particular asymmetric: elliptical / triangular ... (observables: flow harmonics v2, v3 etc)

We see "statistical particle production"

(observables: particle yields or ratios)

A Andronic et al 2017 J. Phys.: Conf. Ser. 779012012
Very different compared to particle production from string decay

But similar features show up in small systems, at low energies, and as well for heavy flavor particles.

Yields/pions vs multiplicity, for $\mathrm{pp}, \mathrm{pPb}, \mathrm{PbPb}$
 (ALICE, in nature physics 2017)

Central PbPb understood as due to "statistical particle production"

But it seems that pp and pPb are at least partly also showing this behavior

The event generators ... clearly need to be improved

v2 vs multiplicity for $\mathrm{pp}, \mathrm{pPb}, \mathrm{PbPb}$

 (Eur. Phys. J. C 77 (2017) 428)

Large v2 values (flow) for all systems, but different N_ch depen-
dence

Small energy dependence
small N_ch dependence in pp

v2 vs m_T for AuAu at $7-62 \mathrm{GeV}$ (Phys.Rev.C 93 (2016) 1, 014907)

Similar behavior down to low energies (where no QGP is expected)

Actually flow / statistical decay issues are relevant even for min bias pp!

elementary pp models (particle production simply based on string decay)
do not produce enough Ω baryons even for min bias pp
so some "new input" is needed ... compatible with the "normal" pp behavior (jets etc)

So these "features" (flow, stat. hadronizaton,...), usually referred to as "QGP signals", expected in high energy heavy ion collisions,
\square show up in pp scattering, even min bias
\square show up in "low energy" collisions
\square concern even charmed hadrons

> | $\begin{array}{l}\text { In particular the "small systems" (pp, pA) are very in- } \\ \text { teresting... }\end{array}$ |
| :--- |

EPOS simu pp 7 TeV

Tiny

Very short lived (<2fm/c)

Very energetic

 here $350 \mathrm{GeV} / \mathrm{fm} 3$(nuclear matter: 0.16 GeV/fm3)

Very strongly
interacting
(fluid-like)

Energy density vs \mathbf{x}, y

We better understand all that in a quantitative fashion ... and not to forget high pt features happening at the same time! We have
\square these "mini-plasmas" producing low pt particles (soft domain)
\square and very high pt particles (from pQCD processes, hard domain)
=> we need general purpose Monte Carlo Event Generators which allow to incorporate and test these "features"

1.2 What means "Monte Carlo Method"

It should NOT be a black box producing "events" of particles
to be compared with
"real" events

Monte Carlo Method means

\square a tool to solve well defined mathematical problems
\square based on probability theory
(random variables and random numbers)

Example: Compute $I=\int_{0}^{1} f(x) d x$, which may be written as

$$
I=\int_{-\infty}^{\infty} w(x) f(x) d x, \text { with } w(x)=\left\{\begin{array}{cc}
1 & \text { for } x \in[0,1] \\
0 & \text { otherwise }
\end{array}\right.
$$

We may interprete w as probability distribution and I as expectation value (or mean value), so

$$
I=\langle f\rangle=\underbrace{\frac{1}{N} \sum_{i=1}^{N} f\left(x_{i}\right)}_{\text {MCestimate }}+O\left(\frac{1}{\sqrt{N}}\right)
$$

with uniform (in $[0,1]$) random numbers x_{i}

An error of order $1 / \sqrt{N}$ is huge, nobody computes an 1Dintegral like that, BUT for computing high-dimensional integrals, the formula

$$
\begin{aligned}
I & =\int w\left(x_{1}, \ldots, x_{n}\right) f\left(x_{1}, \ldots, x_{n}\right) d x_{1} \ldots d x_{n} \\
& =\underbrace{\frac{1}{N} \sum_{i=1}^{N} f\left(x_{1 i}, \ldots, x_{n i}\right)}+O\left(\frac{1}{\sqrt{N}}\right)
\end{aligned}
$$

is very useful.
Attention: MC sums over N "events", but these MC events are not necessarily "physical" events

So, Monte Carlo Method (as discussed in this talk) means more precisely
\square a tool to compute integrals $\int w(X) f(X) d X$ of a multidimensional variable X
\square as mean value $\langle f(X)\rangle$ with X distributed according to w (with w being a multi-dimensional distribution)

1.3 Monte Carlo Methods and the Ising Model

Actually generating n-dimensional X distributed according to some given w is usually very complicated for large n
\square a problem well known in statistical physics since a long time
\square with intelligent solutions

Extremely useful:

The Ising model of ferromagnetism

Box of $N \times N \times N$ atoms each one carrying a spin with possible values +1 and -1 (spin up, spin down)

\square Anyhow useful to know, one deals with phase trasitions very similar to the QGP phase transition
\square The MC methods used there are precisely what we need for heavy ion simulations
\square Good example of a multi-dimensional variable X, being here the N^{3} spin values, let us call it a "state"

The interesting quantity here is the average magnetization $\langle M\rangle$:

$$
\langle M\rangle=\sum w(X) M(X)
$$

with

$$
w(X)=\frac{1}{Z} e^{-\beta E(X)}
$$

with

$$
E=-\alpha \sum_{\text {neighbors } k, k^{\prime}} s_{k} s_{k^{\prime}}
$$

Journal of Computational Physics, 237, (2013) 224

Why difficult?

For N^{3} atoms, the number K of possible states is $2\left({ }^{3}\right)$ $N=100: K \approx 10^{300000}$

Solution: Monte-Carlo method :

$$
\langle M\rangle=\sum_{i=1}^{K} w\left(X_{i}\right) M\left(X_{i}\right) \quad \rightarrow \quad \frac{1}{J} \sum_{j=1}^{J} M\left(X_{j}\right)
$$

with "reasonable" J, and X_{j} distributed according to $w(X)$
... provided we know how to generate X according to $w(X)$

1.4 Ising Model and Markov chains

The problem is: generate a "state" X according to

$$
w(X)=\frac{1}{Z} e^{-\beta E(X)}
$$

corresponding to "themal equilibrium"

Simple "direct methods" (rejection sampling) do not work.

Idea: Let's copy nature which always finds eventually the "equilibrium distribution"
One considers a stochastic iterative process (Markov chain)

$$
w_{1} \rightarrow w_{2} \rightarrow \ldots
$$

A. Markov

with appropriate transitions $w_{t} \rightarrow w_{t+1}$ (Metropolis) such that w_{t} converges to $w_{\infty}=\frac{1}{Z} e^{-\beta E(X)}$ (it works, thanks to "fixed point theorems")

Why useful for us?

\square Markov chain + Metropolis is extremely powerful, it works for ANY distribution and not just Boltzmann distributions
\square It allows to treat "parallel interactions" in high energy scattering
\square We use it for microcanonical QGP decay (needed for small systems)

1.5 Parallel and sequential scattering

At "low" energy: (RHIC, few GeV)

Sequential collisions (cascade)

Crucial:
$\boldsymbol{\tau}_{\text {form }}<\boldsymbol{\tau}_{\text {interaction }}$

At "high" energy (LHC):
$\gamma>1000$
Longitudinal size

$$
d=\frac{2 R}{\gamma} \lesssim 0.01 \mathrm{fm} / \mathrm{c}
$$

All interactions simultaneously at $t=0$ (in parallel)

Particle production later

Low energy and high energy nuclear scattering are completely different, and completely different theoretical methods are needed
\square High energy approach = parallel interactions (as done in EPOS)
(and this is why we need these Markov chain techniques...)
\square At LHC energies, one can completely separate

- primary interactions (within $<0.01 \mathrm{fm} / \mathrm{c}$)
- and secondary interactions (hydro evolution etc)

When does the "parallel approach" break down ?

The condition is

$$
d=\frac{2 R}{\gamma}<c \tau_{\text {form }} \approx 1 \mathrm{fm}
$$

so for $R=7 \mathrm{fm}$, we get

$$
\gamma>\frac{2 R}{c \tau_{\text {form }}} \approx \frac{14}{1}
$$

so the "critical" energy per nucleon is

$$
E \approx 14 m_{p} c^{2} \approx 13 \mathrm{GeV}
$$

So lower RHIC energies are no more covered, a mixture between "parallel" and "sequential" approach is needed..

EPOS E-A-Scan

1.6 Parallel approach in pp

At LHC energy: Interaction: successive parton emissions
Large gamma factors, very long lived ptls

The complete process takes a very long time

Impossible to have several of these interactions in a row

So also in pp:
\square High energy approach = parallel interactions (as done in EPOS)

And we know that multiple scattering is important!

So double scattering in pp should look like this:

Here two parallel scatterings

No contradictions with respect to timescales

So it seems mandatory to use a parallel scattering scheme, for pp and AA, known since a long time ... but somewhat forgotten nowadays - why ?

1.7 Factorization

The most popular approach to treat HE pp, is based on "factorization", where the di-jet cross section is given as

$$
\begin{array}{r}
\sigma_{\mathrm{dijet}}=\sum_{k l} \int \frac{d^{3} p_{3} d^{3} p_{4}}{E_{3} E_{4}} \int d x_{1} d x_{2} f_{\mathrm{PDF}}^{k}\left(x_{1}, \mu_{\mathrm{F}}^{2}\right) f_{\mathrm{PDF}}^{l}\left(x_{2}, \mu_{\mathrm{F}}^{2}\right) \\
\frac{1}{32 s \pi^{2}} \sum|\mathcal{M}|^{2} \delta^{4}\left(p_{1}+p_{2}-p_{3}-p_{4}\right),
\end{array}
$$

Easy! No sophisticated MC needed.
But where are these complicated "parallel" scatterings?

The di-jet cross section is an inclusive cross section, i.e. one counts di-jets, not di-jet events, so a 2-di-jet event counts twice

Summing N-di-jet events, we have

$$
\sigma_{\mathrm{dijet}}=\sum_{N} N \sigma_{\mathrm{dijet}}^{(N)}
$$

whereas the total cross section (forgetting soff for the moment)

$$
\sigma_{\mathrm{tot}}=\sum_{N} \sigma_{\mathrm{dijet}}^{(N)}
$$

For inclusive cross section, enormous simplifications apply, but to understand this we have to first understand "parallel scattering", referred to as Gribov-Regge approach

2 Gribov Regge approach

2.1 Gribov-Regge approach (EPOS basis)

 and factorizationBasis: S-matrix theory (elementary quantum mechanics)
Reminder: The scattering operator \hat{S} is defined via

$$
|\psi(t=+\infty\rangle=\hat{S}| \psi(t=-\infty\rangle
$$

The S-matrix is the corresponding representation

$$
S_{i j}=\langle i| \hat{S}|j\rangle
$$

for basis states $|i\rangle$ and $|j\rangle$.
The T-matrix is defined as

$$
S_{f i}=\delta_{f i}+i(2 \pi)^{4} \delta\left(p_{f}-p_{i}\right) T_{f i}
$$

Fundamental properties of the S-matrix

Most important:

The scattering operator \hat{S} must be unitary:

$$
\hat{S}^{\dagger} \hat{S}=1
$$

(elementary quantum mechanics)

Hypotheses:

$\square T_{i i}$ is Lorentz invariant \rightarrow use s, t
$\square T_{i i}(s, t)$ is an analytic function of s, with s considered as a complex variable (Hermitean analyticity)
$\square T_{i i}(s, t)$ is real on some part of the real axis
Using the Schwarz reflection principle, $T_{i i}(s, t)$ first defined for $\operatorname{Ims} \geq 0$ can be continued in a unique fashion via $T_{i i}\left(s^{*}, t\right)=T_{i i}(s, t)^{*}$.

In the following we use $T=T_{i i}$ (elastic scattering).

Based on the observation of multiple scattering at HE, and the necessity of parallel scatterings, one postulates a particular form of the (elastic scattering) T-matrix

being composed of ${ }^{*)}$ multiple "Pomerons" as

$$
-i\left\{i T_{\text {Pom }} \times \ldots \times i T_{\text {Pom }}\right\}
$$

Compatible with pQCD, hidden in the "boxes" (Pomerons)

[^0]We will show later :

$$
2 s \sigma_{\mathrm{tot}}=(2 \pi)^{4} \delta\left(p_{f}-p_{i}\right) \sum_{f}\left|T_{f i}\right|^{2}=\frac{1}{\mathrm{i}} \operatorname{disc} T
$$

Interpretation: $\frac{1}{\mathrm{i}}$ disc T can be seen as a so-called "cut diagram", with modified Feynman rules, the "intermediate particles" are on mass shell.

Cut diagrams ($\left(\frac{1}{\mathrm{i}}\right.$ disc T) represent inelastic processes, uncut diagrams (T) elastic ones.

The notion of "cutting" is extremely useful in our approach, more details later.

Cut Pomeron = squared inelastic diagram:

Di-jet production in the center.
Each Pomeron produces one di-jet.

Why does factorization work?

Easy to see in the GR picture without energy conservation, using simple assumptions.

Consider multiple scattering amplitude

$$
i T=\prod i T_{\mathrm{P}}
$$

cross section:
sum over all cuts.

For each cut Pom:

$$
\frac{1}{i} \operatorname{disc} T_{\mathrm{P}}=2 \operatorname{Im} T_{\mathrm{P}} \equiv G
$$

For each uncut one (considering imaginary T_{P}):

$$
\begin{aligned}
& i T_{\mathrm{P}}+\left\{i T_{\mathrm{P}}\right\}^{*} \\
= & i\left(i \operatorname{Im} T_{\mathrm{P}}\right)+\left\{i\left(i \operatorname{Im} T_{\mathrm{P}}\right)\right\}^{*} \\
& =-2 \operatorname{Im} T_{\mathrm{P}} \equiv-G
\end{aligned}
$$

Di-jet cross section $\sigma_{\text {dijet }}$: Each cut Pomeron produces 1 di-jet

Contribution to the cross section for n
Pomerons (k refers to the cut Pomerons):

$$
\begin{aligned}
& \sigma_{\text {dijet }}^{(n)} \propto \sum_{k=0}^{n} k G^{k}(-G)^{n-k}\binom{n}{k} \\
& \quad \propto \sum_{k=0}^{n}(-1)^{n-k} k \times\binom{ n}{k}
\end{aligned}
$$

$\sum_{k=0}^{n}(-1)^{n-k} k \times\binom{ n}{k}:$
For $n=2$:

$$
+0 \times 1-1 \times 2+2 \times 1=0
$$

No contribution!

For $n=3$:

$$
-0 \times 1+1 \times 3-2 \times 3+3 \times 1=0
$$

No contribution either !

Actually, for any $n>1$:

$$
\sum_{k=0}^{n}(-1)^{n-k} k \times\binom{ n}{k}=0
$$

\square Almost all of the diagrams (i.e. $\mathrm{n}=2, \mathrm{n}=3, \ldots$.) do not contribute at all to the inclusive cross section
\square Enormous amount of cancellations (interference), only $\mathrm{n}=1$ contributes
\square AGK cancellations
(Abramovskii, Gribov and Kancheli cancellation (1973))

simple diagram even in case of multiple scattering

corresponds to factorization:

$$
\sigma_{\mathrm{incl}}=f \otimes \sigma_{\mathrm{elem}} \otimes f
$$

Remark:

\square We get perfect AGK cancellations in our simplified GR picture (no energy sharing)
\square In the full scheme, it works at large pt (in EPOS4)

2.2 Beyond factorization

Factorization simplifies things enormously!
Extremely useful when computing inclusive di-jet cross sections to study the underlying elementary QCD processes. The full event structure is not needed.

However, many observables require "full events", like everything related to given multiplicity selections.

Two strategies to deal with.

Strategy 1

Start out from factorization, sampling several di-jets from a single diagram,
and then attribute them to different subprocesses, redefine color structures (Pythia, Herwig,...)

Strategy 2
Start out from multi-Pomeron S-matrix, sample multiPomeron configurations using cutting rule techniques, employing Markov chains
and sample dijets for each Pomeron, one per Pomeron (EPOS)

2.3 Pros and cons

Strategy	Pros	Cons
Method 1 (PYTHIA)	Simple to realise	"Reconstruction" of multiple scattering without solid theoretical basis
	Best method for inclusive cross sections	
		probably not working for small pt
		No obvious extension towards AA
Method 2 (EPOS)	Solid theoretical basis concerning multiple parallel scattering	Realisation technically demanding
	Straightforward general ization for AA	Factorization not for free, big effort needed to realize the cancellations

Main problem for the EPOS method:

Since all diagrams are considered:

In case of inclusice cross sections, the corresponding diagrams must actually cancel, which requires high precision and good strategies

2.4 AA collisions

Almost trivial to extend the multiple Pomeron picture to AA.
The T-matrix is essentially a product of the pp expressions:

$$
-i \prod_{\text {pairs }}\left\{i T_{\text {Pom }} \times \ldots \times i T_{\text {Pom }}\right\}
$$

Again, the difficulty is the fact that realizing AGK cancellations requires big efforts

Crucial! Amounts to binary scaling

So again, the multiple Pomeron approach is difficult (high precision and sophisicated strategies needed to get cancellations)
but there is no real alternative, we need a "parallel approach"
but there seems to be a simple way, called Glauber model ...

2.5 Glauber and Gribov Regge

Glauber approach (essentially geometry) Nucleus-nucleus collision A + B :
\square Sequence of independent binary nucleon-nucleon collisions
\square Nucleons travel on straight-line trajectories
\square The inelastic nucleon-nucleon cross-section $\sigma_{N N}$ is independent of the number od NN collisions

Monte Carlo version: Two nucleons collide if their transverse distance is less than $\sqrt{\sigma_{N N} / \pi}$.

Analytical formulas for A + B scattering:
$\square \operatorname{Be} \rho_{A}$ and ρ_{B} the (normalized nuclear densities), and
$\square b=\left(b_{x}, b_{y}\right)$ the impact parameter

Define integral over nuclear density for each nucleus:

$$
T_{A / B}\left(b^{\prime}\right)=\int \rho_{A / B}\left(b^{\prime}, z\right) d z
$$ and the "thickness function"

$$
T_{A B}(b)=\int T_{A}\left(b^{\prime}\right) T_{B}\left(b^{\prime}-b\right) d^{2} b^{\prime}
$$

Probability of interaction

(for ρ_{A} and ρ_{B} normalized to 1)

$$
P=T_{A B}(b) \sigma_{N N}
$$

Having $A B$ possible pairs: probability of n interactions :

$$
P_{n}=\binom{A B}{n} P^{n}(1-P)^{A B-n}
$$

Probability of at least one interaction (given b):

$$
\sum_{n=1}^{A B} P_{n}=1-P_{0}=1-(1-P)^{A B}
$$

And correspondingly the $A B$ cross section :

$$
\sigma^{A B}=\int\left\{1-(1-P)^{A B}\right\} d^{2} b
$$

(called optical limit).

Probability of an interaction explicitely:

$$
\frac{d \sigma^{A B}}{d^{2} b}=1-\left\{\left(1-T_{A B}(b) \sigma_{N N}\right)^{A B}\right\} .
$$

Glauber MC formula (with $\sigma_{N N}=\int f(b) d^{2} b$):
$\frac{d \sigma^{A B}}{d^{2} b}=1-\left\{\int \prod_{i=1}^{A} d^{2} b_{i}^{A} T_{A}\left(b_{i}^{A}\right) \prod_{j=1}^{B} d^{2} b_{j}^{B} T_{B}\left(b_{j}^{B}\right) \prod_{k=1}^{A B}(1-f)\right\}$.
In the MC version, one extracts $N_{\text {coll, }} N_{\text {particip, }}$ and one usually employs a "wounded nucleon approach"

Does this make sense?

Theoretical justification?

... based on relativistic quantum mechanical scattering theory, compatible with QCD
=> Gribov-Regge approach

Gribov Regge for pp, no energy sharing

In the GR framework, we obtain (neglecting energy sharing)

$$
\begin{aligned}
& \frac{d \sigma^{p p}}{d^{2} b}=\sum_{m>0} \sum_{l} \frac{G(b)^{m}}{m!} \frac{\{-G(b)\}^{l}}{l!} \\
& =\sum_{m>0} \frac{G(b)^{m}}{m!} e^{-G(b)}=\sum_{m} \frac{G(b)^{m}}{m!} e^{-G(b)}-e^{-G(b)}
\end{aligned}
$$

So

$$
\frac{d \sigma^{p p}}{d^{2} b}=1-e^{-G(b)}=f(b)
$$

with $f(b)$ being the probability of an interaction at given b.

Gribov Regge for $A+B$ scattering

In the GR framework, defining

$$
\int d T_{A B}:=\int \prod_{i=1}^{A} d^{2} b_{i}^{A} T_{A}\left(b_{i}^{A}\right) \prod_{j=1}^{B} d^{2} b_{j}^{B} T_{B}\left(b_{j}^{B}\right),
$$

we obtain (neglecting energy sharing):

$$
\begin{aligned}
& \frac{d \sigma^{A B}}{d^{2} b}=\int d T_{A B} \underbrace{\sum_{m_{1}} \ldots \sum_{m_{A B}}}_{\sum m_{i} \neq 0} \prod_{k=1}^{A B} \frac{G\left(b_{k}\right)^{m_{k}}}{m_{k}!} e^{-G\left(b_{k}\right)} \\
& =\int d T_{A B} \sum_{m_{1}} \ldots \sum_{m_{A B}} \prod_{k=1}^{A B} \frac{G\left(b_{k}\right)^{m_{k}}}{m_{k}!} e^{-G\left(b_{k}\right)}-\prod_{k=1}^{A B} e^{-G\left(b_{k}\right)} \\
& =\int d T_{A B} \prod_{k=1}^{A B} \sum_{m_{k}} \frac{G\left(b_{k}\right)^{m_{k}}}{m_{k}!} e^{-G\left(b_{k}\right)}-\prod_{k=1}^{A B} e^{-G\left(b_{k}\right)} \\
& \exp \left(G\left(b_{k}\right)\right.
\end{aligned}
$$

So

$$
\frac{\sigma^{A B}}{d^{2} b}=1-\int d T_{A B}\left\{\prod_{k=1}^{A B} e^{-G\left(b_{k}\right)}\right\}
$$

With $f=1-e^{-G(b)}$ being the probability of an interaction in pp (with $\left.\sigma^{p p}=\int f(b) d^{2} b\right)$,
we get the Gribov-Regge result

$$
\frac{\sigma^{A B}}{d^{2} b}=1-\left\{\int d T_{A B} \prod_{k=1}^{A B}(1-f)\right\}
$$

which corresponds to "Glauber Monte Carlo".

So we find:

In the GR framework (based on quantum mechanics!) we obtain cross section results
\square corresponding to a simple geometrical picture
\square as realized in the
Glauber approch

So we find:

In the GR framework (based on quantum mechanics!) we obtain cross section results
\square corresponding to a simple geometrical picture
\square as realized in the
Glauber approch
... this concern total cross sections!! and not at all particle production cross sections
\square In Glauber

- one has (usually) a hard component ($\sim N_{\text {coll }}$)
- and a soft one ($\sim N_{\text {part, }}$ wounded nucleons)
\square In GR (EPOS)
- remnants contribute only at large rapidities,
- otherwise everything is coming from "cut Pomerons" associated to NN scatterings, and one has to account for "shadowing/saturation"

3 Gribov-Regge \& Partons (GRP)

Back to the GR approach employed in EPOS to account for multiple parallel interactions, via the (elastic scattering) T-matrix

$$
-i\left\{i T_{\text {Pom }} \times \ldots \times i T_{\text {Pom }}\right\}
$$

The QCD part is hidden in the "boxes", so what precisely should be put there?

3.1 A fast moving proton

... which can be probed by a virtual photon (emitted from an electron)

What precisely the photon "sees" depends on two kinematic variables,
the virtuality

$$
Q^{2}=-k^{2}
$$

and the Bjorken variable

$$
x=\frac{Q^{2}}{2 p k}
$$

which probes partons with momentum fraction x. It determines also the approximation scheme to compute the parton cloud.

DGLAP: summing to all orders of $\alpha_{s} \ln Q^{2}$

BFKL: sum-
ming to all
orders of $\alpha_{s} \ln \frac{1}{x}$
DGLAP
$\ln \mathrm{Q}^{2}$

Linear
 equations

BFKL (Balitsky, Fadin, Kuraev, and Lipatov):

$$
\begin{aligned}
& \frac{\partial \varphi(x, \boldsymbol{q})}{\partial \ln \frac{1}{x}} \frac{\alpha_{s} N_{c}}{\pi^{2}} \int d^{2} k K(\boldsymbol{q}, \boldsymbol{k}) \varphi(x, \boldsymbol{k}) \\
& \text { with } x g\left(x, Q^{2}\right)=\int_{0}^{Q^{2}} \frac{d^{2} k}{k^{2}} \varphi(x, \boldsymbol{k})
\end{aligned}
$$

DGLAP (Dokshitzer, Gribov, Lipatov, Altarelli and Parisi):

$$
\frac{\partial g\left(x, Q^{2}\right)}{\partial \ln q^{2}}=\int_{x}^{1} \frac{d z}{z} \frac{\alpha_{s}}{2 \pi} P(z) g\left(\frac{x}{z}, Q^{2}\right)
$$

Very large $\ln 1 / x$: Saturation domain

Non-linear effects

Gluon from one cascade is absorbed by another one

3.2 pp scattering (linear domain)

Same evolution as in proton-photon (causality)

Different way of plotting the same reaction $0.5 \log \left(\mathrm{x}^{+} / \mathrm{x}\right)$

inelastic scattering diagram

Corresponding cut diagram

referred to as "cut parton ladder"
$=$ amplitude squared of the inelastic diagram

Corresponding elastic diagram

referred to as "(uncut) parton ladder"

3.3 Soft domain

Very small $\ln Q^{2}$: No perturbative treatment!
But one may use again the hypothesis of Lorentz invariance and analyticity of the T-matrix. One starts with a partial wave expansion of the T-matrix (Watson-Sommerfeld transform) :

$$
T(t, s)=\sum_{j=0}^{\infty}(2 j+1) \mathcal{T}(j, s) P_{j}(z)
$$

with $t \propto z-1, z=\cos \vartheta, P_{j}$: Legendre polynomials.

With $\alpha(s)$ being the rightmost pole of $\mathcal{T}(j, s)$ one gets for $t \rightarrow \infty$:

$$
T(t, s) \propto t^{\alpha(s)}
$$

$\operatorname{Im} \mathrm{j}$

- $\alpha(\mathrm{s})$
- Re_{j}
and assuming crossing symmetry one gets the famous asymptotic result

$$
T(s, t) \propto s^{\alpha(t)}
$$

with the "Regge pole"

$$
\alpha(t)=\alpha(0)+\alpha^{\prime} t
$$

T-matrix parametrized

Formulas:

$$
\begin{aligned}
T_{\mathrm{soft}}(\hat{s}, t)= & 8 \pi s_{0} i \gamma_{\text {Pom-parton }}^{2}\left(\frac{\hat{s}}{s_{0}}\right)^{\alpha_{\text {soft }}(0)} \\
& \times \exp \left(\left\{2 R_{\text {Pom-parton }}^{2}+\alpha_{\text {soft }}^{\prime} \ln \frac{\hat{s}}{s_{0}}\right\} t\right)
\end{aligned}
$$

Cut soft Pomeron (Schwarz reflection principle):

$$
\begin{aligned}
& \frac{1}{i} \operatorname{disc} T_{\mathrm{soft}}(\hat{s}, t) \\
& \quad=\frac{1}{i}\left[T_{\mathrm{soft}}(\hat{s}+i 0, t)-T_{\mathrm{soft}}(\hat{s}-i 0, t)\right] \\
& \quad=2 \operatorname{Im} T_{\mathrm{soft}}(\hat{s}, t)
\end{aligned}
$$

Interaction cross section,

$$
\begin{aligned}
\sigma_{\mathrm{soft}}(\hat{s}) & =\frac{1}{2 \hat{s}} 2 \operatorname{Im} T_{\mathrm{soft}}(\hat{s}, 0) \\
& =8 \pi \gamma_{\text {part }}^{2}\left(\frac{\hat{s}}{s_{0}}\right)^{\alpha_{\text {soft }}(0)-1}
\end{aligned}
$$

using the optical theorem (with $t=0$),
which grows faster than data

3.4 Semihard Pomeron

Space-time picture of semihard Pomeron

Hard cross section and amplitude

$$
\begin{aligned}
\sigma_{\text {hard }}^{j k}\left(\hat{s}, Q_{0}^{2}\right) & =\frac{1}{2 \hat{s}} 2 \operatorname{Im} T_{\text {hard }}^{j k}(\hat{s}, t=0) \\
= & K \sum^{m} \int d x_{B}^{+} d x_{B}^{-} d p_{\perp}^{2} \frac{d \sigma_{\text {oorn }}^{m l}}{d p_{\perp}^{2}}\left(x_{B}^{+} x_{B}^{-} \hat{s}, p_{\perp}^{2}\right) \\
\times & E_{\mathrm{QCD}}^{j m l}\left(x_{B}^{+}, Q_{0}^{2}, M_{F}^{2}\right) E_{\mathrm{QCD}}^{k l}\left(x_{B}^{-}, Q_{0}^{2}, M_{F}^{2}\right) \theta\left(M_{F}^{2}-Q_{0}^{2}\right),
\end{aligned}
$$

One knows (Lipativ, 86): amplitude is imaginary, and nearly independent on $t=>\left(\right.$ with $\left.R_{\text {hard }}^{2} \simeq 0\right)$:

$$
T_{\text {hard }}^{j k}(\hat{s}, t)=i \hat{s} \sigma_{\text {hard }}^{j k}\left(\hat{s}, Q_{0}^{2}\right) \exp \left(R_{\text {hard }}^{2} t\right)
$$

Semihard amplitude :

$i T_{\text {semihard }}(\hat{s}, t)=\sum_{j k} \int_{0}^{1} \frac{d z^{+}}{z^{+}} \frac{d z^{-}}{z^{-}}$

$$
\times \operatorname{Im} T_{\text {soft }}^{j}\left(\frac{s_{0}}{z^{+}}, t\right) \operatorname{Im} T_{\text {soft }}^{k}\left(\frac{s_{0}}{z^{-}}, t\right) i T_{\text {hard }}^{j k}\left(z^{+} z^{-} \hat{s}, t\right)
$$

(valid for $s \rightarrow \infty$ and small parton virtualities except for the ones in the ladder)

Based on these diagrams, one computes T^{\prime} 's needed for generating multi-Pomeron configurations,
but also computes di-jet cross sections in "factorization mode" as

$$
\begin{aligned}
E_{3} E_{4} \frac{d^{6} \sigma_{\mathrm{dijet}}}{d^{3} p_{3} d^{3} p_{4}}= & \sum_{k l} \iint d x_{1} d x_{2} f_{\mathrm{PDF}}^{k}\left(x_{1}, \mu_{\mathrm{F}}^{2}\right) f_{\mathrm{PDF}}^{l}\left(x_{2}, \mu_{\mathrm{F}}^{2}\right) \\
& \frac{1}{32 s \pi^{2}} \sum\left|\mathcal{M}^{k l \rightarrow m n}\right|^{2} \delta^{4}\left(p_{1}+p_{2}-p_{3}-p_{4}\right)
\end{aligned}
$$

$f_{\text {PDF }}$ are the EPOS PDFs, convolution of soft \& DGLAP part

Electron-proton scattering F_{2} vs x

To check our $f_{\text {PDF }}$, we can compute
$F_{2}=\sum_{k} e_{k}^{2} x f_{\text {PDF }}^{k}\left(x, Q^{2}\right)$
with

$$
x=x_{B}=\frac{Q^{2}}{2 p q}
$$

in the EPOS framework, and compare with data from ZEUS, H1
F_{2} with EPOS PDF (left) and CTEQ14(5f) PDF (right)

 Jet cross section vs pt for pp at 13 TeV

Nantes Summer School, June 27 - July 08, 2022, Klaus Werner, Subatech, Nantes 100 Jet cross section vs pt for pp at 13 TeV

4 Multiple Pomeron exchange in EPOS

The full approach, going beyond factorization

4.1 Multiple scattering

Be T the elastic (pp,pA,AA) scattering T-matrix =>

$$
2 s \sigma_{\mathrm{tot}}=\frac{1}{\mathrm{i}} \operatorname{disc} T
$$

Basic assumption : Multiple "Pomerons"

$$
i T=\sum_{k} \frac{1}{k!}\left\{i T_{\text {Pom }} \times \ldots \times i T_{\text {Pom }}\right\}
$$

Example: 2 "Pomerons"

Evaluate

$$
\frac{1}{\mathrm{i}} \operatorname{disc}\left\{i T_{\text {Pom }} \times \ldots \times i T_{\text {Pom }}\right\}
$$

using "cutting rules" :

A "cut" multi-Pomeron diagram amounts to the sum of all possible cuts

Nantes Summer School, June 27 - July 08, 2022, Klaus Werner, Subatech, Nantes 105

Example of two Pomerons

Using "Pomeron = parton ladder + soft", we have (first diagram)

Using a simplified notation for "cut" and "uncut" Pomeron

one gets ...

4.2 Complete result

For pp, pA, AA:

$$
\sigma^{\text {tot }}=\sum_{\text {cut } P} \int \sum_{\text {uncut } P} \int
$$

partial cross section σ_{K}
Dotted lines: Cut Pomerons (parton ladders)

$$
\begin{aligned}
& \sigma^{\text {tot }}= \int d^{2} b \int \prod_{i=1}^{A} d^{2} b_{i}^{A} d z_{i}^{A} \rho_{A}\left(\sqrt{\left(b_{i}^{A}\right)^{2}+\left(z_{i}^{A}\right)^{2}}\right) \\
& \prod_{j=1}^{B} d^{2} b_{j}^{B} d z_{j}^{B} \rho_{B}\left(\sqrt{\left(b_{j}^{B}\right)^{2}+\left(z_{j}^{B}\right)^{2}}\right) \\
& \sum_{m_{1} l_{1}} \ldots \sum_{m_{A B} l_{A B}}\left(1-\delta_{0 \Sigma m_{k}}\right) \int \prod_{k=1}^{A B}\left(\prod_{\mu=1}^{m_{k}} d x_{k, \mu}^{+} d x_{k, \mu}^{-} \prod_{\lambda=1}^{l_{k}} d \tilde{x}_{k, \lambda}^{+} d \tilde{x}_{k, \lambda}^{-}\right)\{ \\
& \prod_{k=1}^{A B}\left(\frac{1}{m_{k}!} \frac{1}{l_{k}!} \prod_{\mu=1}^{m_{k}} G\left(x_{k, \mu^{\prime}}^{+} x_{k, \mu^{\prime}}^{-} s,\left|\vec{b}+\vec{b}_{\pi(k)}^{A}-\vec{b}_{\tau(k)}^{B}\right|\right)\right. \\
&\left.\prod_{\lambda=1}^{l_{k}}-G\left(\tilde{x}_{k, \lambda}^{+}, \tilde{x}_{k, \lambda}^{-}, s,\left|\vec{b}+\vec{b}_{\pi(k)}^{A}-\vec{b}_{\tau(k)}^{B}\right|\right)\right) \\
&\left.\prod_{i=1}^{A}\left(1-\sum_{\pi(k)=i} x_{k, \mu,}^{+}-\sum_{\pi(k)=i} \tilde{x}_{k, \lambda}^{+}\right)^{\alpha} \prod_{j=1}^{B}\left(1-\sum_{\tau(k)=j} x_{k, \mu}^{-}-\sum_{\tau(k)=j} \tilde{x}_{k, \lambda}^{-}\right)^{\alpha}\right\}
\end{aligned}
$$

\square Complicated due to strict energy sharing

=> 10,000,000-dimensional intergrals, not separable
\square but doable

- Parameterizations for $G\left(x^{+}, x^{-}, s, b\right)$
- Analytical integrations
- Employing Markov chain techniques

Step 1:
\square We compute partial cross sections σ_{K} for particular configurations K via analytical integration
$\square K$ is a multi-dimensional variable for example for double scattering in pp with two Pomerons involved: $K=\left\{x_{1}^{+}, x_{1}^{-}, \vec{p}_{t 1}, x_{2}^{+}, x_{2}^{-}, \vec{p}_{t 2}\right\}$
\square Configurations K in AA scattering may be quite complex

Step 2:
The partial cross sections σ_{K} can (properly normalized) be
\square interpreted as probability distributions,
\square enabling us to use Monte Carlo techniques to generate configurations K using Markov chain techniques

4.3 Configurations via Markov chains

Consider a sequence of multidimensional random numbers (or better random configurations)

$$
x_{1}, x_{2}, x_{3}, \ldots
$$

with f_{t} being the law for x_{t}.
A homogeneous Markov chain is defined as

$$
f_{t}(x)=\sum_{x^{\prime}} f_{t-1}\left(x^{\prime}\right) p\left(x^{\prime} \rightarrow x\right) .
$$

with $p\left(x^{\prime} \rightarrow x\right)$ being the transition probability (or matrix). Normalization : $\sum_{x} p\left(x^{\prime} \rightarrow x\right)=1$.

Let f be the law for x_{t}. The law for x_{t+1} is

$$
\sum_{a} f(a) p(a \rightarrow b)
$$

One defines an operator T (comme Translation)

$$
T f(b)=\sum_{a} f(a) p(a \rightarrow b) .
$$

So $T f$ is the law for x_{t+1} when f is the law for x_{t}.

A law is called stationary if $T f=f$.
Theorem: If a stationary law $T f=f$ exists, then $T^{k} f_{1}$ converges towards f (which is unique) for any f_{1}.

So to generate random configurations according to some (given) law f,
\square one constructs a T such that $T f=f$
\square and then considers $f_{1} \rightarrow T f_{1} \rightarrow T^{2} f_{1} \ldots$
\square and constructs the corresponding random configurations

One needs, for a given law f, to find a transition matrix p such that $T f=f$

Sufficient condition (detailed balance):

$$
f(a) p(a \rightarrow b)=f(b) p(b \rightarrow a),
$$

$$
\text { Proof : } \quad \begin{aligned}
T f(b) & =\sum_{a} f(a) p(a \rightarrow b) \\
& =\sum_{a} f(b) p(b \rightarrow a) \\
& =f(b) \sum_{a} p(b \rightarrow a) \\
& =f(b)
\end{aligned}
$$

4.4 Metropolis alorithm

Definitions:

$$
\begin{aligned}
p_{a b} & =p(a \rightarrow b), \\
f_{a} & =f(a) .
\end{aligned}
$$

Take

$$
p_{a b}=w_{a b} u_{a b} . \quad(a \neq b) .
$$

with

$$
w_{a b}: \text { proposal matrix }\left(\sum_{b} w_{a b}=1\right)
$$

$u_{a b}$: acceptance matrix $\left(u_{a b} \leq 1\right)$

This is NOT the simple acceptance-rejection method!!

Detailed balance:

$$
f_{a} p_{a b}=f_{b} p_{b a}
$$

amounts to

$$
f_{a} w_{a b} u_{a b}=f_{b} w_{b a} u_{b a},
$$

Or

$$
\frac{u_{a b}}{u_{b a}}=\frac{f_{b}}{f_{a}} \frac{w_{b a}}{w_{a b}}
$$

The expression

$$
\frac{u_{a b}}{u_{b a}}=\frac{f_{b}}{f_{a}} \frac{w_{b a}}{w_{a b}}
$$

is solved by

$$
u_{a b}=F\left(\frac{f_{b}}{f_{a}} \frac{w_{b a}}{w_{a b}}\right)
$$

with a function F with

$$
\frac{F(z)}{F\left(\frac{1}{z}\right)}=z .
$$

Proof : With $z \equiv \frac{f_{b}}{f_{a}} \frac{w_{b a}}{w_{a b}}$ one finds : $\frac{u_{a b}}{u_{b a}}=\frac{F(z)}{F\left(\frac{1}{z}\right)}=z=\frac{f_{b}}{f_{a}} \frac{w_{b a}}{w_{a b}}$.

The F according to Metropolis is

$$
F(z)=\min (z, 1) .
$$

One finds indeed

$$
\frac{F(z)}{F\left(\frac{1}{z}\right)}=\frac{\min (z, 1)}{\min \left(\frac{1}{z}, 1\right)}=\left\{\begin{array}{l}
z / 1 \\
\text { pour } z \leq 1 \\
1 / \frac{1}{z} \text { pour } z>1
\end{array}\right\}=z .
$$

So one proposes for each iteration a new configuation b according to some $w_{a b}$, and accepts it with probability

$$
u_{a b}=\min \left(\frac{f_{b}}{f_{a}} \frac{w_{b a}}{w_{a b}}, 1\right) .
$$

Configuration lattice, define $w_{a b}$ such that b changes w.r.t. a only on one lattice site (like Ising model Metropolis) interaction

Long iterations, but allows to generate very complex configurations according to very complex laws.

5 Secondary interactions (overview)

5.1 Primary and secondary interactions

So far we discussed primary interactions (the red point)

Milne coordiantes are used to describe evolution

Proper time (hyperbolas)

$$
\tau=\sqrt{t^{2}-z^{2}}
$$

Space-time rapidity (red lines)

$$
\eta_{s}=\frac{1}{2} \ln \frac{t+z}{t-z}
$$

(not pseudorapidity)

Primary interactions determine matter distribution in η_{s}
and in essentially any scenario η_{s} correspnds to
 the average rapidity (of volume cells)

$$
<y>\approx \eta_{s}
$$

so primary interactions determine "essentially" the rapidity distrbution

$$
\text { with } y=\frac{1}{2} \ln \frac{E+P_{z}}{E-P_{z}}
$$

Basic structure of EPOS (for modelling pp, pA, AA)

\square Primary interactions
Multiple scattering, instantaneously, in parallel (Gribov-Regge \& Partons, GRP)
\square Secondary interactions formation of "matter" which expands collectively, like a fluid, decays statistically
\square Primary interactions affect very strongly the evolution!

5.2 Secondary interactions: An example

In this section:
An example of a EPOS simulation
of expanding matter in pp scattering
with initial conditions from GRP

In the following sections: consequences

5.3 Radial flow visible in particle distributions

Particle spectra affected by radial flow

pPb at $5 \mathrm{TeV} \quad \mathrm{CMS}$, arXiv:1307.3442

Strong variation of shape with multiplicity
for kaon and even more for proton pt spectra
(flow like)

Λ / K_{s} versus $\mathbf{p T}$ (high compared to low multiplicity) in pPb (left) similar to PbPb (right)

ALICE (2013) arXiv:1307.6796

ALICE (2013) arXiv:1307.5530
Phys. Rev. Lett. 111, 222301 (2013)
In AA: partially due to flow

5.4 Ridges \& flow harmonics

Anisotropic radial flow

 visible in dihadron-correlations$$
R=\frac{1}{N_{\text {trigg }}} \frac{d n}{d \Delta \phi \Delta \eta}
$$

Anisotropic flow due to initial azimuthal anisotropies

Initial "elliptical" matter distribution:

Preferred expansion
along $\phi=0$
and $\phi=\pi$
η_{s}-invariance
same form at any η_{s}
$\eta_{s}=\frac{1}{2} \ln \frac{t+z}{t-z}$

Particle

 distribution:Preferred directions $\phi=0$ and $\phi=\pi$

Dihadrons: preferred $\Delta \phi=0$ and $\Delta \phi=\pi($ even for big $\Delta \eta)$

Initial "triangular" matter distribution:

Preferred
expansion \leftarrow

Particle distribution:
Preferred directions
$\phi=0, \phi=\frac{2}{3} \pi$,
and $\phi=\frac{4}{3} \pi$

Dihadrons:
preferred $\Delta \phi=0$, and $\Delta \phi=\frac{2}{3} \pi$, and $\Delta \phi=\frac{4}{3} \pi$
(even for large $\Delta \eta$)

In general, superposition of several eccentricities ε_{n},

$$
\varepsilon_{n} e^{i n \psi_{n}^{P P}}=-\frac{\int d x d y r^{2} e^{i n \phi} e(x, y)}{\int d x d y r^{2} e(x, y)}
$$

Particle distribution characterized by harmonic flow coefficients

$$
v_{n} e^{i n \psi_{n}^{E P}}=\int d \phi e^{i n \phi} f(\phi)
$$

At $\phi=0$:
The ridge
(extended in η)

Awayside peak may originate from jets, not the ridge (for large $\Delta \eta)$

Here, v_{2} and v_{3} non-zero

$$
\propto 1+2 v_{2} \cos (2 \phi)+2 v_{3} \cos (3 \phi)
$$

CMS: Ridges (in dihadron correlation functions) also seen in pp (left) and pPb (right)
 JHEP 1009:091,2010

Ridges also realized in simulations in pPb (and even pp)

Central - peripheral (to remove jets) Phys. Lett. B 726 (2013) 164-177

5.5 Flow harmonics, identified particles

Flow shifts particles to higher p_{t}

Effect increases with mass

Also true for v_{2}
 vs p_{t}

ALICE: $\mathbf{v} 2$ versus $\mathbf{p T}$: mass splitting (π, K, p) in pPb (left) similar to PbPb (right)

Typical flow result!

So : "Flow-like phenomena" are also seen in pp and pA , therefore:

Heavy ion approach
 = primary (multiple) scattering + subsequent fluid evolution

becomes interesting for pp and pA

6 (Pre)hadrons and secondary interactions

Primary interactions (red point) amout to multiple Pomeron exchanges, done in momentum space

Each cut Pomeron corre-
 sponds to a parton ladder

We need it's space-time $\left(\eta_{s}-\tau\right)$ evolution to construct an initial condition for a collective expansion

6.1 From partons to strings

Electron-positron annihilation

Color field between two color charges => relativistic string

B. Andersson, G. Gustafson, G. Ingelman, and T. Sjostrand, Phys. Rep. 97 (83) 31 X. Artru, Phys. Rep. 97 (83) 147

High pt gluon emission in $\mathrm{e}^{+} \mathrm{e}^{-}$

Kinky relativistic string

Cut Pomerons

(cut parton ladders)

Two kinky relativistic strings (at least)

Theoretical framework: Classical string theory Nambu, Scherk, Rebbi ... 1969-1975
reviewed in PR 232, pp 87-299, 1993, PR 350, pp 93-289, 2001

String:

two-dimensional surface

$$
x(\sigma, \tau)
$$

in Minkowski space

Action $S=\int L d \tau d \sigma$

The Lagrangian is obtained by demanding gauge invariance of the action => Nambu-Goto Lagrangian:

$$
L=-\kappa \sqrt{|\operatorname{det} g|}
$$

with κ being the string tension, and with the metric

$$
g_{i j}=\frac{\partial x^{\mu}}{\partial \xi^{i}} \frac{\partial x_{\mu}}{\partial \xi^{j}}
$$

(using $\left.\xi_{1}=\sigma, \xi_{2}=\tau\right)$.

Gauge invariance:

$$
g_{i j}=\frac{\partial x^{\mu}}{\partial \xi^{i}} \frac{\partial x_{\mu}}{\partial \xi^{j}}=\frac{\partial \xi^{\prime \prime \prime}}{\partial \xi^{i}} \frac{\partial x^{\mu}}{\partial \xi^{\prime \prime m}} \frac{\partial x_{\mu}}{\partial \xi^{\prime \prime}} \frac{\partial \xi^{\prime n}}{\partial \xi^{j}}
$$

so (with M being Jacobien of $\xi^{\prime}(\xi)$):

$$
g_{i j}=M_{m i} g_{m n}^{\prime} M_{n j} \rightarrow g=M^{T} g^{\prime} M
$$

So which gives

$$
\sqrt{|\operatorname{det} g|}=\sqrt{\left|\operatorname{det} g^{\prime}\right| \mid} \operatorname{det} M \mid
$$

Using $\sqrt{|\operatorname{det} g|}=\sqrt{\left|\operatorname{det} g^{\prime}\right|}|\operatorname{det} M|$ and in addition

$$
d^{2} \xi^{\prime}=|\operatorname{det} M| d^{2} \xi
$$

we get
$\sqrt{|\operatorname{det} g|} d^{2} \xi=\sqrt{\left|\operatorname{det} g^{\prime}\right|} d^{2} \xi^{\prime}$
= gauge invariance!!

With "dot" and "prime" referring to the partial derivatives with respect to σ and τ :

$$
g=\left(\begin{array}{cc}
x^{\prime} x^{\prime} & x^{\prime} \dot{x} \\
\dot{x} x^{\prime} & \dot{x} \dot{x}
\end{array}\right)
$$

we get

$$
L=-\kappa \sqrt{|\operatorname{det} g|}=-\kappa \sqrt{\left(x^{\prime} \dot{x}\right)^{2}-x^{\prime 2} \dot{x}^{2}}
$$

Euler-Lagrange equations of motion:

$$
\frac{\partial}{\partial \tau} \frac{\partial L}{\partial \dot{x}_{\mu}}+\frac{\partial}{\partial \sigma} \frac{\partial L}{\partial x_{\mu}^{\prime}}=0 .
$$

We use the gauge fixing

$$
x^{\prime 2}+\dot{x}^{2}=0 \text { and } x^{\prime} \dot{x}=0,
$$

which provides a very simple equation of motion, namely a wave equation,

$$
\frac{\partial^{2} x_{\mu}}{\partial \tau^{2}}-\frac{\partial^{2} x_{\mu}}{\partial \sigma^{2}}=0
$$

with the boundary conditions:

$$
\partial x_{\mu} / \partial \sigma=0, \sigma=0, \pi .
$$

Solution

$$
x^{\mu}(\sigma, \tau)=\frac{1}{2}\left[f^{\mu}(\sigma+\tau)+f^{\mu}(\sigma-\tau)+\int_{\sigma-\tau}^{\sigma+\tau} g^{\mu}(\xi) d \xi\right] .
$$

We have

$$
x^{\mu}(\sigma, \tau=0)=f^{\mu}(\sigma)
$$

and

$$
\dot{x}^{\mu}(\sigma, \tau=0)=g^{\mu}(\sigma)
$$

Strings are classified according to the functions f and g. We take $f^{\mu}=0$ (no initial extension)

We also consider only strings with a
\square piecewise constant initial velocity g, which are called kinky strings.
\square This string is characterized by a sequence of σ intervals $\left[\sigma_{k}, \sigma_{k+1}\right]$, and the corresponding constant values (say v_{k}) of g in these intervals.

An electron-positron event (or a parton ladder) represents a sequence of partons of the type $q-g \ldots-g-\bar{q}$, with soft "end partons" q and \bar{q}, and hard inner gluons g.

The mapping "partons \rightarrow string" is done such that we identify a parton sequence with a kinky string
by requiring "parton = kink",
with $\quad \sigma_{k+1}-\sigma_{k}=$ energy of parton k and $v_{k}=$ momentum of parton k / E_{k}.

String evolution

 completely determined$x^{\mu}(\sigma, \tau)=x_{0}+\frac{1}{2} \int_{\sigma-\tau}^{\sigma+\tau} g^{\mu}(\xi) d \xi$,

In the following figure,
we show the evolution of a string generated in electron-positron annihilation (4 internal kinks).

Nantes Summer School, June 27 - July 08, 2022, Klaus Werner, Subatech, Nantes 173

6.2 Hadron production

is finally realized via string breaking, such that string fragments are identified with hadrons.

Hypothesis: the string breaks within an infinitesimal area $d A$ on its surface with a probability which is proportional to this area,

$$
d P=p_{B} d A,
$$

where p_{B} is the fundamental parameter of the procedure. ${ }^{1}$

[^1]

A string break is realized via quark-antiquark or diquark-antidiquark pair production with probability

$$
p_{i(j)}=\frac{1}{Z} \exp \left(-\pi \frac{M_{i(j)}^{2}}{\kappa}\right)
$$

with

$$
M_{i j}=M_{i}+M_{j}+c_{i} c_{j} M_{0}
$$

Transverse momenta \vec{p}_{t} and $-\vec{p}_{t}$ are generated at each breaking, according to

$$
\begin{equation*}
f(k) \propto e^{-\left|\vec{p}_{t}\right| / 2 \bar{p}_{t}} \tag{1}
\end{equation*}
$$

with a parameter \bar{p}_{t}.

Jets:

Parton ladder $=$ color flux tubes $=$ kinky strings

(here no IS radiation, only hard process producing two gluons)

which expand and break

via the production of quark-antiquark pairs (Schwinger mechanism)

String segment = hadron. Close to "kink": jets

Example pp at 13 TeV : Partons

Charged hadrons ... too low around 2-3 GeV/c
 Kaons diffent centralities ... not really great

6.3 Core-corona procedure

In case of multiple Pomerons (almost always)
\square the standard procedure has to be modified, since the density of strings will be so high that they cannot possibly decay independently

Some string pieces (pre-hadrons) will constitute bulk matter, others show up as jets

These are the same strings (all originating from hard processes at LHC) which constitute BOTH jets and bulk!
again: single scattering => 2 color flux tubes

... two scatterings $=>4$ color flux tubes

... many scatterings (AA) => many color flux tubes

$=>$ matter + escaping pieces (jets)

Core-corona procedure (for pp, pA, AA):

Pomeron => parton ladder => flux tube (kinky string)
String segments with high pt escape => corona the others form the core $=$ initial condition for hydro depending on the local string density

Core:

(we use α and β rather than σ and τ)
We split each string into a sequence of string segments, corresponding to widths $\delta \alpha$ and $\delta \beta$ in the string parameter space

Picture is schematic: the string extends well into the transverse dimension, correctly taken into account in the calculations

Energy momentum tensor and the flavor flow vector at some position x at initial proper time $\tau=\tau_{0}$:

$$
\begin{aligned}
T^{\mu v}(x) & =\sum_{i} \frac{\delta p_{i}^{\mu} \delta p_{i}^{v}}{\delta p_{i}^{0}} g\left(x-x_{i}\right) \\
N_{q}^{\mu}(x) & =\sum_{i} \frac{\delta p_{i}^{\mu}}{\delta p_{i}^{0}} q_{i} g\left(x-x_{i}\right)
\end{aligned}
$$

$q \in u, d, s$: net flavor content of the string segments
$\delta p=\left\{\frac{\partial X(\alpha, \beta)}{\partial \beta} \delta \alpha+\frac{\partial X(\alpha, \beta)}{\partial \alpha} \delta \beta\right\}$: four-momenta of the segments.
g : Gaussian smoothing kernel with a transverse width σ_{\perp}
The Lorentz transformation into the comoving frame provides the energy density ε and the flow velocity components v^{i}.

6.4 Some results sensitive to flow

\square Spectra

\square correlations

Kaons diffent centralities ... w/o core corona
 Kaons diffent centralities ... full simulation

"Ridges" in pA

ALICE, arXiv:1212.2001, arXiv:1307.3237

Central - peripheral (to get rid of jets)

Identified particle v2

mass splitting, as in PbPb !!!

pPb in EPOS3:
 Pomerons (number and positions) characterize geometry (\mathbf{P}. number \propto multiplicity)

random azimuthal asymmetry
=>
asymmetric flow seen at higher pt for heavier ptls

v2 for $ß, K, p$ clearly differ

mass splitting, due to flow

6.5 Statistical particle production

Statistical particle production (from plasma decay) is very different from particle production via string decay

Core-corona picture in EPOS

Phys.Rev.Lett. 98 (2007) 152301, Phys.Rev. C89 (2014) 6, 064903
Gribov-Regge approach => (Many) kinky strings => core/corona separation (based on string segments)
central AA

Pion yields: core \& corona contribution

thin lines
$=\mathrm{pp}(7 \mathrm{TeV})$
intermediate lines $=\mathrm{pPb}(5 \mathrm{TeV})$
thick lines
$=\mathrm{PbPb}(2.76 \mathrm{TeV})$
full $=$ with hadronic cascade (UrQMD)

Lifetime of hadronic phase

Resonance suppression

 in the hadronic stage (in-medium decay)
depends on the lifetime and the system size

Also possible:
Resonance production, inelastic scattering
but there is more

Kaon to pion ratio

Phi to pion ratio

Omega to pion ratio

Ξ^{*} to pion ratio

K^{*} to pion ratio

Proton to pion ratio

Σ^{*} to pion ratio

ρ to pion ratio

[^0]: ${ }^{*}$) simplified version, Gribov-Regge (GR) approach without energy conservation

[^1]: ${ }^{1}$ Elegant realization, making use of the dynamics of strings with piecewise constant initial conditions.

