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—————————————————————

1 Introduction

—————————————————————
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1.1 Challenges

Since 2 decades we know: Colliding heavy ions at rela-

tivistic energies

behave like an expanding fluid,

with huge transverse flow

(observables: pt spectra)

being in particular asymmetric:

elliptical / triangular ...

(observables: flow harmonics v2, v3 etc)

φ

φ
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We see “statistical particle production”
(observables: particle yields or ratios)

A Andronic et al 2017 J. Phys.: Conf. Ser. 779 012012

Very different compared to particle production from string decay
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But similar features show up in small systems, at
low energies, and as well for heavy flavor particles.

Yields/pions vs multiplicity,
for pp, pPb, PbPb
(ALICE, in nature physics 2017)

Central PbPb understood as due
to “statistical particle production”

But it seems that pp and pPb are
at least partly also showing this
behavior

The event generators ... clearly
need to be improved
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v2 vs multiplicity for pp, pPb, PbPb
(Eur. Phys. J. C 77 (2017) 428)

Large v2 values (flow)
for all systems, but
different N_ch depen-
dence

Small energy depen-
dence

small N_ch dependence
in pp
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v2 vs pt
for pPb at 8.16TeV
and PbPb at 5.02TeV
(Phys. Rev. Lett. 121, 082301)

Large v2 values in pPb
even for D mesons

Similar to K_s at large
pt (“usual” meson be-
havior)
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v2 vs m_T
for AuAu at 7-62 GeV
(Phys.Rev.C 93 (2016) 1, 014907)

Similar behavior down
to low energies (where
no QGP is expected)
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Actually flow / statistical decay issues
are relevant even for min bias pp!

elementary pp models
(particle production simply based
on string decay)

do not produce enough Ω

baryons even for min bias
pp

so some “new input” is

needed ... compatible with

the “normal” pp behavior

(jets etc)
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So these “features” (flow, stat. hadronizaton,...), usually re-

ferred to as “QGP signals”, expected in high energy heavy

ion collisions,

� show up in pp scattering, even min bias

� show up in “low energy” collisions

� concern even charmed hadrons

In particular the “small systems” (pp, pA) are very in-
teresting...
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We better understand all that in a quantitative fashion ...

and not to forget high pt features happening at the same

time! We have

� these “mini-plasmas” producing low pt particles
(soft domain)

� and very high pt particles
(from pQCD processes, hard domain)

=> we need general purpose Monte Carlo Event Genera-
tors which allow to incorporate and test these “features”
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1.2 What means “Monte Carlo Method”

It should NOT be a

black box producing

“events” of particles

to be compared with

“real” events
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Monte Carlo Method means

� a tool to solve well defined mathematical problems

� based on probability theory

(random variables and random numbers)
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Example: Compute I =
∫ 1

0
f(x)dx, which may be written

as

I =
∫

∞

−∞

w(x) f(x) dx, with w(x) =

{
1 for x ∈ [0, 1]
0 otherwise

We may interprete w as probability distribution and I as

expectation value (or mean value), so

I = 〈 f〉 = 1

N

N

∑
i=1

f(xi)

︸ ︷︷ ︸

MC estimate

+O

(
1√
N

)

with uniform (in [0,1]) random numbers xi
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An error of order 1/
√

N is huge, nobody computes an 1D-

integral like that, BUT for computing high-dimensional

integrals, the formula

I =
∫

w(x1, ..., xn) f(x1, ..., xn)dx1...dxn

=
1

N

N

∑
i=1

f(x1i, ..., xni)

︸ ︷︷ ︸

MC estimate

+O

(
1√
N

)

is very useful.

Attention: MC sums over N “events”, but these MC events

are not necessarily “physical” events
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So, Monte Carlo Method (as discussed in this talk) means

more precisely

� a tool to compute integrals
∫

w(X) f(X)dX of a multi-

dimensional variable X

� as mean value 〈 f(X)〉 with X distributed according
to w (with w being a multi-dimensional distribution)



Nantes Summer School, June 27 - July 08, 2022, Klaus Werner, Subatech, Nantes 22

1.3 Monte Carlo Methods and the Ising Model

Actually generating n-dimensional X distributed accord-

ing to some given w is usually very complicated for large

n

� a problem well known in statistical physics

since a long time

� with intelligent solutions
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Extremely useful:

The Ising model of

ferromagnetism

Box of N × N × N atoms each one carry-
ing a spin with possible values +1 and -1
(spin up, spin down)

� Anyhow useful to know, one deals with phase tra-

sitions very similar to the QGP phase transition

� The MC methods used there are precisely what we

need for heavy ion simulations

� Good example of a multi-dimensional variable X,

being here the N3 spin values, let us call it a “state”



Nantes Summer School, June 27 - July 08, 2022, Klaus Werner, Subatech, Nantes 24

The interesting quantity

here is the average magneti-

zation 〈M〉:

〈M〉 = ∑ w(X) M(X)

with

w(X) =
1

Z
e−βE(X)

with

E = −α ∑
neighbors k,k′

sksk′

Phase transition
2D Ising model

Journal of Computational Physics, 237, (2013) 224
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Why difficult?

For N3 atoms, the number K

of possible states is 2(N3)

N = 100 : K ≈ 10300000

Solution: Monte-Carlo method :

〈M〉 =
K

∑
i=1

w(Xi) M(Xi) → 1

J

J

∑
j=1

M(Xj)

with “reasonable” J, and Xj distributed according to w(X)

... provided we know how to generate X according to w(X)
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1.4 Ising Model and Markov chains

The problem is:

generate a “state” X accord-

ing to

w(X) =
1

Z
e−βE(X)

corresponding to “themal

equilibrium”

X is one of the
2(N3)possible states
of the lattice

Simple ”direct methods” (rejection sampling)

do not work.
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Idea: Let’s copy nature

which always finds eventu-

ally the “equilibrium distri-

bution”

One considers a stochas-

tic iterative process (Markov

chain)

w1 → w2 → ...

A. Markov

with appropriate transitions wt → wt+1 (Metropolis)

such that wt converges to w∞ = 1
Z e−βE(X)

(it works, thanks to “fixed point theorems”)
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Why useful for us ?

� Markov chain + Metropolis is extremely powerful,

it works for ANY distribution and not just Boltzmann distributions

� It allows to treat “parallel interactions” in high en-

ergy scattering

� We use it for microcanonical QGP decay (needed for

small systems)
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1.5 Parallel and sequential scattering

At “low” energy:

(RHIC, few GeV)

Sequential

collisions

(cascade)

Crucial:

τform < τinteraction

t

z

A+A collision

Colored lines: produced hadrons
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At “high” energy (LHC):

γ > 1000

Longitudinal size

d =
2R

γ
. 0.01 fm/c

All interactions

simultaneously at t = 0

(in parallel)

Particle production later

τform ≫ τcollision

t

z

A+A collision at LHC

Nuclei are point-like
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Low energy and high energy nuclear scattering are com-

pletely different, and completely different theoretical meth-

ods are needed

� High energy approach = parallel interactions

(as done in EPOS)

(and this is why we need these Markov chain techniques...)

� At LHC energies, one can completely separate

– primary interactions (within < 0.01 fm/c)

– and secondary interactions (hydro evolution etc)
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When does the “parallel approach” break down ?

The condition is

d =
2R

γ
< cτform ≈ 1 fm

so for R = 7 fm, we get

γ >
2R

cτform
≈ 14

1

so the “critical” energy per nucleon is

E ≈ 14 mpc2 ≈ 13 GeV

So lower RHIC energies are no more covered, a mixture

between “parallel” and “sequential” approach is needed..
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Points:
Epos

comparisons
to data
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1.6 Parallel approach in pp

At LHC energy: Interaction: successive parton emissions

Large gamma

factors, very

long lived ptls

The complete

process takes

a very long time pp collision

Exchange of parton ladder
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Impossible to have several of these interactions in a row

So also in pp:

� High energy approach = parallel interactions
(as done in EPOS)

And we know that multiple scattering is important!
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So double scattering in pp should look like this:

Here two parallel scatter-

ings

No contradictions with re-

spect to timescales

So it seems mandatory to use a parallel scattering scheme,

for pp and AA, known since a long time ... but somewhat

forgotten nowadays – why ?
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1.7 Factorization

The most popular approach to treat HE pp, is based on

“factorization”, where the di-jet cross section is given as

σdijet = ∑
kl

∫
d3 p3d3 p4

E3E4

∫

dx1dx2 f k
PDF(x1, µ2

F) f l
PDF(x2, µ2

F)

1

32sπ2
¯∑|M|2δ4(p1 + p2 − p3 − p4),

Easy! No sophisticated MC needed.

But where are these complicated “parallel” scatterings?
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The di-jet cross section is an inclusive cross section, i.e.
one counts di-jets, not di-jet events, so a 2-di-jet event
counts twice

Summing N-di-jet events, we have

σdijet = ∑
N

N σ
(N)
dijet

whereas the total cross section (forgetting soft for the moment)

σtot = ∑
N

σ
(N)
dijet

For inclusive cross section, enormous simplifications ap-

ply, but to understand this we have to first understand

“parallel scattering”, referred to as Gribov-Regge approach
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—————————————————————

2 Gribov Regge approach

—————————————————————
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2.1 Gribov-Regge approach (EPOS basis)
and factorization

Basis: S-matrix theory (elementary quantum mechanics)

Reminder: The scattering operator Ŝ is defined via

|ψ(t = +∞〉 = Ŝ |ψ(t = −∞〉
The S-matrix is the corresponding representation

Sij = 〈i| Ŝ |j〉
for basis states |i〉 and |j〉.

The T-matrix is defined as

S f i=δf i + i(2π)4δ(p f − pi)Tf i
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Fundamental properties of the S-matrix

Most important:

The scattering operator Ŝ must be unitary:

Ŝ†Ŝ = 1

(elementary quantum mechanics)
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Hypotheses:

� Tii is Lorentz invariant → use s, t

� Tii(s, t) is an analytic function of s, with s consid-

ered as a complex variable (Hermitean analyticity)

� Tii(s, t) is real on some part of the real axis

Using the Schwarz reflection principle, Tii(s, t) first de-

fined for Ims ≥ 0 can be continued in a unique fashion

via Tii(s∗, t) = Tii(s, t)∗.

In the following we use T = Tii (elastic scattering).
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Based on the observation of multiple scattering at HE,

and the necessity of parallel scatterings, one postulates a

particular form of the (elastic scattering) T-matrix

being composed of∗)

multiple “Pomerons” as

−i {iTPom × ... × iTPom}

Compatible with pQCD,

hidden in the “boxes”

(Pomerons)
————————————————————
*) simplified version, Gribov-Regge (GR) approach without energy conservation
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We will show later :

2s σtot = (2π)4δ(p f − pi)∑
f

∣
∣Tf i

∣
∣2 =

1

i
disc T

Interpretation: 1
i
disc T can be seen as a so-called “cut

diagram”, with modified Feynman rules, the “interme-
diate particles” are on mass shell.

Cut diagrams (1
i disc T) represent inelastic processes, un-

cut diagrams (T) elastic ones.

The notion of “cutting” is extremely useful in our ap-

proach, more details later.
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Cut Pomeron = squared inelastic diagram:

Di-jet production in the center.

Each Pomeron produces one di-jet.
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Why does factorization work ?

Easy to see in the GR picture without energy conservation,
using simple assumptions.

Consider multiple scattering amplitude

iT = ∏ iTP

cross section:
sum over all
cuts.

+

++
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For each cut Pom:

1

i
discTP = 2ImTP ≡ G

For each uncut one (considering imaginary TP):

iTP + {iTP}∗

= i (i ImTP) + {i (i ImTP)}∗

= −2ImTP ≡ −G

+

++
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Di-jet cross section σdijet: Each cut Pomeron produces 1
di-jet

Contribution to the cross section for n
Pomerons (k refers to the cut Pomerons):

σ
(n)
dijet ∝

n

∑
k=0

k Gk (−G)n−k

(
n
k

)

∝
n

∑
k=0

(−1)n−k k ×
(

n
k

)
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∑
n
k=0 (−1)n−k k ×

(
n
k

)

:

For n = 2 :
+0 × 1 − 1 × 2 + 2 × 1 = 0

No contribution !

For n = 3 :

−0 × 1 + 1 × 3 − 2 × 3 + 3 × 1 = 0

No contribution either !
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Actually, for any n > 1 :

n

∑
k=0

(−1)n−k k ×
(

n

k

)

= 0

� Almost all of the diagrams (i.e. n=2, n=3, ....) do not

contribute at all to the inclusive cross section

� Enormous amount of cancellations (interference),

only n=1 contributes

� AGK cancellations
(Abramovskii, Gribov and Kancheli cancellation (1973))
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All the diagrams
which contribute to pp

++

0 N

N 2NN0

+ ...

+ + + + +

+++

0 N N N 2N

2N 2N 3N

+

+ +
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for inclusive cross sections
I everything cancels

- up to one diagram
=> factorization

++

0 N

N 2NN0

+ ...

+ + + + +

+++

0 N N N 2N

2N 2N 3N

+

+ +
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simple diagram even in case of multiple scattering

corresponds to factorization:

σincl = f ⊗ σelem ⊗ f
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Remark:

� We get perfect AGK cancellations in our simplified

GR picture (no energy sharing)

� In the full scheme, it works at large pt (in EPOS4)
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2.2 Beyond factorization

Factorization simplifies things enormously!

Extremely useful when computing inclusive di-jet cross

sections to study the underlying elementary QCD pro-

cesses. The full event structure is not needed.

However, many observables require “full events”, like
everything related to given multiplicity selections.

Two strategies to deal with.
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Strategy 1

Start out from factorization, sampling several di-jets from

a single diagram,

and then at-

tribute them to

different sub-

processes, rede-

fine color struc-

tures (Pythia,

Herwig,...)
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Strategy 2

Start out from multi-Pomeron S-matrix, sample multi-

Pomeron configurations using cutting rule techniques,

employing Markov chains

and sample di-

jets for each

Pomeron, one

per Pomeron

(EPOS)
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2.3 Pros and cons

Strategy Pros g Cons g

Method 1 (PYTHIA) Simple to realise
————————-—–—
Best method for
inclusive cross sections

“Reconstruction” of mul-
tiple scattering without
solid theoretical basis
——-————————–
probably not working for
small pt
——-————————–
No obvious extension to-
wards AA

Method 2 (EPOS) Solid theoretical basis
concerning multiple
parallel scattering
———————-—–——
Straightforward general-
ization for AA

Realisation technically
demanding
——————-————-
Factorization not for free,
big effort needed to real-
ize the cancellations
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Main problem for the

EPOS method:

Since all diagrams

are considered:

++

0 N

N 2NN0

+ ...

+ + + + +

+++

0 N N N 2N

2N 2N 3N

+

+ +

In case of inclusice cross sections, the corresponding di-
agrams must actually cancel, which requires high preci-
sion and good strategies
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2.4 AA collisions

Almost trivial to extend the

multiple Pomeron picture to

AA.

The T-matrix is essentially a

product of the pp expressions:

−i ∏
pairs

{iTPom × ... × iTPom}

Again, the difficulty is

the fact that realizing

AGK cancellations re-

quires big efforts

Crucial! Amounts to

binary scaling
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So again, the multiple
Pomeron approach is
difficult (high preci-
sion and sophisicated
strategies needed to get
cancellations)

but there is no real
alternative, we need a
“parallel approach”

but there seems to be
a simple way, called
Glauber model ...
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2.5 Glauber and Gribov Regge

Glauber approach (essentially geometry)

Nucleus-nucleus collision A + B :

� Sequence of independent binary
nucleon-nucleon collisions

� Nucleons travel on straight-line trajectories

� The inelastic nucleon-nucleon cross-section σNN is in-

dependent of the number od NN collisions

Monte Carlo version: Two nucleons collide if their trans-
verse distance is less than

√
σNN/π .
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Analytical formulas for A + B scattering:

� Be ρA and ρB the (normalized nuclear densities), and

� b = (bx, by) the
impact parameter

x

y
b

Define integral over nuclear density for each nucleus:

TA/B(b
′) =

∫

ρA/B(b
′, z)dz,
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and the “thickness function”

TAB(b) =
∫

TA(b
′)TB(b

′ − b)d2b′

x

y b
b’

b’−b

Probability of interaction

(for ρA and ρB normalized to 1)
P = TAB(b)σN N
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Having AB possible pairs: probability of n interactions :

Pn =

(
AB
n

)

Pn(1 − P)AB−n

Probability of at least one interaction (given b):

AB

∑
n=1

Pn = 1 − P0 = 1 − (1 − P)AB

And correspondingly the AB cross section :

σAB =
∫
{

1 − (1 − P)AB
}

d2b.

(called optical limit).
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Probability of an interaction explicitely:

dσAB

d2b
= 1 −

{
(1 − TAB(b)σN N)

AB
}

.

Glauber MC formula (with σNN =
∫

f (b)d2b):

dσAB

d2b
= 1−

{
∫ A

∏
i=1

d2bA
i TA(bA

i )
B

∏
j=1

d2bB
j TB(bB

j )
AB

∏
k=1

(1 − f)

}

.

In the MC version, one extracts Ncoll, Nparticip, and one

usually employs a “wounded nucleon approach”

Does this make sense?
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Theoretical justification?

... based on relativistic quantum mechanical

scattering theory, compatible with QCD

=> Gribov-Regge approach
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Gribov Regge for pp, no energy sharing

In the GR framework, we obtain
(neglecting energy sharing)

dσpp

d2b
= ∑

m>0
∑

l

G(b)m

m!

{−G(b)}l

l!

= ∑
m>0

G(b)m

m!
e−G(b) = ∑

m

G(b)m

m!
e−G(b) − e−G(b)

So
dσpp

d2b
= 1 − e−G(b) = f (b)

with f (b) being the probability of an interaction at given b.
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Gribov Regge for A+B scattering

In the GR framework, defining

∫

dTAB :=
∫ A

∏
i=1

d2bA
i TA(b

A
i )

B

∏
j=1

d2bB
j TB(b

B
j ),

we obtain (neglecting energy sharing):

dσAB

d2b
=
∫

dTAB ∑
m1

... ∑
mAB

︸ ︷︷ ︸

∑ mi 6=0

AB

∏
k=1

G(bk)
mk

mk!
e−G(bk)
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dσAB

d2b
=
∫

dTAB ∑
m1

... ∑
mAB

︸ ︷︷ ︸

∑ mi 6=0

AB

∏
k=1

G(bk)mk

mk!
e−G(bk)

=
∫

dTAB ∑
m1

... ∑
mAB

AB

∏
k=1

G(bk)
mk

mk!
e−G(bk) −

AB

∏
k=1

e−G(bk)

=
∫

dTAB

AB

∏
k=1

∑
mk

G(bk)mk

mk!
︸ ︷︷ ︸

exp(G(bk)

e−G(bk) −
AB

∏
k=1

e−G(bk)
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So
σAB

d2b
= 1 −

∫

dTAB

{
AB

∏
k=1

e−G(bk)

}

With f = 1 − e−G(b) being the probability of an interaction
in pp (with σpp =

∫
f (b)d2b),

we get the Gribov-Regge result

σAB

d2b
= 1 −

{
∫

dTAB

AB

∏
k=1

(1 − f)

}

which corresponds to “Glauber Monte Carlo”.
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So we find:

In the GR framework (based on

quantum mechanics!) we obtain

cross section results

� corresponding to a simple

geometrical picture

� as realized in the

Glauber approch

BUT ...
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So we find:

In the GR framework (based on

quantum mechanics!) we obtain

cross section results

� corresponding to a simple

geometrical picture

� as realized in the

Glauber approch

BUT ...
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... this concern total cross sections!!

and not at all particle production cross sections

� In Glauber

– one has (usually) a hard component (∼ Ncoll)

– and a soft one (∼ Npart, wounded nucleons)

� In GR (EPOS)

– remnants contribute only at large rapidities,

– otherwise everything is coming from

“cut Pomerons” associated to NN scatterings,

and one has to account for “shadowing/saturation”
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—————————————————————

3 Gribov-Regge & Partons (GRP)

—————————————————————
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Back to the GR approach employed in EPOS to account

for multiple parallel interactions, via the (elastic scattering)

T-matrix

−i {iTPom × ... × iTPom}

The QCD part is hidden in the “boxes”, so what precisely

should be put there?
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3.1 A fast moving proton

t

z

proton

cloud 
of gluons

emits successively
partons (mainly
gluons), quasi-real
(large gamma fac-
tors)
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... which can be probed by a virtual photon
(emitted from an electron)

t

z

proton photon

kp
qbar

q

color
dipole

photon splits
into q-qbar

→Color dipole

p and k are pro-
ton and photon
momentum
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What precisely the photon “sees” depends on two kine-
matic variables,

the virtuality

Q2 = −k2

and the Bjorken variable

x =
Q2

2pk

which probes partons with momentum fraction x.
It determines also the approximation scheme to compute
the parton cloud.
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s
−λQ = x

ln Q2

ln 1/x

s
o
ft

BFKL

saturation

DGLAP

DGLAP: sum-
ming to all or-
ders of αs ln Q2

BFKL: sum-
ming to all
orders of αs ln 1

x

Linear
equations
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BFKL (Balitsky, Fadin, Kuraev, and Lipatov):

∂ϕ(x, q)

∂ ln 1
x

αsNc

π2

∫

d2k K(q, k)ϕ(x, k)

with xg(x, Q2) =
∫ Q2

0

d2k

k2
ϕ(x, k),

DGLAP (Dokshitzer, Gribov, Lipatov,
Altarelli and Parisi):

∂g(x, Q2)

∂ ln q2
=
∫ 1

x

dz

z

αs

2π
P(z)g(

x

z
, Q2)
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Very large ln 1/x : Saturation domain

t

z

proton

Non-linear ef-

fects

Gluon from
one cascade is
absorbed by
another one
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3.2 pp scattering (linear domain)

proton proton

Same evolution as in proton-photon (causality)
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Different way of plotting the same reaction

nucleon

nucleon
t=0

time

log(x /x )0.5 + −

inelastic scattering diagram
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Corresponding cut diagram

referred to as “cut parton ladder”

= amplitude squared of the inelastic diagram
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Corresponding elastic diagram

referred to as “(uncut) parton ladder”
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3.3 Soft domain

Very small ln Q2: No perturbative treatment!

But one may use again the hypothesis of Lorentz invari-

ance and analyticity of the T-matrix. One starts with a par-
tial wave expansion of the T-matrix (Watson-Sommerfeld
transform) :

T(t, s) =
∞

∑
j=0

(2j + 1)T (j, s)Pj(z)

with t ∝ z − 1, z = cos ϑ, Pj: Legendre polynomials.



Nantes Summer School, June 27 - July 08, 2022, Klaus Werner, Subatech, Nantes 88

With α(s) being the right-
most pole of T (j, s) one gets
for t → ∞:

T(t, s) ∝ tα(s)

Im j

Re j

α (s)

and assuming crossing symmetry one gets the famous
asymptotic result

T(s, t) ∝ sα(t)

with the “Regge pole”

α(t) = α(0) + α′t
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Perturbative:

Parton ladder

T-matrix computed
(DGLAP)

Soft:

Soft Pomeron

gluon fields

T-matrix parametrized
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Formulas:

Tsoft(ŝ, t) = 8πs0 i γ2
Pom−parton

(
ŝ

s0

)αsoft(0)

× exp

({

2R2
Pom−parton + α′

soft ln
ŝ

s0

}

t

)

,

Cut soft Pomeron (Schwarz reflection principle):

1

i
disc Tsoft(ŝ, t)

=
1

i
[Tsoft(ŝ + i0, t)− Tsoft(ŝ − i0, t)]

= 2Im Tsoft(ŝ, t)
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Interaction cross section,

σsoft(ŝ) =
1

2ŝ
2Im Tsoft(ŝ, 0) ,

= 8πγ2
part

(
ŝ

s0

)αsoft(0)−1

,

using the optical theorem (with t = 0),

which grows faster than data



Nantes Summer School, June 27 - July 08, 2022, Klaus Werner, Subatech, Nantes 92

3.4 Semihard Pomeron

soft

soft

parton
ladder
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Space-time picture of semihard Pomeron

soft preevolution

cascade
parton

proton proton
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Hard cross section and amplitude

σ
jk
hard(ŝ, Q2

0) =
1

2ŝ
2Im T

jk
hard(ŝ, t = 0)

= K ∑
ml

∫

dx+
B dx−

B dp2
⊥

dσml
Born

dp2
⊥

(x+
B x−

B ŝ, p2
⊥)

×E
jm
QCD(x

+
B , Q2

0, M2
F) Ekl

QCD(x
−
B , Q2

0, M2
F)θ
(

M2
F − Q2

0

)
,

One knows (Lipativ, 86): amplitude is imaginary, and nearly
independent on t => (with R2

hard ≃ 0) :

T
jk
hard(ŝ, t) = iŝ σ

jk
hard(ŝ, Q2

0) exp
(

R2
hard t

)
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Semihard amplitude :

iTsemihard(ŝ, t) = ∑
jk

∫ 1

0

dz+

z+
dz−

z−

×Im T
j
soft

( s0

z+
, t
)

Im Tk
soft

( s0

z−
, t
)

iT
jk
hard(z

+z− ŝ, t)

(valid for s → ∞ and small parton virtualities except for
the ones in the ladder)
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Based on these diagrams, one com-

putes T’s needed for generating

multi-Pomeron configurations,

but also computes di-jet cross sec-

tions in “factorization mode” as

parton
ladder

soft

soft

E3E4

d6σdijet

d3p3d3 p4
= ∑

kl

∫ ∫

dx1dx2 f k
PDF(x1, µ2

F) f l
PDF(x2, µ2

F)

1

32sπ2
¯∑|Mkl→mn|2δ4(p1 + p2 − p3 − p4),

fPDF are the EPOS PDFs, convolution of soft & DGLAP part
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Electron-proton scattering F2 vs x
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To check our fPDF,
we can compute

F2 = ∑
k

e2
k x f k

PDF(x, Q2)

with

x = xB =
Q2

2pq

in the EPOS frame-
work, and compare
with data from
ZEUS, H1
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F2 with EPOS PDF (left) and CTEQ14(5f) PDF (right)
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Jet cross section vs pt for pp at 13 TeV
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Jet cross section vs pt for pp at 13 TeV
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—————————————————————

4 Multiple Pomeron exchange in EPOS

—————————————————————

The full approach,
going beyond factorization
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4.1 Multiple scattering

Be T the elastic (pp,pA,AA) scattering T-matrix =>

2s σtot =
1

i
disc T

Basic assumption : Multiple “Pomerons”

iT = ∑
k

1

k!
{iTPom × ... × iTPom}
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Example: 2 “Pomerons”
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Evaluate

1

i
disc{iTPom × ... × iTPom}

using “cutting rules” :

A “cut” multi-Pomeron diagram

amounts to the sum of all possible cuts
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Example of two Pomerons

+

++
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Using “Pomeron = parton ladder + soft”, we have (first dia-

gram)

= remnant

nucleon

nucleon
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Using a simplified notation
for “cut” and “uncut” Pomeron

one gets ...
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4.2 Complete result

For pp, pA, AA:

σtot = ∑
cut P

∫

∑
uncut P

∫

A

B

uncut

−G

cut

G

︸ ︷︷ ︸

partial cross section σK
Dotted lines : Cut Pomerons (parton ladders)
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σtot =
∫

d2b
∫ A

∏
i=1

d2bA
i dzA

i ρA(
√

(bA
i )

2 + (zA
i )

2)

B

∏
j=1

d2bB
j dzB

j ρB(
√

(bB
j )

2 + (zB
j )

2)

∑
m1l1

. . . ∑
mABlAB

(1 − δ0Σmk
)
∫ AB

∏
k=1

( mk

∏
µ=1

dx+k,µdx−k,µ

lk

∏
λ=1

dx̃+k,λdx̃−k,λ

){

AB

∏
k=1

(
1

mk!

1

lk!

mk

∏
µ=1

G(x+k,µ, x−k,µ, s, |~b +~bA
π(k) −~bB

τ(k)|)

lk

∏
λ=1

−G(x̃+k,λ, x̃−k,λ, s, |~b +~bA
π(k) −~bB

τ(k)|)
)

A

∏
i=1

(

1 − ∑
π(k)=i

x+k,µ, − ∑
π(k)=i

x̃+k,λ

)α B

∏
j=1

(

1 − ∑
τ(k)=j

x−k,µ − ∑
τ(k)=j

x̃−k,λ

)α
}
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� Complicated due to strict energy sharing

=> 10,000,000-dimensional intergrals, not separable

� but doable

– Parameterizations for G(x+, x−, s, b)

– Analytical integrations

– Employing Markov chain techniques
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Step 1:

� We compute partial cross sections σK for particular con-
figurations K via analytical integration

� K is a multi-dimensional variable
for example for double scattering in pp with two Pomerons in-
volved: K =

{
x+1 , x−1 ,~pt1, x+2 , x−2 ,~pt2

}

� Configurations K in AA scattering may be quite com-
plex
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Step 2:

The partial cross sections σK can (properly normalized) be

� interpreted as probability distributions,

� enabling us to use Monte Carlo techniques to
generate configurations K

using Markov chain techniques
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4.3 Configurations via Markov chains

Consider a sequence of multidimensional random
numbers (or better random configurations)

x1 , x2 , x3, ...

with ft being the law for xt.

A homogeneous Markov chain is defined as

ft(x) = ∑
x′

ft−1(x
′)p(x′ → x).

with p(x′ → x) being the transition probability (or matrix).
Normalization : ∑x p(x′ → x) = 1.
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Let f be the law for xt. The law for xt+1 is

∑
a

f (a) p(a → b) .

One defines an operator T (comme Translation)

T f (b) = ∑
a

f (a) p(a → b) .

So T f is the law for xt+1 when f is the law for xt.
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A law is called stationary if T f = f .

Theorem: If a stationary law T f = f exists, then Tk f1

converges towards f (which is unique) for any f1.

So to generate random configurations according to some
(given) law f ,

� one constructs a T such that T f = f

� and then considers f1 → T f1 → T2 f1...

� and constructs the corresponding random configura-
tions
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One needs, for a given law f ,
to find a transition matrix p such that T f = f

Sufficient condition (detailed balance):

f (a) p(a → b) = f (b) p(b → a) ,

Proof : T f (b) = ∑
a

f (a) p(a → b)

= ∑
a

f (b) p(b → a)

= f (b)∑
a

p(b → a)

= f (b) .
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4.4 Metropolis alorithm

Definitions:
pab = p(a → b) ,

fa = f (a) .

Take
pab = wab uab . (a 6= b) .

with wab : proposal matrix (∑b wab = 1)

uab : acceptance matrix (uab ≤ 1)

This is NOT the simple acceptance-rejection method!!
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Detailed balance:
fa pab = fb pba

amounts to
fa wab uab = fb wba uba ,

or
uab

uba
=

fb

fa

wba

wab
.
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The expression
uab

uba
=

fb

fa

wba

wab
.

is solved by

uab = F

(
fb

fa

wba

wab

)

,

with a function F with

F(z)

F(1
z )

= z .

Proof : With z ≡ fb

fa

wba

wab
one finds :

uab

uba
=

F(z)

F(1
z )

= z =
fb

fa

wba

wab
.
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The F according to Metropolis is

F(z) = min(z, 1) .

One finds indeed

F(z)

F(1
z )

=
min(z, 1)

min(1
z , 1)

=

{
z/1 pour z ≤ 1
1/1

z pour z > 1

}

= z .

So one proposes for each iteration a new configuation b
according to some wab, and accepts it with probability

uab = min

(
fb

fa

wba

wab
, 1

)

.
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Configuration lattice, define wab such that b changes w.r.t.
a only on one lattice site (like Ising model Metropolis)

1
2
3
...

AB

1 2 3 ...
interaction

NN
pair

mmax

Long iterations, but allows to generate very complex
configurations according to very complex laws.
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—————————————————————

5 Secondary interactions (overview)

—————————————————————
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5.1 Primary and secondary interactions

z

t

hadronic phase

QGP phase

So far we discussed primary interactions (the red point)
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z

t

Milne coordiantes are used to describe evolution

Proper time (hyperbolas)

τ =
√

t2 − z2

Space-time rapidity

(red lines)

ηs =
1

2
ln

t + z

t − z

(not pseudorapidity)
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z

t

Primary interactions determine matter distribution in ηs

and in essentially any

scenario ηs correspnds to

the average rapidity (of

volume cells)

< y >≈ ηs

so primary interactions

determine “essentially”

the rapidity distrbution

with y =
1

2
ln

E + Pz

E − Pz
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Basic structure of EPOS (for modelling pp, pA, AA)

� Primary interactions
Multiple scattering, instantaneously, in parallel
(Gribov-Regge & Partons, GRP)

� Secondary interactions
formation of “matter” which expands

collectively, like a fluid, decays statistically

� Primary interactions affect very strongly the

evolution!
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5.2 Secondary interactions: An example

In this section:

An example of a EPOS simulation

of expanding matter in pp scattering

with initial conditions from GRP

In the following sections: consequences
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pp
 @

 7
T

eV
  E

P
O

S
 3

.1
19

x [fm]
2 1.5 1 0.5 0 0.5 1 1.5 2

y
 [

fm
]

2

1.5

1

0.5

0

0.5

1

1.5

2

0

0.5

1

1.5

2

2.5

 = 1.06 fm/c)   J 0τ= 0.0 , 
s

η]   (
3

energy density [GeV/fm



Nantes Summer School, June 27 - July 08, 2022, Klaus Werner, Subatech, Nantes 134

pp
 @

 7
T

eV
  E

P
O

S
 3

.1
19

x [fm]
2 1.5 1 0.5 0 0.5 1 1.5 2

y
 [

fm
]

2

1.5

1

0.5

0

0.5

1

1.5

2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

 = 1.25 fm/c)   J 0τ= 0.0 , 
s

η]   (
3

energy density [GeV/fm



Nantes Summer School, June 27 - July 08, 2022, Klaus Werner, Subatech, Nantes 135

pp
 @

 7
T

eV
  E

P
O

S
 3

.1
19

x [fm]
2 1.5 1 0.5 0 0.5 1 1.5 2

y
 [

fm
]

2

1.5

1

0.5

0

0.5

1

1.5

2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

 = 1.44 fm/c)   J 0τ= 0.0 , 
s

η]   (
3

energy density [GeV/fm



Nantes Summer School, June 27 - July 08, 2022, Klaus Werner, Subatech, Nantes 136

pp
 @

 7
T

eV
  E

P
O

S
 3

.1
19

x [fm]
2 1.5 1 0.5 0 0.5 1 1.5 2

y
 [

fm
]

2

1.5

1

0.5

0

0.5

1

1.5

2

0

0.1

0.2

0.3

0.4

0.5

0.6

 = 1.63 fm/c)   J 0τ= 0.0 , 
s

η]   (
3

energy density [GeV/fm



Nantes Summer School, June 27 - July 08, 2022, Klaus Werner, Subatech, Nantes 137

pp
 @

 7
T

eV
  E

P
O

S
 3

.1
19

x [fm]
2 1.5 1 0.5 0 0.5 1 1.5 2

y
 [

fm
]

2

1.5

1

0.5

0

0.5

1

1.5

2

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

 = 1.83 fm/c)   J 0τ= 0.0 , 
s

η]   (
3

energy density [GeV/fm



Nantes Summer School, June 27 - July 08, 2022, Klaus Werner, Subatech, Nantes 138

pp
 @

 7
T

eV
  E

P
O

S
 3

.1
19

x [fm]
2 1.5 1 0.5 0 0.5 1 1.5 2

y
 [

fm
]

2

1.5

1

0.5

0

0.5

1

1.5

2

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
 = 2.02 fm/c)   J 0τ= 0.0 , 

s
η]   (

3
energy density [GeV/fm



Nantes Summer School, June 27 - July 08, 2022, Klaus Werner, Subatech, Nantes 139

pp
 @

 7
T

eV
  E

P
O

S
 3

.1
19

x [fm]
2 1.5 1 0.5 0 0.5 1 1.5 2

y
 [

fm
]

2

1.5

1

0.5

0

0.5

1

1.5

2

0

0.05

0.1

0.15

0.2

0.25

 = 2.21 fm/c)   J 0τ= 0.0 , 
s

η]   (
3

energy density [GeV/fm



Nantes Summer School, June 27 - July 08, 2022, Klaus Werner, Subatech, Nantes 140

pp
 @

 7
T

eV
  E

P
O

S
 3

.1
19

x [fm]
2 1.5 1 0.5 0 0.5 1 1.5 2

y
 [

fm
]

2

1.5

1

0.5

0

0.5

1

1.5

2

0

0.05

0.1

0.15

0.2

 = 2.40 fm/c)   J 0τ= 0.0 , 
s

η]   (
3

energy density [GeV/fm



Nantes Summer School, June 27 - July 08, 2022, Klaus Werner, Subatech, Nantes 141

pp
 @

 7
T

eV
  E

P
O

S
 3

.1
19

x [fm]
2 1.5 1 0.5 0 0.5 1 1.5 2

y
 [

fm
]

2

1.5

1

0.5

0

0.5

1

1.5

2

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

 = 2.59 fm/c)   J 0τ= 0.0 , 
s

η]   (
3

energy density [GeV/fm



Nantes Summer School, June 27 - July 08, 2022, Klaus Werner, Subatech, Nantes 142

5.3 Radial flow visible in particle distributions

Particle spectra affected by radial flow

10
-2

10
-1

1

10

10 2

0 1 2 3
 pt

 d
n/

dp
td

y           _
π- K-  p  Λ

hydrodynamics (solid)
string decay (dotted)

=> mass ordering of 〈pt 〉, lambda/K increase
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pPb at 5TeV CMS, arXiv:1307.3442

Strong variation of shape with multiplicity

for kaon and even more for proton pt spectra

(flow like)
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Λ/Ks versus pT (high compared to low multiplicity)

in pPb (left) similar to PbPb (right)

ALICE (2013) arXiv:1307.6796
ALICE (2013) arXiv:1307.5530

Phys. Rev. Lett. 111, 222301 (2013)

In AA: partially due to flow
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5.4 Ridges & flow harmonics

Anisotropic radial flow

visible in dihadron-correlations

R =
1

Ntrigg

dn

d∆φ∆η

Anisotropic flow due to initial

azimuthal anisotropies
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Initial “elliptical” matter

distribution:

Preferred expansion
along φ = 0
and φ = π

ηs-invariance
same form at any ηs

ηs =
1
2 ln t+z

t−z

φ
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Particle
distribution:
Preferred
directions
φ = 0 and φ = π

∝ 1 + 2v2 cos(2φ)

0

0.05

0.1

0.15

0.2

-1 0 1 2 3 4
 φ

 f
(φ

) 
=

 d
n 

/ d
φ

Dihadrons:
preferred ∆φ = 0 and ∆φ = π (even for big ∆η)
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Initial “triangular”

matter distribution:

Preferred expansion
along φ = 0, φ = 2

3π,
and φ = 4

3π

ηs-invariance

φ
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Particle
distribution:
Preferred
directions
φ = 0, φ = 2

3π,
and φ = 4

3π

∝ 1 + 2v3 cos(3φ)

0
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0.1

0.15

0.2

-1 0 1 2 3 4
 φ

 f
(φ

) 
=

 d
n 

/ d
φ

Dihadrons:
preferred ∆φ = 0, and ∆φ = 2

3
π, and ∆φ = 4

3
π

(even for large ∆η)
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In general, superposition of several eccentricities εn,

εneinψPP
n = −

∫
dxdy r2einφe(x, y)
∫

dxdy r2e(x, y)

Particle distribution characterized by harmonic flow coef-
ficients

vneinψEP
n =

∫

dφ einφ f (φ)
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At φ = 0: Here, v2 and v3 non-zero
The ridge ∝ 1 + 2v2 cos(2φ) + 2v3 cos(3φ)

(extended in η)

Awayside peak
may originate
from jets, not the
ridge (for large
∆η)

0
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-1 0 1 2 3 4
 φ

 f
(φ
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=

 d
n 

/ d
φ
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CMS: Ridges (in dihadron correlation functions)

also seen in pp (left) and pPb (right)

CMS (2010) arXiv:1009.4122

JHEP 1009:091,2010
CMS (2012) arXiv:1210.5482
Phys. Lett. B 718 (2013) 795

Looks like flow !
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Ridges also realized in simulations in pPb (and even pp)

Central - peripheral (to remove jets) Phys. Lett. B 726 (2013) 164-177
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5.5 Flow harmonics, identified particles

Flow shifts parti-
cles to higher pt

Effect increases
with mass

Also true for v2

vs pt

pt

v2 increasing mass
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ALICE: v2 versus pT: mass splitting (π, K, p)
in pPb (left) similar to PbPb (right)

ALICE (2013) arXiv:1307.3237 ALICE (2012) F. Noferini QM2012

Typical flow result!
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So : “Flow-like phenomena” are also seen in pp
and pA, therefore:

Heavy ion approach

= primary (multiple) scattering
+ subsequent fluid evolution

becomes interesting for pp and pA
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—————————————————————

6 (Pre)hadrons and secondary interactions

—————————————————————
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z

t

Primary interactions (red point) amout to multiple

Pomeron exchanges, done in momentum space

Each cut Pomeron corre-

sponds to a parton ladder

We need it’s space-time

(ηs − τ) evolution to con-

struct an initial condition

for a collective expansion
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6.1 From partons to strings

Electron-positron annihilation q

q

Color field between two color charges
=> relativistic string

B. Andersson, G. Gustafson, G. Ingelman, and T. Sjostrand, Phys. Rep. 97 (83) 31
X. Artru, Phys. Rep. 97 (83) 147
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High pt gluon emission in e+e−

q

q

g

Kinky relativistic string
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Cut Pomerons

(cut parton ladders)

q

q

g

g

q

q

Two kinky relativistic strings (at least)
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Theoretical framework: Classical string theory
Nambu, Scherk, Rebbi ... 1969-1975
reviewed in PR 232, pp 87-299, 1993, PR 350, pp 93-289, 2001

String:
two-dimensional surface

x(σ, τ)

in Minkowski space

Action S =
∫

Ldτdσ



Nantes Summer School, June 27 - July 08, 2022, Klaus Werner, Subatech, Nantes 163

The Lagrangian is obtained by demanding gauge invari-

ance of the action => Nambu-Goto Lagrangian:

L = −κ
√

|det g|

with κ being the string tension, and with the metric

gij =
∂xµ

∂ξi

∂xµ

∂ξ j

(using ξ1 = σ, ξ2 = τ).
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Gauge invariance:

gij =
∂xµ

∂ξi

∂xµ

∂ξ j
=

∂ξ ′m

∂ξi

∂xµ

∂ξ ′m
∂xµ

∂ξ ′n
∂ξ ′n

∂ξ j

so (with M being Jacobien of ξ ′(ξ)):

gij = Mmig
′
mnMnj → g = MT g′M

So which gives
√

|det g| =
√

|det g′||det M|
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Using
√

|det g| =
√

|det g′||det M| and in addition

d2ξ ′ = |det M|d2ξ,

we get

√

| det g|d2ξ =
√

| det g′|d2ξ ′

= gauge invariance!!
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With “dot” and “prime” referring to the partial derivatives
with respect to σ and τ :

g =

(
x′x′ x′ ẋ
ẋx′ ẋẋ

)

we get

L = −κ
√

|det g| = −κ
√

(x′ ẋ)2 − x′2ẋ2

Euler-Lagrange equations of motion:

∂

∂τ

∂L

∂ẋµ
+

∂

∂σ

∂L

∂x′
µ

= 0.
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We use the gauge fixing

x′2 + ẋ2 = 0 and x′ ẋ = 0,

which provides a very simple equation of motion, namely
a wave equation,

∂2xµ

∂τ2
− ∂2xµ

∂σ2
= 0,

with the boundary conditions:

∂xµ/∂σ = 0, σ = 0, π.
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Solution

xµ(σ, τ) =
1

2

[

f µ(σ + τ) + f µ(σ − τ) +
∫ σ+τ

σ−τ
gµ(ξ)dξ

]

.

We have
xµ(σ, τ = 0) = f µ(σ)

and
ẋµ(σ, τ = 0) = gµ(σ)

Strings are classified according to the functions f and g.
We take f µ = 0 (no initial extension)
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We also consider only strings with a

� piecewise constant initial velocity g, which are called

kinky strings.

� This string is characterized by a sequence of σ inter-

vals [σk, σk+1], and the corresponding constant val-

ues (say vk) of g in these intervals.



Nantes Summer School, June 27 - July 08, 2022, Klaus Werner, Subatech, Nantes 170

An electron-positron event (or a parton ladder) represents
a sequence of partons of the type q − g...− g − q̄, with soft
“end partons” q and q̄, and hard inner gluons g.

The mapping “partons →string” is done such that we iden-

tify a parton sequence with a kinky string

by requiring “parton = kink”,

with σk+1 − σk = energy of parton k

and vk = momentum of parton k / Ek.
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String evolution

completely determined

xµ(σ, τ) = x0 +
1

2

∫ σ+τ

σ−τ
gµ(ξ)dξ,

τ

στ = 0
qgq

Mapping partons => string initial conditions
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In the following figure,

we show the evolution of a string
generated in electron-positron annihilation

(4 internal kinks).
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6.2 Hadron production

is finally realized via string breaking, such that string frag-
ments are identified with hadrons.

Hypothesis: the string breaks within an infinitesimal area

dA on its surface with a probability which is propor-

tional to this area,

dP = pB dA,

where pB is the fundamental parameter of the procedure. 1

1Elegant realization, making use of the dynamics of strings with
piecewise constant initial conditions.
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τ

στ = 0
qgq

dA
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A string break is realized via quark-antiquark or
diquark-antidiquark pair production with probability

pi(j) =
1

Z
exp

(

−π
M2

i(j)

κ

)

with
Mij = Mi + Mj + cicjM0

Transverse momenta ~pt and −~pt are generated at each breaking, ac-
cording to

f (k) ∝ e−|~pt|/2p̄t , (1)

with a parameter p̄t.
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Jets:

Parton ladder = color flux tubes = kinky strings

remnant

remnant

flux tube

(here no IS radiation, only hard process producing two gluons)
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which expand and break
via the production of quark-antiquark pairs
(Schwinger mechanism)

remnant

remnant
jet

jet

String segment = hadron. Close to “kink”: jets
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Example pp at 13 TeV : Partons
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Charged hadrons ... too low around 2-3 GeV/c
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Kaons diffent centralities ... not really great
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6.3 Core-corona procedure

In case of multiple Pomerons (almost always)

� the standard procedure has to be modified, since the
density of strings will be so high that they cannot pos-
sibly decay independently

Some string pieces (pre-hadrons) will constitute
bulk matter, others show up as jets

These are the same strings (all originating from hard
processes at LHC) which constitute BOTH jets and

bulk !
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again: single scattering => 2 color flux tubes

remnant

remnant

flux tube
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... two scatterings => 4 color flux tubes

remnant

flux tube

remnant



Nantes Summer School, June 27 - July 08, 2022, Klaus Werner, Subatech, Nantes 185

... many scatterings (AA) => many color flux tubes

=> matter + escaping pieces (jets)



Nantes Summer School, June 27 - July 08, 2022, Klaus Werner, Subatech, Nantes 186

Core-corona procedure (for pp, pA, AA):
Pomeron => parton ladder => flux tube (kinky string)

✗

✖

✔

✕

String segments with high pt escape => corona the

others form the core = initial condition for hydro
depending on the local string density
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Core:

(we use α and β rather than σ and τ )

We split each string into a sequence of string segments, correspond-
ing to widths δα and δβ in the string parameter space

Picture is schematic: the
string extends well into
the transverse dimen-
sion, correctly taken into
account in the calcula-
tions z

t

X(  ,  )α β

X(α+δα,β+δβ)
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Energy momentum tensor and the flavor flow vector at some
position x at initial proper time τ = τ0:

Tµν(x) = ∑
i

δp
µ
i δpν

i

δp0
i

g(x − xi),

N
µ
q (x) = ∑

i

δp
µ
i

δp0
i

qi g(x − xi),

q ∈ u, d, s: net flavor content of the string segments

δp =
{

∂X(α,β)
∂β δα + ∂X(α,β)

∂α δβ
}

: four-momenta of the segments.

g: Gaussian smoothing kernel with a transverse width σ⊥

The Lorentz transformation into the comoving frame provides the en-

ergy density ε and the flow velocity components vi.
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6.4 Some results sensitive to flow

� Spectra

� correlations
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Kaons diffent centralities ... w/o core corona
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Kaons diffent centralities ... full simulation
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“Ridges” in pA

ALICE, arXiv:1212.2001, arXiv:1307.3237
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Central - peripheral (to get rid of jets)
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Identified particle v2
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pPb in EPOS3:

Pomerons (number and positions)
characterize geometry (P. number ∝ multiplicity)

random

azimuthal

asymmetry

=>

asymmetric flow

seen at higher pt for

heavier ptls
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v2 for ß, K, p clearly differ
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6.5 Statistical particle production

Statistical particle production (from plasma decay) is very

different from particle production via string decay
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Particle ratios to pions vs
〈dnch

dη
(0)

〉
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Core-corona picture in EPOS
Phys.Rev.Lett. 98 (2007) 152301, Phys.Rev. C89 (2014) 6, 064903

Gribov-Regge approach => (Many) kinky strings
=> core/corona separation (based on string segments)

central AA

peripheral AA
high mult pp,pA low mult pp

core => hydro => flow + statistical decay
corona => string decay
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Pion yields: core & corona contribution
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Lifetime of hadronic phase
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Resonance suppression
in the hadronic stage (in-medium decay)

K

*Ξ
Λ
Σ

φ

*

*
*

21.7
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1.7
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4.2

5

ρ
∆++

lifetimes (fm/c)

gamma
factor

depends on the lifetime and

the system size

Also possible:

Resonance production,

inelastic scattering

but there is more
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Kaon to pion ratio
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statistical model fit
(horizontal black line)
A. Andronic et al.,

arXiv:1611.01347
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Phi to pion ratio
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Omega to pion ratio
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Ξ* to pion ratio
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K∗ to pion ratio
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Proton to pion ratio
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Σ
∗ to pion ratio
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ρ to pion ratio
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