

Heavy Ion Collisions in the QCD phase diagram June 27-July 8, 2022 Subatech, Nantes (France)

HADRONS IN MEDIUM

Tetyana Galatyuk Technical University Darmstadt / GSI 05 July, 2022

Lecture 2

Dileptons as

SPECTROMETER

Measured excess dilepton invariant-mass spectra

Dilepton excitation function: SPS – RHIC

[STAR], Phys. Rev., C92 (2015) 2, 024912 [STAR], Phys.Lett. B750 (2015) 64–71 [STAR], arXiv:1810.10159, 2018 ➡ BES 62.4 – 19.6 GeV

- No apparent change of the excess emission source
- Suggests "universal" medium effect around Tpc

SPS (Pb+Pb)	RHIC (Au+Au)
6.2	20.1
24.8	80.4
33.5	8.6
85	21.4
110	102
	SPS (Pb+Pb) 6.2 24.8 33.5 85 110

- Although the **NET-**baryon density is different at SPS, RHIC and LHC, baryon density is practically the same!
- Baryon effects important even at $\rho_{B_{tot}} = 0!$ sensitive to $\rho_{B_{tot}} = \rho_B + \rho_B \ (\rho N \text{ and } \rho \overline{N} \text{ interactions identical})$

Dilepton excitation function: RHIC - LHC

[ALICE] Phys.Rev.C 99 (2019) 2, 024002

4/29

- RHIC, LHC: higher initial temperature, open charm (beauty) contribution becomes very significant
- $\mu_B \ll T$: lattice QCD computations are most powerful
- Low-mass spectral shape in chiral restoration window: ~60% of thermal low-mass yield in "chiral transition region" (T=125-180 MeV)
- Measure ρ spectral function and "calibrate" EM rates

Baryonic matter at few gev beam energy

Central cell (3x3x3 fm3) thermodynamic properties from coarse graining UrQMD

TG, Seck et al., Eur. Phys. J. A 52 (2016) 131

- Long interpenetration times
- Comparatively long lifetime of the dense "fireball" ($\rho_{max} \approx 3\rho_0$)

Composition of a hot $\pi\Delta N$ gas

Rapp, Wambach, Adv.Nucl.Phys. 25 (2000)

- Moderate temperatures: T < 90 MeV
- Baryon-dominated system throughout the evolution $(N_{\pi}/A_{part} \approx 10\%)$

Towards few GeV energies

Challenges

- · Implementation of in-medium effects in microscopic transport simulations
- justification of thermalization in hydrodynamical simulations

Coarse-grained transport approach

- ➡ bulk evolution from microscopic transport
- ➡ apply equilibrium rates locally
- Simulate many events
 → ensemble average to obtain smooth space-time distributions
- Average hadron distributions in suitable space-time
- Determine for each cell the bulk properties like T, ρ_B, μ_π, β
- Use in-medium spectral functions to compute EM emission rates

Huovinen et al., PRC 66 (2002) 014903 CG FRA Endres et al.: PRC 92 (2015) 014911 CG GSI-Texas A&M TG et al.: Eur.Phys.J. A52 (2016) no.5, 131 CG SMASH: Phys.Rev.C 98 (2018) 5, 054908 Rapp and Wambach, Adv.Nucl.Phys. (2000) 25 Jung, Rennecke, Tripolt, at al., PRD95 (2017) 036020 Sasaki, Phys.Lett. B801 (2020) 135172

Momentum distributions of nucleons, Au+Au $\sqrt{s_{NN}} = 2.4$ GeV, central cell

- Gaussian shaped p_z distribution builds up for nucleons with $n_{coll} \ge 3$
- $m_{\rm T}$ spectra have exponential shape
- Check for every cell \rightarrow deviations are kept in space-time evolution

TECHNISCHE UNIVERSITÄT DARMSTADT

Determination of bulk properties

• Baryon density via 4-current

GSI FAIR

• Lorentz-boost to local rest frame (LRF) where the baryon current vanishes

• In Boltzmann approximation

- Fill $m_{\rm T}$ spectra with particle momenta in LRF (mean flow v_{coll} vanishes)
- Fit exponential function to extract T (species of choice: pions)

Thermal dileptons at SIS energy regime

There is no mission impossible

- Thermal rates folded with coarse-grained medium evolution from transport works at low energies
- ρ -meson peak undergoes a strong broadening in medium
- in-medium spectral function from many-body theory consistently describes SIS18, SPS, RHIC, LHC energies
- Baryonic effects are crucial

Rapp and Wambach, Adv.Nucl.Phys. (2000) 25

Production processes from ρ spectral function

↔ cuts (imaginary parts) of selfenergy diagrams:

TECHNISCHE

10/29

NIVERSITÄT

TECHNISCHE

DARMSTADT

NIVERSITAT

"Light-like" ρ -spectral function, $D_{\rho}(q_0 = q)$ and nuclear photo-absorption

 Fixes coupling constants and formfactor cutoffs for ρNB

• 2^{nd} + 3^{rd} resonance melt (parameter) (selfconsistent N(1520) \rightarrow N ρ)

First measurement of massive γ^* emission from N^* baryon resonances

• $\pi^- p \rightarrow n + \pi^- + \pi^+$

 included in PWA (Bonn-Gatchina) to provide partial wave decomposition

HADES, PRC 102 (2020) 2, 024001

4 additional entries

• $\pi^- p \rightarrow n + e^- + e^+$

- probe baryon resonance nucleon transition
- Dominance of the $N^*(1520)$ resonance at $\sqrt{s_{NN}} = 1.49$ GeV
 - ho meson as "excitation" of the meson cloud
 - Vector Meson Dominance basis of emissivity calculations for QCD matter

Dileptons as

BAROMETER

Radial flow

Purely thermal source

- Particles radiated from the "thermal" source $\rightarrow m_t$ spectra of all particles have the same form

- Additional radial (collective) expansion
 - Form of the m_t spectra for heavier particles differs
 - Important parameter: radial expansion velocity β

Thermal spectra and radial flow

- Radial flow has been defined for central collisions
- The idea: $\langle E \rangle = \frac{1}{2}m\beta^2 + \frac{3}{2}T$ while the thermal energy is independent of mass, the collective flow contribution is proportional to particle mass \rightarrow from the spectra of particles with different masses extract both the thermal and the collective component

$$T_{eff} = \begin{cases} T_{th} \times \sqrt{\frac{1 + \langle \beta \rangle}{1 - \langle \beta \rangle}} & for \ p_t \gg m \\ \\ T_{th} + \frac{1}{2}m \langle \beta \rangle^2 & for \ p_t \le m \end{cases}$$

I kin

10

World data

TAR BES
 T_{ch} Andronic et al.

🛨 World data

STAR BES

100

∖s_{NN} (GeV)

1000

- - T_{ch} Cleymans et al.

200F

........

"Thermal" spectra and radial flow

"blast wave": based on hydrodynamics

Schnedermann, Sollfrank, and Heinz, Phys. Rev. C46

spectrum of the longitudinally and radially expanding thermal source:

$$\frac{dN}{p_t dp_t} \propto \int_0^R r \, dr \, m_t \, K_1\left(\frac{m_t \cosh\rho(r)}{T_{kin}}\right) \times I_0\left(\frac{p_t \sinh\rho(r)}{T_{kin}}\right)$$

boost-rapidity:
$$\rho(r) = tanh^{-1}\beta$$

radial flow velocity profile: $\beta = \beta_s (r/R)^n$

STAR, Phys.Rev.C96 4 (2017) 044904

Thermal spectra and radial flow

Step 2: Plot T_{eff} vs mass $\rightarrow T_{th}$, β

Transverse mass distributions of excess

for each bin of e^+e^- project transverse momentum spectrum

assuming pure Boltzmann nature of the radiating source

$$\frac{d^3N}{dp} \propto exp\left(-\frac{E}{k_BT}\right)$$

$$\frac{1}{p_t}\frac{dN}{dp_t} \propto m_t K_1\left(\frac{m_t c^2}{k_B T}\right)$$

How the collectivity develops

fit to model calculations:

$$\Box \quad \text{CG:} \ T_{kin} = 65 \ MeV, \langle \beta_{ee} \rangle = 0.19$$

$$\square \text{ HSD: } T_{kin} = 74 \text{ MeV}, \langle \beta_{ee} \rangle = 0.05$$

from hadron spectra at kinetic freeze-out

 $\Box T_{kin} = 62 \pm 8 \, MeV, \langle \beta_{had} \rangle = 0.34 \pm 0.04$

HADES, in preparation

Transverse mass distributions of excess

for each bin of $\mu^+\mu^-$ project transverse mass spectrum: $m_T = \sqrt{p_T^2 + M^2}$

 m_T spectra exponential for m_T - M > 0.1 GeV (< 0.1 GeV??)
 Fit with ¹/_{m_T} ^{dN}/_{dm_T}~ exp (-^{m_T}/_{T_{eff}})
 Extract T_{eff} and plot vs M

TECHNISCHE UNIVERSITÄT DARMSTADT

NIVERSITAT

The rise and fall of T_{eff} of thermal dimuons

 $M < 1 \, GeV$

 \Box strong, almost linear rise of T_{eff} with dimuon mass

□ follows trend set by hadrons

M > 1 GeV \Box drop of T_{eff} by ~50 MeV □ followed by an almost flat plateau

> What can we learn from m_T spectra? \rightarrow radial flow \rightarrow origin of dileptons

NA60, PRL 100 (2008) 022302

Interpretation of the dilepton $m_T(p_T)$ spectra

- □ Hadron p_T spectra: determined at $T_{kin.f.o.}$ (restricted information)
- □ Dilepton p_T spectra: superposition from all fireball stages □ early emission → high T_{th} , low v_T □ late emission → low T_{th} , high v_T

□ Final spectra from space-time folding over $T_{th} \& v_T$ history from $T_{initial} \rightarrow T_{kin.f.o.}$ note: small flow in the QGP phase

for M > 1 GeV:

- $\rightarrow T_{eff}$ independent of *M*, negligible flow
- $\rightarrow \langle T_{th} \rangle \sim 200 MeV > T_{pc}$
- \rightarrow early emission, dominance of partons

EoS-B

EoS-C

NA 60 -

1.2

1.4

EoS-B⁺ EoS-C⁺ TECHNISCHE

UNIVERSITÄT

DARMSTADT

T effective in theory, SPS

- Theoretical slopes originally too soft \rightarrow increase fireball acceleration from $a_{\perp} = 0.085 \frac{c^2}{fm}$ to $0.1 \frac{c^2}{fm}$
- Effective at all stages of fireball evolution

- Spectral shape as function of pair- p_{T}
- Entangled with transverse flow (barometer)

TECHNISCHE UNIVERSITÄT

DARMSTAD

T effective at RHIC

Theory:

- Qualitative change from SPS to RHIC: flowing QGP
- True temperature "shines" at large m_T

Experiment:

- Large contribution from $c\bar{c}, b\bar{b}$ and QGP
- Negligible Drell-Yan

Azimuthal anisotropy of virtual photons

Very cleans tool to diagnose the collective expansion dynamics, i.e. origin of the electromagnetic emission source

 \Box Challenging v_2 vs M analysis

- \Box Early emission (partonic matter) ightarrow small v_2
- \Box Late emission (hadronic matter) \rightarrow large v_2

Azimuthal anisotropy of thermal photons in HADES

IG IS I FAIR

 \Box v₂ consistent with zero for M_{ee} > 0.12 MeV/c²

confirms dileptons as penetrating probes of hot and dense medium

Thank you for your attention!

