

Heavy Ion Collisions in the QCD phase diagram June 27-July 8, 2022 Subatech, Nantes (France)

HADRONS IN MEDIUM

Tetyana Galatyuk Technical University Darmstadt / GSI 06 July, 2022

Lecture 3

The rise and fall of T_{eff} of thermal dimuons

 $\Box M < 1 \, GeV$

 \Box strong, almost linear rise of T_{eff} with dimuon mass

□ follows trend set by hadrons

M > 1 GeV
□ drop of T_{eff} by ~50 MeV
□ followed by an almost flat plateau

What can we learn from m_T spectra? \rightarrow radial flow \rightarrow origin of dileptons

Dileptons as

THERMOMETER

Emiting source temperature

The time-differential invariant-mass spectrum, integrated over 3-momentum and 3-volume at each time snapshot:

$$\begin{aligned} \frac{dN_{ll}}{dMd\tau} &= \frac{M}{q_0} \int d^3x \, d^3q \, \frac{dN_{ll}}{d^4x d^4q} \\ &\simeq const \, V_{FB}(\tau) \frac{Im\Pi_{em}(M;T)}{M} \int \frac{d^3q}{q_0} e^{-\frac{q_0}{T}} & * \\ &\simeq const \, V_{FB}(\tau) \frac{Im\Pi_{em}(M;T)}{M^2} e^{-\frac{M}{T}} (MT)^{3/2} & * * \end{aligned}$$

* assumed that the in-medium EM spectral function depends only weakly on 3-momentum ** invoke approximation $T/M \ll 1$

Dileptons as thermometer at SPS

- IMR spectrum falls exponentially
- In the IMR the dilepton rate $\frac{dR_{ll}}{dM} \propto (MT)^{\frac{3}{2}} \exp(-\frac{M}{T})$
- Independent of flow: no blue shift!

$$M = 1.1 - 2 \ GeV$$
 : $\langle T \rangle = 205 \pm 12 \ MeV$
 $M = 1.1 - 2.4 \ GeV$: $\langle T \rangle = 230 \pm 10 \ MeV$

 \sim the only explicit temperature measurement above T_{pc} in heavy-ion collisions!

Dileptons as thermometer at SIS18

- IMR spectrum falls exponentially
- In the IMR the dilepton rate $\frac{dR_{ll}}{dM} \propto (MT)^{\frac{3}{2}} \exp(-\frac{M}{T})$
- Independent of flow: no blue shift!

$$M = 0.2 - 1.2 \ GeV$$
 : $\langle T \rangle = 71.8 \pm 2.1 \ MeV$

Mapping the QCD "caloric curve" (T vs ε)

Rapp and v. Hess, PLB 753 (2016) 586 TG *et al.*, EPJA 52 (2016) 131 https://github.com/tgalatyuk/QCD caloric curve Signature for phase transition? → phase transition may show up as a plateau! → future high statistics experiments

Mapping QCD "caloric curve", > 2028

Dileptons as

CHRONOMETER

Dimuon invariant mass from NA60

NA60, Eur.Phys.J.C 49 (2007) 235

<u>Peripheral data</u> well described by meson decay 'cocktail' $(\eta, \eta', \rho, \omega, \Phi)$ and $D\overline{D}$

More central data clear excess of data above decay 'cocktail'

TECHNISCHE UNIVERSITÄT DARMSTADT

Excess as a function of centrality

Excess radiation is rising with centrality

The dilepton clock

Centrality dependence of spectral shape

Rapid increase of relative yield reflect the number of $\rho \text{'s}$ regenerated in fireball

TECHNISCHE UNIVERSITÄT

DARMSTADT

Centrality dependence of excess

TECHNISCHE

UNIVERSITÄT

DARMSTADT

The dilepton clock

"explicit" measurement of interacting-fireball lifetime: $\tau_{FB} \approx (7 \pm 1) fm/c$

The dilepton clock

Integrated low-mass radiation $0.3 < M < 0.7 \text{ GeV}/c^2$ tracks the fireball lifetime

U. W. Heinz and K. S. Lee, PLB 259, 162 (1991) H. W. Barz, B. L. Friman, J. Knoll and H. Schulz, PLB 254, 315 (1991)

The amount of radiation depends on both the volume V_{FB} and the lifetime of the fireball τ_{FB}

 V_{FB} , at a given collision energy and centrality class, is proportional to the number of charged particles \rightarrow accessible through hadronic final-state observables

→ Normalize the low-mass dilepton yields to the number of charged particles or the number of pions → obtain a measure of the τ_{FB}

TG., JPS Conf.Proc. 32 (2020) 010079

15/33

TECHNISCHE UNIVERSITÄT

DARMSTADT

Dilepton signature of a 1st order phase transition

Dilepton radiation in hydrodynamics

implement 1st-order transition into CMF/PNJL model by increasing scalar quark couplings

251

16/33

127 138 146 185

 $dN/dyl_{\pi^*+\underline{\pi^*}}$

5.3

Dilepton signature of a 1st order phase transition

Factor of ~2 extra radiation in case of hydro with phase transition

Dileptons as

POLARIMETER

18/33

Virtual photon polarization and dilepton anisotropy

GSI FAIR

27 June – 8 July, 2022

Virtual photons from (unpolarized) thermal sources are polarized!

Polarization measurements NA60

 NA60: no evidence for polarization at least not at the level of statistical and systematic uncertainties

NA60: PRL 96 (2009) 222301

Helicity angle (in the γ^* rest frame)...

• ... measures the photon polarization HADES: PRC 84 (2011) 014902

For $\pi^+\pi^- \rightarrow \rho \rightarrow e^+e^$ expected B=-1 \rightarrow hint for vector meson contribution Bratkovskaya *et al.*, PLB 348 (1995) 325

Dileptons as

AMPEREMETER

Transport properties of the medium

Electrical conductivity

can be directly obtained from the low-energy limit of the EM spectral function (at vanishing momentum)

 $\sigma_{el}(T) = -e^2 \lim_{q_0 \to 0} \frac{\delta}{\delta q_0} Im \Pi_{em}(q_0, q = 0; T)$

Transport peak in the limit of very low mass and $p_{\rm T}$

Rapp, EMMI RRTF 2021

 Conductivity is reduced when thermal-pion interactions included

□ Transport peak broadens

Moore and Robert, arXiv:hep-ph/0607172

ALICE 3, simulations

2.5

3

ALICE 3 Study

0-10 % Pb-Pb, Vs_m = 5.02 TeV

TOF + RICH ($4\sigma_{-}^{RICH}$ rei) PID, B = 0.5

1.5 2

 $p_{T_0} > 0.08 \text{ GeV}/c, |\eta_0| < 1.1$

Lavout v1

0

0.5

TECHNISCHE

UNIVERSITÄT

DARMSTADT

0.9

0.8

p.7

0.6 0.5

0.4

0.3

0.2

0.1

3.5

 $m_{\rm ee}~({\rm GeV}/c^2)$

Dileptons and

CHIRAL SYMMETRY

(additional) Signature for chiral symmetry restoration

- Changes in yield and shape at M_{ee} > 1.1 GeV/c² due to ρ - a₁ chiral mixing
- $\pi a_1 \rightarrow \gamma^* \rightarrow \ell^+ \ell^-$ (chiral mixing) is a dominant hadronic source in IMR

25/33

GSI FAIR

26/33

Experimental challenge: physics background ($M_{\parallel} > 1 \text{ GeV}/c^2$)

F. Seck [CBM], 2015

- Towards lower energy
 - negligible correlated charm contribution
 - decrease of QGP
 - Drell-Yan contribution

- LHC energies
 - large contribution from $c\bar{c}$, $b\bar{b}$ and QGP
 - negligible Drell-Yan

Feasibility studies

- Towards lower energy
 - \mathcal{D} rell- \mathcal{Y} an contribution \rightarrow

pp, pA measurements

- LHC energies
 - excellent vertex resolution → topological separation of prompt and non-prompt source employing DCA cut
 - choice of the $p_{\rm T}$ cut

How can heavy-ion experiments help us understand binary neutron star mergers?

How can binary neutron star mergers help us understand heavy-ion experiments?

28/33

HIC and BNSM

29/33

Extreme and shiny

What have we learnt from excess radiation Au+Au $\sqrt{s_{NN}}$ =2.4 GeV?

Radiation from a source

- long-lived ($\tau \approx 13 \ fm$)
- in local thermal equilibrium
- $-\langle T \rangle \approx 72 \text{ MeV}$

$$-\rho = 2 - 3\rho_0$$

The QCD phase structure at highest μ_B

Hanauske *et al.*, Particles 2 (2019) no.1 Rezzolla *et al.*, Phys. Rev. Lett. 122 (2019) no. 6, 061101

Possible HIC trajectories and NS merger simulations within an effective hadronic model

18 orders of magnitude in scales still similar T < 70 MeV, ρ < $3\rho_0$ for both

- Dileptons sensitive to dense phase
- Important input to constrain the EoS of dense matter
 - \rightarrow strong connections between the fields

The future is bright

- Future experiments aim at utmost precision measurements for rare probes (dileptons and photons)
- New theoretical developments are expected to provide chirally and thermodynamically consistent inmedium vector-meson spectral functions (e.g. FRG, lattice QCD)

FECHNISCHE JNIVERSITÄT

ARMSTADT

Detectors are high-tech prototypes

Success through perfect teamwork of experts in many fields

Résumé and take home message

- · Unique possibility of characterizing properties of hot and dense QCD matter with dileptons
- Robust understanding of low-mass dilepton excess radiation through *ρ*-baryon coupling (at LHC, RHIC, SPS and SIS18 energies)
- Complementary program on exclusive measurements in π , p induced reactions with HADES
- Enable unique measurements:

Fireball lifetime, temperature

33/33

Thank you for your attention!

