Hands on session HQ

Typical times

Collisional (elastic): $2 \rightarrow 2$

=> Typical collision time =

Exo 1 : evaluate typical collision time for $T = 2 T_c$

<u>Assuming</u> (in light cone coordinates):

$$\begin{cases} HQ_{fin} \equiv ((1-z)P^+, P_{Q}^-, -\mathbf{k}_{\perp}) \\ g_{fin} \equiv (zP^+, P_{g}^-, \mathbf{k}_{\perp}) \end{cases}$$

Exo 2: evaluate typical formation time

$$t_{
m form} \sim rac{{
m HQ}_{
m int}^0}{{
m HQ}_{
m int}^2 - M_{
m HQ}^2}$$

HQ lectures

 $Exo\ 3$: Extend the calculation of the Bjorken energy loss to evaluate the temperature-momentum dependence of the transverse and longitudinal coefficients B_T and B_L (assuming an incoming relativistic heavy quark) and show that it is α E.

Check whether the Einstein equation is satisfied.

 $\underline{\text{Exo 4}}$: try to sketch a generic d²Prob/dzd Δ E for both elastic and Gunion-Bertsch radiative energy loss... and discuss how the various parts are affected by the α_{S} penalty.

Exo 5: Rederive some of the scales affecting heavy quark radiative energy loss

Exo 6: Make more explicit the yellow arrows on slide 83 (quarkonia)

Exo 7: Starting from the relation 92, try to evaluate the decoherence time (both parametrically and numerically) of Y(1S) and compare it with the so-called formation time.